

Accepted by Editor: 08-10-2021 | Final Revision: 07-12-2021 | Online Publication: 30-12-2021

1090

Accredited by National Journal Accreditation (ARJUNA) Managed by

Ministry of Education, Culture, Research and Technology with Second Grade (Sinta 2)

since year 2021 to 2026 according to the decree No. 158/E/KPT/2021

Published online on the journal’s webpage: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 5 No. 6 (2021) 1090 - 1098 ISSN Media Elektronik: 2580-0760

Numerical Approach of Symmetric Traveling Salesman Problem Using

Simulated Annealing

Iryanto1, P. H. Gunawan2
1Informatics Department, Politeknik Negeri Indramayu

2School of Computing, Telkom University
1iryanto@polindra.ac.id, 2phgunawan@telkomuniversity.ac.id

Abstract

The aim of this paper is to elaborate the performance of Simulated Annealing (SA) algorithm for solving traveling salesmen

problems. In this paper, SA algorithm is modified by using the interaction between outer and inner loop of algorithm. This

algorithm produces low standard deviation and fast computational time compared with benchmark algorithms from several

research papers. Here SA uses a certain probability as indicator for finding the best and worse solution. Moreover, the strategy

of SA as cooling to temperature ratio is still given. Thirteen benchmark cases and thirteen square grid symmetric TSP are used

to see the performance of the SA algorithm. It is shown that the SA algorithm has promising results in finding the best solution

of the benchmark cases and the squared grid TSP with relative error 0 - 7.06% and 0 – 3.31%, respectively. Further, the SA

algorithm also has good performance compared with the well-known metaheuristic algorithms in references.

Keywords: simulated annealing, traveling salesman problem, symmetric TSP, square grid TSP.

1. Introduction

Finding an optimal route or shortest path is quite

challenging due to its own difficulties. The problem can

be implemented in some fields. One of them is finding

minimum route for a salesman who want to visit place

of all of his clients with constraint the places are visited

exactly once and the salesman ends his tour in place in

which he starts the journey. The problem is well known

as TSP (traveling salesman problem) where the problem

can be described in weighted graph. Here, the vertex and

edges of the graph are used to describe city and distance

between two cities, respectively. Moreover, this problem

is also known as Hamiltonian circuits problem.

In recent years, many researchers developed and

proposed methods to solve the problem. Several

methods that has been proposed to solve the problem are

discrete tree-seed algorithm (DTSA)[1], black hole

algorithm (BHA) [2], discrete lion swarm optimization

[3], a hybrid optimization algorithm based on wolf pack

search and local search [4], heuristic shortest path

algorithm [5], genetic algorithm (GA) [6], particle

swarm optimization (PSO) [6-8], ant colony

optimization (ACO) [7], shuffled frog leaping

algorithms (SFLA) [7], and simulated annealing (SA)

[9-18]. From [2], BHA has a good performance

compared with GA, ACO, dan PSO for finding the

optimal solution and computational time in 10

benchmark cases of TSP using 22 - 101 number of cities.

Meanwhile in [7], ACO known has a good performance

compared PSO, improved PSO dan SFLA algorithm for

finding the optimal solution of six benchmark cases of

TSP with totally 30 – 100 cities. However, comparing

the computational time, PSO is shown slower than the

other algorithms.

Considering the work of Chunhua, et al. in [19], it is

shown that STA had the best performance to find the

optimal solution and the fastest in computational time

for solving three benchmark cases of TSP with the

number of cities 16, 48, and 52, compared with ACO and

SA. Moreover, STA had low standard deviation from

three cases in [19]. This standard deviation is used to

show the stability and reliability of algorithm for finding

the optimal solution [2]. In [19], each one of algorithms

is running in 20 times parallel for solving some

problems.

In this paper, SA algorithm will be elaborated to solve

the TSP. Moreover, to see the performance of the SA

algorithm, comparison of SA and well-known

metaheuristic algorithm such as BHA, GA, PSO, ACO

and state transition algorithm (STA) will be given for

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1091

solving some benchmark cases of TSP. Here, SA will be

modified by using combination of outer and inner loop

in algorithm. In this case, the input of outer loop (the

number of experiments) will depend on the result of

inner loop (the proses for finding optimal solution). With

the modification, it is expected that the performance of

the SA can improve.

There are two kinds of TSP namely symmetric and

asymmetric TSP [20]. The symmetric TSP is when the

distance between city A to city B is the same with the

distance between city B to city A. Whereas when the

distance is different, the problem is known as

Asymmetric TSP. Note that, all mentioned benchmark

cases above are belong to the symmetric TSP. The

performance comparison will be conducted with three

references, [2], [7], and [19]. From these references,

there are twelve symmetric TSP benchmark cases where

data of each case can be found in [21]. The benchmark

cases are Ulysess16, Ulysess22, Bays29, Bayg29, Att48,

Eil51, Berlin52, St70, Eil76, Gr96, KroA100, and

Eil101. Therefore, the SA algorithm will be focused on

solving the symmetric TSP using the benchmark cases

to see its performance compared with other algorithms

mentioned in those references.

To see further performance of the SA algorithm, another

simulation in solving the symmetric TSP cases is

conducted. In this case, 𝑛 × 𝑛 cities are well-order

generated with distance between two neighboring cities

is equal to one. Here, the case is called by name ‘square

grid symmetric TSP’. The simulations are conducted for

𝑛 = 3 − 15. The values of 𝑛 are chosen to see

performance of the algorithm in solving symmetric TSP

cases with small to medium number of cities. Using the

values of 𝑛, numbers of city of the simulations are varied

from 9 to 225.

2. Research Method

The simulated annealing (SA) is an optimization method

that can be used to solve TSP. The method is used to find

shortest route from all possible routes [11]. The optimum

solution is obtained when the energy (distance) produced

is the minimum and the path tracking is obtained from

the route taken. As an optimization method, the

difference between SA and other optimization methods

is that there is a possibility to still accept worse solution

than the current solution to elude local optimal solution

[10]. Generally, the SA algorithm is probabilistic meta-

heuristic method inspired by annealing of metal [11].

The algorithm was introduced in combinatorial problem

to solve TSP by Kirkpatrick et al. in 1983 [9]. The idea

to accept the worse solution in the process is the main

idea that differentiates the algorithm with other

optimization methods. The acceptance depends on

probability function, 𝑝, as follows [9]

𝑝(∆𝐸, 𝑇) = {𝑒
−∆𝐸

𝑇 ∆𝐸 > 0
1 ∆𝐸 ≤ 0

 (1)

Where ∆𝐸 denotes the energy difference and 𝑇

represents the temperature.

Note that the energy difference is less or equal than zero,

∆𝐸 ≤ 0, means that the current solution is better than

previous solution. Whereas the difference energy greater

than zero, ∆𝐸 > 0, means that the current solution is

worse than previous solution. Criteria for acceptance of

the worse solution depends on certain probability, 𝑝𝑟 <

𝑒
−∆𝐸

𝑇 , where 𝑝𝑟 is random value between 0 and 1. In this

case, the method utilizes random numbers in the process,

so that each experiment, may produce different results

and it is still possible that the solution obtained will be

trapped in the local optimum solution. Therefore, it takes

several trials (running program) to find out the optimum

solution.

The cooling process of the temperature is one of factors

that need to be considered. At the beginning, the initial

value of the temperature is set. The greater the initial

temperature used, the wider the range of the random

search process [11]. The initial temperature will

continue to decrease as the iteration goes to increase.

Following [9] and [10], the geometric cooling schedule,

𝑇 = 𝑇 × 𝑟, is used in here. Value of the cooling

coefficient, 𝑟, is constant between 0 and 1 [9]. Further,

value of the coefficient for slow cooling rate is between

0.8 to 0.99 [10]. Therefore, in this article, the cooling

rate is 𝑟 = 0.9.

In the SA method, at the beginning the initial of solution,

𝑆0, is given. The solution is randomly generated.

Following Algorithm 1 is given the modified SA

procedures:

Algorithm 1

SA procedures by using inner and outer
loop interaction
Set the initial value T, 𝑆0 using (2), 𝐸0, 𝑆𝑜𝑝𝑡

and 𝐸𝑜𝑝𝑡
For 1 to n

Update State S, Calculate Energy E using
(3)
Calculate Δ𝐸 = 𝐸 − 𝐸0, 𝜔 ∈ [0,1], 𝑝 using (1)
If Δ𝐸 < 0 then

Set S0 = 𝑆, 𝐸0 = 𝐸
If 𝐸 < 𝐸𝑜𝑝𝑡 then 𝑆𝑜𝑝𝑡 = 𝑆0, 𝐸𝑜𝑝𝑡 = 𝐸0

 Else go to Step 11
Else

If 𝑝 > 𝑝𝑟 then go to Step 5
Else go to Step 11

If satisfying Inner Loop Termination
Criteria, then

Do cooling schedule 𝑇 = 𝑇 × 𝑟
Go to Step 3

End For

The State (S) is used to track the path taken, for example,

there are M cities to be taken, the state is a number from

1 to M on the condition that no number is similar. In

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1092

other words, the state is a random permutation of the M

cities. In this article, the initial state is created as

𝑆0 = {1, 2, 3, 4, 5 … , 𝑀} (2)

The state is updated using reversion procedure. In this

case, two random values within M (k1 and k2) are

created and position of the state in the range are inversed

as described in [16].

 Energy (E) is used as an objective function. In this case,

it is used to calculate the total distance travelled in one

state. Note that in the TSP, the beginning and the end of

the route is the same so the additional distance from the

last travelled city to the first city is added.

𝐸 = ∑ 𝑑𝑖

𝑁−1

𝑖=1

+ 𝑑𝑁 (3)

Where 𝑑𝑖 denotes distance between two cities in the

state. Position of the cities is expressed in Cartesian

coordinates so that the distance can be expresses as given

in equation (4).

Termination of the program can use given maximum

iteration or it can use the specified/final temperature. In

this article, the stopping criteria is the maximum

iteration.

3. Result and Discussion

In this paper, two simulations of symmetric TSP are

conducted. The first simulation is symmetric TSP based

on Data in [21] and the second is square grid symmetric

TSP generated in certain ways. In this case 𝑛 × 𝑛 points

are well-order generated with distance between two

neighboring points is equal to one. Results of the SA

algorithm are compared with best known solution (BKS)

from references for the symmetric case and analytic

solution for the square grid case. Further, comparison

with some algorithms is carried out to see the SA

algorithm performance. All simulations in this paper are

carried out using a PC with windows 10 pro 64-bit (OS),

Intel® Core™ i7-8550U CPU @ 1.80 GHz processor

and 16 GB RAM memory. The SA algorithm is based on

C++ language. All simulations are run with parameter

𝑇 = 1000 (initial temperature), 𝑟 = 0.9, maximum

iteration of outer loop is 100, maximum iteration of inner

loop is 800*number of cities.

3.1. Symmetric TSP

In this case, all points are generated using TSPLIB data

that can be downloaded in [21]. Optimal route of the

cases is also available in the reference. The simulations

are run for thirteen TSP cases such as Ulysess16,

Ulysess22, Bays29, Bayg29, Att48, Eil51, Berlin52,

St70, Eil76, Gr96, KroA100, Eil101, and Ch130. The

number in the name of the case represents number of

cities. Number of cities in the cases are 16, 22, 29, 29,

48, 51, 52, 70, 76, 96, 100, 101, and 130, respectively.

These cases are chosen to conduct comparison with

some references. Results of the simulations are

presented in Table 1.

In the Table 1, notation BS means the best solution of

the SA algorithm, WS is the worst solution of the SA

algorithm, Ave is average of all solution of the SA

algorithm, IL is maximum of number iterations of the

inner loop, Rep means repetition of the outer loop, BI is

the best iteration of inner loop to get the best solution,

𝑑𝑖 = √(𝑆𝑥(𝑖) − 𝑆𝑥(𝑖 + 1))
2

+ (𝑆𝑦(𝑖) − 𝑆𝑦(𝑖 + 1))
2

𝑑𝑁 = √(𝑆𝑥(𝑁) − 𝑆𝑥(1))
2

+ (𝑆𝑦(𝑁) − 𝑆𝑦(1))
2

(4)

Table 1. Results of the Symmetric TSP Cases

Case BS WS Ave IL Rep BI BT (s)

Ulysess16 73.9876 74.4602 74.2239 12800 2 593 0.333

Ulysess22 75.3097 76.8119 76.2203 17600 14 1334 4.349

Bays29 9074.15 9360.715 9202.625 23200 5 622 1.239

Bayg29 9074.15 9576.29 9259.601 23200 38 889 13.517

Att48 33882.48 34846.67 34766.32 38400 12 38400 6.367

Eil51 430.89 444.74 444.41 40800 52 40800 31.465

Berlin52 7544.366 8341.865 7845.615 41600 93 41600 57.396

St70 697.8861 727.8492 708.807 56000 31 56000 32.143

Eil76 563.6019 594.2049 575.5559 60800 86 60800 106.068

Gr96 539.9611 558.2102 550.0152 76800 11 76800 20.599

KroA100 21632.56 24181.945 22956.741 80000 17 80000 32.281

Eil101 673.4284 708.6054 688.9844 80800 34 80800 67.967

Ch130 6356.304 6657.21 6443.351 104000 91 104000 298.951

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1093

and BT is the total of time (in second) for inner loop and

outer loop to get the best solution. To see performance

of the SA algorithm, comparison between the results

with the best-known solution (BKS) from references are

executed. In this case, we calculate relative error using

equation (1) for the best solution, the worst solution, and

average of the solution. Further, average time is

calculated to see average time for one inner loop using

equation (2). The performance of the algorithm is given

in Table 2.

It is shown in the Table 2 that results of the SA algorithm

are acceptable. According to the relative error, the

algorithm has good agreement with the BKS for the

conducted cases. The algorithm gets the BKS for

Ulysess16, Ulysess22, Bays29, and Bayg29 case.

Whereas for the other cases it can be said that the

algorithm is also has good comparison with the BKS.

The best solution of the algorithm has the highest and the

smallest relative error 7.06% and 0.0%, respectively.

The worst solution has relative error 0.64% - 13.63%.

Whereas average of the solutions has relative error

0.32% - 9.54%. It is clearly shown in the table that the

best performance is in the Ulysess16 case in which there

are 16 points/cities. When the number of points/cities is

bigger the performance is decreasing, and the average

time is increasing.

𝐵𝐸 =
𝐵𝑆 − 𝐵𝐾𝑆

𝐵𝐾𝑆
, 𝑊𝐸 =

𝑊𝑆 − 𝐵𝐾𝑆

𝐵𝐾𝑆
 ,

𝐴𝐸 =
𝐴𝑣𝑒 − 𝐵𝐾𝑆

𝐵𝐾𝑆
.

(5)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 =
𝐵𝑇

𝑅𝑒𝑝
.

(6)

Comparison is also conducted with other algorithms in

several references. The first comparison is with

algorithms in [7]. In the reference, there are six

algorithms such as ACO, PSO, improved PSO (IPSO),

SFLA, order crossover with inversion mutation (OXIM)

SFLA, and cycle crossover with inversion mutation

(CXIM) SFLA. The algorithm was used to solve six

symmetric TSP cases namely Oliver30, Eil51, Berlin52,

St70, Eil76, and KroA100. All simulations in the

reference are based on MATLAB 6.5 tool and run in PC

with a 1.70 GHz processor and 4.00 GB RAM memory.

All results given in the reference were gotten after the

program was run 1000 times and the time in the

reference was an average running time. It is shown in the

reference that ACO and Improved PSO have better

results according to their error.

Comparisons between the SA algorithm and the other

algorithms are carried out for the cases minus Oliver30

case because data of the case are not available in [21].

Results of the comparison are presented in Table 3. Note

that maximum number of iterations of ACO, PSO, and

IPSO in the reference for each TSP case is 1000. The

number of ants in ACO is 100 and the number of

populations in PSO and IPSO is equal to number of

cities. Further, it is stated in the reference that in case of

large number of cities, number of ants may be increased

in ACO and number of iterations may be increased in

IPSO. Thus, the setting of inner loop which is equal to

number of cities times 800 is acceptable.

It is shown in the Table 3 that the SA algorithm has better

results than the algorithms in [7] for the TSP cases. The

SA algorithm has superior performance than the

algorithms in the references. It can be seen also that

computational time of the SA algorithm is better than the

mentioned algorithm. But the PC specification to run the

SA algorithm is better than the PC specification to run

the other algorithm. Note that, value of the average time

Table 2. Performance of the SA algorithm for the Symmetric TSP Cases

Case BKS BS BE WE AE Average Time (s)

Ulysess16 73.9876 [19] 73.9876 0.0000 0.0064 0.0032 0.1665

Ulysess22 75.3097 [2] 75.3097 0.0000 0.0199 0.0121 0.3106

Bays29 9074.15 [8] 9074.15 0.0000 0.0316 0.0142 0.2478

Bayg29 9074.15 9074.15 0.0000 0.0553 0.0204 0.3557

Att48 33522 33882.48 0.0108 0.0395 0.0371 0.5306

Eil51 426 430.89 0.0115 0.0440 0.0432 0.6051

Berlin52 7542 7544.366 0.0003 0.1061 0.0403 0.6172

St70 675 697.8861 0.0339 0.0783 0.0501 1.0369

Eil76 538 563.6019 0.0476 0.1045 0.0698 1.2333

Gr96 514 [22] 539.9611 0.0505 0.0860 0.0701 1.8726

KroA100 21282 21632.56 0.0165 0.1363 0.0787 1.8989

Eil101 629 673.4284 0.0706 0.1266 0.0954 1.9990

Ch130 6110 6356.304 0.0403 0.0896 0.0546 3.2852

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1094

of the SA algorithm is average time for one outer loop

iteration.

To see further performance of the SA algorithm, another

comparison with other algorithms in [2] and [19] is

conducted. In this case, there are five compared

parameters such as best solution, worst solution, average

of solution, standard deviation, and time. In [2], there are

four algorithms such as ACO, PSO, GA, and BHA that

are compared each other to solve ten symmetric TSP

cases; Ulysess22, Bays29, Bayg29, Att48, Eil51,

Berlin52, St70, Eil76, Gr96, and Eil101. All simulations

in the reference are based on MATLAB and were

executed on PC with Intel® Core™ 2 Duo CPU @ 2

GHz processor and 2 GB RAM memory. Results of the

algorithms using 100 population size, 200 iterations, and

5 independent running are taken and compared with the

SA algorithm and presented in Table 4. To represent the

reference setting, the SA algorithm runs with 20000

inner loop iterations and 5 outer loop iterations.

In [19], performances of SA, ACO, and state transition

algorithm (STA) are compared each other to solve

Ulysesss16, Att48, and Berlin52 TSP. All the

simulations in the reference are based on MATLAB and

were run on PC with Intel® Core™ i3-2310M CPU @

2.10 GHz processor. Note that, in the reference [19], the

run time is the average time used in 20 execution and the

maximum iteration for SA is 4000. Therefore, to adopt

the reference, iterations of inner and outer loop are set

4000 and 20, respectively. Comparison results are given

in Table 5.

Table 3. Performance Comparison between the SA algorithm and algorithms in [7] for the TSP Cases

Problem Algorithm Best Mean Error Average Time

Eil51 (51 cities)

BKS – 426

ACO 443 516 0.0399 194

PSO 908 1313 1.1315 9

IPSO 464 543 0.0892 259

SFLA 1169 1703 1.7441 1136

OXIMSFLA 534 593 0.2535 16241

CXIMSFLA 671 671 0.5751 5147

SA 430.9 444.4 0.0115 0.6051

Berlin52 (52 cities)

BKS – 7542

ACO 7549 9385 0.0009 276

PSO 17296 22206 1.2933 15

IPSO 7816 8723 0.0363 469

SFLA 19865 30598 1.6339 1150

OXIMSFLA 8362 9987 0.1087 21907

CXIMSFLA 12266 15109 0.6264 5732

SA 7544.4 7845.6 0.0003 0.6172

St70 (70 cities)

BKS – 675

ACO 707 888 0.0474 1678

PSO 2009 3411 1.9763 28

IPSO 755 871 0.1185 1058

SFLA 2615 3759 2.8741 1859

OXIMSFLA 892 1004 0.3215 1771

CXIMSFLA 1355 1734 1.0074 3042

SA 697.9 708.8 0.0339 1.0369

eil76 (76 cities)

BKS – 538

ACO 573 659 0.0651 2035

PSO 1662 1975 2.0892 28

IPSO 584 641 0.0855 3036

SFLA 1904 2580 2.5390 1771

OXIMSFLA 733 819 0.3625 99104

CXIMSFLA 1072 1326 0.9926 28007

SA 563.6 575.6 0.0476 1.2333

KroA100 (100
cities)

BKS – 21282

ACO 22388 28655 0.0520 4516

PSO 113174 191394 4.3178 45

IPSO 24596 28385 0.1557 9426

SFLA 128520 175413 5.0389 3042

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1095

Table 3. Performance Comparison between the SA algorithm and algorithms in [7] for the TSP Cases

Problem Algorithm Best Mean Error Average Time

OXIMSFLA 37212 41371 0.7485 197264

CXIMSFLA 58069 78451 1.7285 52365

SA 21632.6 22956.7 0.0165 1.8989

Table 4 shows performance comparison of the SA

algorithm and the other algorithms in [2]. It is clearly

shown in the table that results of the SA algorithm are

better than results of the other algorithms in almost every

case and parameter. The SA algorithm has better

performance in finding the best solution of each case

except for the Ulysess22 case in which the algorithm

gets the same results with the BHA algorithm. In terms

of computational time, it is hard to compare due to the

PC specification but note that the column time for the

SA algorithm is the total time for running the program

with 200 iterations of inner loop and 5 iterations of outer

loop.

Table 4. Performance Comparison between the SA algorithm and algorithms in [2] for the TSP Cases

Problem Algorithm Best Worst Average Std. Dev Time

ulysses22 (22 cities)

BKS – 75.3097

ACO 75.3984 75.8409 75.4869 0.19789 84.27123

PSO 75.9104 77.1857 76.2186 0.55273 61.87992

GA 75.7744 76.4434 75.9878 1.2307 63.39216

BHA 75.3097 75.9343 75.6844 0.34208 50.44745

SA 75.3097 76.09488 75.5638 0.3253 1.515

bays29 (29 cities)

BKS – 9074.15

ACO 9239.197 11014.45 9823.202 722.4152 88.2566

PSO 9120.339 9498.171 9195.905 168.9717 88.82869

GA 9751.426 10513.91 10015.23 319.8788 57.11864

BHA 9396.475 9507.17 9463.252 60.9588 52.1048

SA 9076.983 9299.9 9166.15 109.206 1.375

bayg29 (29 cities)

BKS – 9074.15

ACO 9447.493 11033.55 9882.22 675.8331 99.95724

PSO 9329.251 11332.72 9947.026 799.4073 75.29661

GA 9579.123 10411.2 9771.954 127.1131 56.16117

BHA 9375.442 9375.442 9375.442 0 45.87095

SA 9094.635 9752.892 9314.914 278.230 1.642

att48 (48 cities)

BKS – 33522

ACO 35230.9 46204.24 39436.18 4874.295 133.4571

PSO 36996.44 61421.99 47018.41 9685.894 84.73842

GA 35312.52 50671.45 43620.64 2004.001 57.35453

BHA 34200.86 35528.52 34473.84 589.8024 43.21174

SA 34056.95 34056.95 34056.95 0 1.917

eil51 (51 cities)

BKS – 426

ACO 454.3895 469.0531 461.0175 6.2974 59.19328

PSO 469.1551 737.5258 574.8022 107.2371 57.25646

GA 448.8397 462.1142 453.4773 9.4157 59.63916

BHA 437.893 526.8977 458.9252 38.6365 44.39009

SA 429.484 476.9822 446.996 17.4654 2.568

berlin52 (52 cities)

BKS – 7542

ACO 7757.026 10541.12 8522.902 1152.2 65.07013

PSO 9218.468 14279.43 11089.53 2067.932 68.64806

GA 8779.756 9565.374 9288.448 1301.211 52.73534

BHA 8188.071 9356.748 8455.83 508.9871 43.40446

SA 7957.667 8074.314 7997.202 49.713 1.907

st70 (70 cities)

BKS – 675

ACO 711.6515 855.2032 757.754 59.6079 94.56822

PSO 1030.848 1756.123 1321.814 269.2793 55.28412

GA 1112.308 1242.201 1158.846 52.1734 55.09585

BHA 723.2691 1081.109 797.5745 125.2272 45.3308

SA 702.9316 705.1066 703.802 1.066 2.312

eil76 (76 cities)

BKS – 538

ACO 574.2404 665.9995 594.1442 40.2152 61.7418

PSO 804.2667 1195.902 975.6397 152.4061 56.76708

GA 619.2262 679.7864 652.0593 122.0972 46.69151

BHA 566.243 925.8417 659.1021 152.1754 46.54038

SA 564.345 595.6808 582.495 11.924 2.499

gr96 (96 cities)

BKS – 514

ACO 555.7535 639.9167 580.5406 33.9301 84.38977

PSO 1095.111 1728.824 1378.87 247.5099 56.21171

GA 737.9671 748.3543 742.4275 4.3282 63.24444

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1096

Table 4. Performance Comparison between the SA algorithm and algorithms in [2] for the TSP Cases

Problem Algorithm Best Worst Average Std. Dev Time

BHA 546.8397 1197.876 807.2465 258.815 43.58791

SA 539.4268 539.4268 539.4268 0 2.969

eil101 (101 cities)

BKS – 629

ACO 725.0996 868.2047 763.9207 59.9684 89.63974

PSO 1158.704 1973.819 1499.991 319.7468 62.09302

GA 828.8806 854.4381 838.8307 9.9642 55.18821

BHA 720.3838 1249.868 897.3813 210.1446 45.83337

SA 687.9949 704.1819 697.707 7.930 3.166

Performance of the SA algorithm compared with

algorithms in [19] is shown in Table 5. It is clearly

shown that performance the SA algorithm is in good

comparison with the other algorithms. In terms of the

best solution, the SA algorithm has the same result with

STA in Ulysess16 and Berlin52 TSP and better result in

Att48 TSP case. Further, in Ulysess16 TSP case, the SA

algorithm is better than the other algorithms in

remaining parameters. Neglected the STA, the SA

algorithm has the better performance compared with

ACO given in [19]. Note that, value of the average time

of the SA algorithm is average time for one outer loop

iteration.

Table 5. Performance Comparison between the SA algorithm and algorithms in [19] for the TSP Cases

Problem Algorithm Best Worst Average Std. Dev Average Time

ulysess16 (16 cities)

BKS – 73.9876

ACO 74.6287 78.7728 76.0864 1.1062 11.3038

STA 73.9876 74.5939 74.0779 0.1626 1.2223

SA 73.9876 73.9998 73.9937 0.0061 0.2593

att48 (48 cities)

BKS – 33522

ACO 37015 39801 38449 862.4546 102.4784

STA 33724 36205 34872 668.7553 3.0462

SA 33710.99 36568.22 34946.77 777.57 0.2442

berlin52 (52 cities)

BKS – 7542

ACO 8240.4 9151.3 8777.6 267.1124 118.0948

STA 7544.4 8630.5 8247.2 273.4509 3.3438

SA 7544.4 8918.8 7706.5 360.1 0.2369

In the SA algorithm, random value is used, therefore its

result is influenced by the value. Depends on the value,

the algorithm may get better result in faster

computational time or it is possible to get worse solution

since SA algorithm has possibility to accept worse

solution leading to get local optimum. Repetitions of the

program execution are to see the convergence of the

results. The lower standard deviation shows that the

related algorithm is more stable and reliable in finding

the optimal/best solution [2].

3.2. Square Grid Symmetric TSP

In the square grid symmetric TSP, 𝑛 × 𝑛 cities are well-

order generated with distance between two neighboring

cities is equal to one. In this case, simulations are

conducted for 𝑛 = 3 − 15. The values of 𝑛 are chosen

to see performance of the algorithm in solving

symmetric TSP cases with small to medium number of

cities. Using the values of 𝑛, numbers of city of the

simulations are varied from 9 to 225. Results of the

simulations are presented in Table 6 and Table 7. The

best solution of the case for 𝑛 = 7 can be seen in Figure

1.

Figure 1. Solution of Square Grid Symmetric TSP for 𝑛 = 7

Table 6. Results of the Square Grid TSP Cases

n Number

of City

BS WS Ave IL Rep BI BT

3 9 9.4142 7200 0 154

4 16 16 12800 0 445

5 25 25.4142 20000 0 1353

6 36 36 36.8284 36.7249 28800 8 12353 2.841

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1097

It is shown in Table 7 that performance of the SA

algorithm are acceptable. The algorithm has no error in

finding the optimal solution for cases with number of

cities are 9, 16, 25, 49, 84, and 81. For the remaining

cases, the error is getting larger when the number of the

cities are getting bigger. The error are 0.% - 3.31%

which mean the performance of the SA algorithm is

good.

4. Conclusion

Elaboration of simulated annealing algorithm using

inner and outer loop has been carried out. Several

simulations have been conducted to see performance of

the algorithm. The simulations are carried out for 13

symmetric TSP cases taken from [21]. The algorithm

shows promising performance with relative error; the

best solution 0 - 7.06%, the worst solution 0.64% -

13.63%, and average of the solutions 0.32% - 9.54%.

The algorithm also has good performance compared

with the well-known metaheuristic algorithms. The SA

algorithm has better performance in finding the best

solution compared with the other algorithms in [2], [7],

and [19]. Moreover, the SA algorithm has small enough

standard deviation value 0 – 777.57 with average value

124.118. In the square grid TSP, the SA algorithm also

has good performance with relative error 0 – 3.31%. The

SA algorithm can find the best solution of the cases.

However, in some cases the SA could not find the best

solution. Here, existence of the random value influences

result of the algorithm. For future work, adding local

search algorithm is expected to increase the performance

of SA. Moreover, decreasing the computational time of

SA algorithm by parallel algorithm can be considered for

the future work.

Acknowledgements

Authors want to say thank you to Telkom University for

research funding.

References

[1] A. C. Cinar, S. Korkmaz, and M. S. Kiran. “A discrete tree-seed

algorithm for solving symmetric traveling salesman problem.”

Engineering Science and Technology, an International Journal,
vol. 23, no. 4, pp. 879-890, 2020.

[2] A. Hatamlou. “Solving travelling salesman problem using black

hole algorithm.” Soft Computing, vol. 22, no. 24, pp. 8167-8175,
2018.

[3] Z. Daoqing and J. Mingyan. “Parallel discrete lion swarm

optimization algorithm for solving traveling salesman problem.”
Journal of Systems Engineering and Electronics, vol. 31, no. 4 pp.

751-760, 2020.

[4] R. Dong, S. Wang, G. Wang, and X. Wang. “Hybrid optimization
algorithm based on wolf pack search and local search for solving

traveling salesman problem.” Journal of Shanghai Jiaotong

University (Science), vol. 24, no. 1, pp. 41-47, 2019.
[5] S. A. Bakar and M. Ibrahim. “Optimal solution for travelling

salesman problem using heuristic shortest path algorithm with

imprecise arc length.” In AIP Conference Proceedings, AIP
Publishing LLC, vol. 1870, no. 1, pp. 040061, 2017.

[6] Panda, Madhumita. “Performance Comparison of Genetic

Algorithm, Particle Swarm Optimization and Simulated
Annealing Applied to TSP.” International Journal of Applied

Engineering Research, vol. 13, no. 9, pp. 6808-6816, 2018.

[7] S. Saud, H. Kodaz, and I. Babaoğlu, “Solving Travelling Salesman
Problem by Using Optimization Algorithms” in The 9th

International Conference on Advances in Information

Technology, KnE Life Sciences, pp 17-32, 2017.
[8] X. Wang, A. Mu, and S. Zhu. “ISPO: A new way to solve traveling

salesman problem.” Intelligent Control and Automation, vol. 4,

no. 2, 2013.

7 49 49.4142 51.0711 50.5188 39200 3 21047 1.216

8 64 64 66.4853 64.9527 51200 60 36647 54.219

9 81 81.4142 86.3848 82.57401 64800 65 57198 83.574

10 100 100.8284 104.1421 103.0376 80000 3 80000 4.377

11 121 123.0711 125.5563 124.5622 96800 5 96800 10.964

12 144 147.3137 152.2843 150.9036 115200 12 115200 43.283

13 169 174.3848 177.6985 176.5939 135200 3 135200 12.852

14 196 201.799 208.4264 206.2173 156800 3 156800 16.894

15 225 232.8701 237.8406 235.7136 180000 37 180000 330.465

Table 7. Performance of the SA algorithm for the Square Grid TSP Cases

n Number of City BKS BS Error Average Time

3 9 9.4142 9.4142 0

4 16 16 16 0

5 25 25.4142 25.4142 0

6 36 36 36 0 0.3551

7 49 49.4142 49.4142 0 0.4053
8 64 64 64 0 0.9037
9 81 81.4142 81.4142 0 1.2858
10 100 100 100.8284 0.0083 1.4590
11 121 121.4142 123.0711 0.0136 2.1928
12 144 144 147.3137 0.0230 3.6069
13 169 169.4142 174.3848 0.0293 4.284

14 196 196 201.799 0.0296 5.6313

15 225 225.4142 232.8701 0.0331 8.9315

Iryanto, P. H. Gunawan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1090 – 1098

DOI: https://doi.org/10.29207/resti.v5i6.3549

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1098

[9] Zhou, Ai-Hua, Li-Peng Zhu, Bin Hu, Song Deng, Yan Song,

Hongbin Qiu, and Sen Pan. “Traveling-salesman-problem

algorithm based on simulated annealing and gene-expression

programming.” Information, vol. 10, no. 1, 2019.
[10] A. E. S. Ezugwu, A. O. Adewumi, and M. E. Frîncu. “Simulated

annealing based symbiotic organisms search optimization

algorithm for traveling salesman problem.” Expert Systems with
Applications, vol. 77, pp. 189-210, 2017.

[11] Zhan, Shi-hua, Juan Lin, Ze-jun Zhang, and Yi-wen Zhong. “List-

based simulated annealing algorithm for traveling salesman
problem.” Computational intelligence and neuroscience, 2016.

[12] A. Khumaidi, R. Raafi’udin, and I. P. Solihin. (2020) “Simulation
Of Traveling Salesman Problem For Distribution Of Fruits In

Bogor City With Simulated Annealing Method.” Jurnal Mantik,

vol. 3, no. 4, pp. 611-618, 2020.
[13] C. Wang, M. Lin, Y. Zhong, and H. Zhang. “Swarm simulated

annealing algorithm with knowledge-based sampling for

travelling salesman problem.” International Journal of Intelligent
Systems Technologies and Applications, vol. 15, no. 1, pp. 74-94,

2016.

[14] M. Makuchowski. “Effective algorithm of simulated annealing for
the symmetric traveling salesman problem.” In International

Conference on Dependability and Complex Systems (pp. 348-

359). Springer, Cham, July. 2018.
[15] X. Han, Y. Dong, L. Yue, and Q. Xu. “State transition simulated

annealing algorithm for discrete-continuous optimization

problems.” IEEE Access, 7, 44391-44403, 2019.

[16] L. Xiong and S. Li. “Solving TSP Based on the Improved

Simulated Annealing Algorithm with Sequential Access

Restrictions.” In 2016 6th International Conference on

Mechatronics, Computer and Education Informationization
(MCEI 2016), Atlantis Press, pp. 610-616, 2016.

[17] M. Rahbari and A. Jahed. “A Hybrid Simulated Annealing

Algorithm for Travelling Salesman Problem with Three Neighbor
Generation Structures”. In 10th International Conference of

Iranian Operations Research Society (ICIORS 2017), Babolsar,

Iran, May. 2017.
[18] L. Wang, R. Cai, M. Lin, and Y. Zhong. “Enhanced list-based

simulated annealing algorithm for large-scale traveling salesman
problem.” IEEE Access, 7, 144366-144380, 2019.

[19] Y. Chunhua, T. Xiaolin, Z. Xiaojun, and G. Weihua. “State

transition algorithm for traveling salesman problem.” In
Proceedings of the 31st Chinese Control Conference, IEEE, pp.

2481-2485, 2012.

[20] E. Osaba, J. Del Ser, A. Sadollah, M. N. Bilbao, and D. Camacho.
“A discrete water cycle algorithm for solving the symmetric and

asymmetric traveling salesman problem.” Applied Soft

Computing, 71, 277-290, 2018.
[21] G. Reinelt, “TSPLIB”, 19 February 1997. Available:

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html [Accessed

on 18 January 2021]
[22] P. H. Siqueira, S. Scheer, and M. T. A. Steiner. “A recurrent neural

network to traveling salesman problem.” Travelling Salesman

Problem, I-Tech Veinna, pp. 135-156, 2008.

