

Accepted by Editor: 19-10-2021 | Final Revision: 30-11-2021 | Online Publication: 30-12-2021

1106

Accredited by National Journal Accreditation (ARJUNA) Managed by

Ministry of Education, Culture, Research and Technology with Second Grade (Sinta 2)

since year 2021 to 2026 according to the decree No. 158/E/KPT/2021

Published online on the journal’s webpage: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 5 No. 6 (2021) 1106 - 1112 ISSN Media Elektronik: 2580-0760

On the Neural Network Solution of One-Dimensional Wave Problem

Aditya Firman Ihsan1
1Informatics, School of Computing, Telkom University

1adityaihsan@telkomuniversity.ac.id

Abstract

Artificial neural network has become an emerging popular method to handle various problems, especially in case where it has

deep multiple neural layers. In this study, we use a deep artificial neural network model to solve one-dimensional wave

equation, without any external datasets. Different type of boundary conditions, i.e., Dirichlet, Neumann, and Robin, are used.

We analyze the model learning capabilities in a set of settings, such as data setup and the model width and depth. We also

present some discussions of advantages and disadvantages of the model in comparison with other matured existing techniques

to solve wave equation.

Keywords: neural network, wave problem, one-dimensional wave.

1. Introduction

Artificial neural network (ANN) has revolutionized

many computational tasks, with broad applications and

implementations. It is well known in its capability in

handling data-based learning tasks, such as

classification, object detection, forecasting, captioning,

and many others [1]. These tasks are handled with some

probability aspects in its result, which makes ANN is not

popular yet in areas with demand of high accuracy such

as scientific or mathematical problems. Recently, some

studies began shifting the use of ANN to scientific

problem, especially dynamical systems [2] and partial

differential equations (PDE).

The application of ANN in science and engineering

consists of two major tasks. The first is data-driven

system identification, which usually use some forms of

sparse regression [3]–[5]. The second is prediction of

physical behavior by observed data or already identified

governing system [5]. For the latter, there are at least

three methods has been developed to solve PDE using

neural networks [6], namely Physics-Informed Neural

Network (PINN) [5], Feynman-Kac formula based

method [7], and backward stochastic differential

equation (BSDE) [8]. While last two of these methods

are based on stochastic process and aimed specifically to

solve PDE posed on high-dimensional domains, PINN

has more flexibility and more applicable to wide variety

of PDEs [6].

PINN overcomes the lack of information from data by

utilizing the underlying physical laws of the system.

Instead learning purely by supervision of data, PINN is

supervised also by mathematical equations that governs

the behavior of corresponding physical phenomena. It

has been applied to various problems since proposed,

hyperbolic or parabolic, including Navier-Stokes [9], 2D

wave acoustic [10], seismic wave [11], cardiac

activation mapping [12], and power systems [13].

Although PINN has been applied in complex system, an

analysis of its performance in simpler system is needed.

In this paper, we apply PINN in a simpler form of

hyperbolic PDE, which is one-dimensional wave

problem with finite domain. We analyze its performance

and applicability to various model settings and

condition.

Using a homogeneous Dirichlet-type boundary

condition on one side, we apply three different basic

types of boundary condition on the other boundary, i.e.

Dirichlet, Neumann, and Robin. We use standard

numerical solution by finite difference schema as

comparison for the result obtained by PINN. This result

obtained in this study can be a consideration for future

usage of this method, especially the advantage and

disadvantage of this method for a simple physics

systems such as one-dimensional wave, as studied in this

paper.

Aditya Firman Ihsan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1106 – 1112

DOI: https://doi.org/10.29207/resti.v5i6.3565

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1107

2. Research Method

2.1. Problem Formulation

For current study, we consider following one

dimensional wave equation with finite domain [0, 𝐿].

utt = cuxx, 0 < x < L, t > 0 (1)

As it involves second derivatives of time, we need

following two initial conditions, i.e. initial displacement

and initial velocity of the wave.

𝑢(𝑥, 0) = 𝑓(𝑥) (2)

𝑢𝑡(𝑥, 0) = 𝑔(𝑥) (3)

We also need two boundary conditions, which we set

homogeneous in this study, i.e.

𝑢(𝑥, 𝐿) = 0 (4)

𝐵[𝑢](𝑡) = 0 (5)

Equation (5) is boundary condition at 𝑥 = 0, where

operator 𝐵 depends on the type of the boundary

condition. Here, we use three different types, i.e.

(a) Dirichlet: 𝐵[𝑢] = 𝑢(0, 𝑡) (6)

(b) Neumann: 𝐵[𝑢] = 𝑢𝑥 (0, 𝑡) (7)

(c) Robin: 𝐵[𝑢] = 𝑢(0, 𝑡) − 𝑢𝑥 (0, 𝑡) (8)

For the simulation, we choose 𝐿 = 1 and 𝑇 = 2 as our

domain boundary. We set initial conditions that

represents small displacement which released without

initial velocity: 𝑓(𝑥) = 2 sin(𝜋𝑥) and 𝑔(𝑥) = 0.

2.2. Neural Network

Artificial neural network (ANN) is basically an

approximation of a function with predefined input and

output. ANN is equipped with the so-called gradient

descent technique, which is basically an optimization

method with some objective function to be minimized

[1]. Usually, the objective function is a loss function

between the approximate output and the true must-be

output. ANN approximate a function by a combination

of linear units called neuron activated by a nonlinear

function. ANN updates its state iteratively by computing

the gradient of the loss function. Typically, because

ANN requires some data to be optimize itself, it is part

of machine learning methods, which learn from data to

optimize its capability to a given task. If the set of

neurons are stacked to form some layers, ANN is called

Deep Neural Network (DNN), which deep represents the

depth of the neural layers.

DNN can be used to approximate a function given some

set of data. In this matter, we use DNN to approximate

wave displacement 𝑢(𝑥, 𝑡) with input location 𝑥 and

time 𝑡 as its independent variable. DNN refines the

approximation by iteratively update its state using

gradient descent algorithm based on predefined

objective function or metric. One of standard used

metrics is mean squared error between output prediction

and true data.

Neural network we use is a stack of linear layer with

hyperbolic tangent activation. Each layer has the same

number of units, except the output layer with only 1

neuron. This last neuron is not equipped with any

activation function. We vary the width (number of

neurons each layer) and the depth (number of layers) of

the DNN. The illustration of the network is shown in

Figure 1.

Figure 1. Neural network used for PINN. The input is randomly

generated values of 𝑥 and 𝑡. It can be seen as an approximation of

function 𝑢(𝑥, 𝑡).

2.3. Physics-Informed Neural Network (PINN)

Physical problems rarely have large amount of clean

data to be used. To overcome this issue, we can utilize

other source of information as additional supervision for

the DNN. In this case, PINN uses all known governing

equations related to the function to be approximated as

supervisor to the learning of the DNN.

PINN uses randomly generated data of independent

variables (in this case 𝑥 and 𝑡) to be inputted to DNN to

Physical equations governing the problem are then used

as information for DNN to update its state. In this case,

the wave equations (1), initial conditions (2)-(3), and

boundary conditions (4)-(8) are then used to form a loss

function for the prediction, which then backpropagated

to update the state of the DNN.

To reach our objective, for each equation we need some

samples of 𝑥 and 𝑡 to be inputted to the model. In that

case, we generate three different sets of data by random

with values within domain of simulation, i.e., 𝑥 ∈ [0, 𝐿]
and 𝑡 ∈ [0, 𝑇]. These input datasets are (𝑥𝑝, 𝑡𝑝), 𝑥𝑛, and

𝑡𝑏, each with size 𝑁𝑝, 𝑁𝑛, and 𝑁𝑏, respectively.

Next, we formulate the objective of the DNN as follows.

min(𝐿𝑝 + 𝐿𝑖𝑛𝑖𝑡 + 𝐿𝑏𝑜𝑢𝑛𝑑) (9)

where 𝐿𝑝, 𝐿𝑖𝑛𝑖𝑡 , and 𝐿𝑏𝑜𝑢𝑛𝑑 represents how close the

output fit the governing equation (1) inside given

domain, fit the initial conditions (2) and (3), and fit the

Aditya Firman Ihsan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1106 – 1112

DOI: https://doi.org/10.29207/resti.v5i6.3565

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1108

boundary conditions (4) and (5) respectively. To be

exact, the formula for each loss function is following.

𝐿𝑝 =
1

𝑁𝑝
∑ (𝑢𝑡𝑡(𝑥𝑖

𝑝
, 𝑡𝑖

𝑝
) − 𝑐𝑢𝑥𝑥(𝑥𝑖

𝑝
, 𝑡𝑖

𝑝
))

2𝑁𝑝

𝑖=1
, (10)

𝐿𝑖𝑛𝑖𝑡 =
1

𝑁𝑛
∑ [(𝑢(𝑥𝑖

𝑛, 0) − 𝑓(𝑥𝑖
𝑛))

2
 +

𝑁𝑛
𝑖=1

 (𝑢𝑡(𝑥𝑖
𝑛, 0) − 𝑔(𝑥𝑖

𝑛))
2

] , (11)

𝐿𝑏𝑜𝑢𝑛𝑑 =
1

𝑁𝑏
∑ [(𝑢(0, 𝑡𝑖

𝑏))
2

+ (𝐵[𝑢](𝑡𝑖
𝑏))

2

]
𝑁𝑏
𝑖=1 , (12)

By differential programming, we can compute the values

of all derivatives of u from the output of the DNN. Using

gradient descent or its variation, derivatives of three loss

functions above will be used to update the parameters of

the DNN. This learning mechanism of PINN is

illustrated at Figure 2. Each loss is computed in different

ways as stated in equation (10)-(12). Note first that 𝑢𝑥 in

the computation of 𝐿𝑏𝑜𝑢𝑛𝑑 only used in Neumann and

Robin type condition.

 Figure 2. Illustration of how PINN we used in this study works.

3. Result and Discussion

We use different values of 𝑁𝑛 and 𝑁𝑝 where 𝑁𝑏 is set to

be 2𝑁𝑛 because of ratio of the domain. We train the

model with maximum 100 epochs and terminate if the

total loss value is not decreasing after some epochs.

Adam (Adaptive Moment Estimation) optimization

technique is used with 0.005 learning rate. This value of

learning rate is actually a result of hyperparameter

tuning done prior. Higher learning rate gives more

unstable training process. As we will see later, the

problem loss tends to give periodic spike.

The simulation result is then evaluated by computing the

mean squared differences with the result from finite

difference numerical result.

3.1. Variations of Architecture

In this initial simulation, we use 𝑁𝑛 = 10000 and 𝑁𝑝 =

100000 as the size of our input data. We also batched

the boundary data with 200 as the batch size. We

simulate all types of boundary condition while varying

different depths and widths of the DNN which represents

the variation of model architecture.

It will be a natural expectation that larger the model,

better result we will get. It is also mentioned in the first

paper of PINN, where adding more neurons or layers to

the PINN decreases the relative error of the result [5].

However, as we run the simulation for some values of

number of neurons and number of layers, surprisingly

what we found is quite different. The result can be seen

in Figure 3-4.

On one hand, how the number of neural units affects the

performance is quite fit the expectation. Lower number

of neurons gives worse result as less hidden features are

captured by the model. However, the trend changes as

64 units of neuron gives worse result than model with 32

units. Interestingly, this pattern occurs in all types of

boundary condition. Small anomaly happens in Robin-

type where model with 4 neurons gives slightly better

result than model with 8 neurons. Why 32 units model

gives optimal result rather than model with lower or

higher number of units is quite a mystery. As units

represent additional hidden features extracted by the

model, it is possible that too many features reduce model

capability to fit all the governing equations

simultaneously.

Figure 3. Mean squared error of the model with of layers is

fixed to 2 while the number of neural units varies

Aditya Firman Ihsan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1106 – 1112

DOI: https://doi.org/10.29207/resti.v5i6.3565

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1109

Figure 4. Mean squared error of the model with number of units per

layer is fixed to 32 while the number of layers varies

What is quite out of expectation is how the performance

behaves with different model depths. We can see at

Figure 4, as the number of layers increases, the error also

increases, except for the Dirichlet-type system where 5

layers model gives better result than 4 layers one. This

means that high model complexity, which represented

by the depth of the neural network, is not well-suited to

the wave problem. Non-linearity the model needs to

have to properly fit all the governing equations in this

case is not much, where 2 stacks of hyperbolic tangent

activated linear layer is enough to approximate the

solution.

3.2. Variations of Data Size

In this section, we use a model with 2 layers of 32 neural

units, as it gives the best result from previous section.

We vary the number of input data, i.e., 𝑁𝑏 and 𝑁𝑝.

Despite the number of total input data, for each case, we

set constant batch size for training. This is due to our

findings that some values of batch size may cause

instability to training process, which will be shown later.

Other hyperparameters, such as learning rate, are tuned

beforehand. Overall result can be seen in Table 1.

For the values of 𝑁𝑏, it is shown that increasing it will

give better result. The values of 𝑁𝑏, together with 𝑁𝑛,

are crucial for model to fit the boundary at the domain.

On the other hand, 𝑁𝑝 only affect how the model learn

the solution behavior inside of the domain. The model is

not fitting exact values inside the domain, it only fit the

governing equation – how the values are changing inside

the domain, which in wave problem represented by

second derivatives. This is one of the possible reasons

why 𝑁𝑝 does not need to be too large. Because as long

as the model learns enough the general dynamics inside

the domain, it can generalize well to all other points. This

conclusion is proven by the fact that the optimal value of

𝑁𝑝 is not the largest one, as shown in Table 1.

Table 1. Mean squared errors of results from model trained with

different values of input data

𝑵𝒑
𝑵𝒃

1000 5000 10000

10000 0.20554 0.00399 0.0008

50000 0.10472 0.00222 0.0003

100000 0.17894 0.00401 0.00036

Table 2. Mean squared errors of results from model trained with

different number of batch size

𝑩𝒑
𝑩𝒃

50 200 500

1000 0.00012 0.00165 0.00169

10000 0.00025 0.00095 0.00152

100000 0.00012 0.00035 0.00099

It is shown in the table that the best evaluation result, i.e.,

less error, is obtained when the number of internal

domain data 𝑁𝑝 is 5000 not 100000. One important

thing to be noted is that value of 𝑁𝑝 are the number of

data used to represent 2-dimensional internal domain,

while 𝑁𝑏 used to represent 1-dimensional domain

boundary. Sampling distribution used may have effect.

In this study, we use uniform distribution for each

variable 𝑥 and 𝑡.

3.3. Variations of Batch Size

Batch processing is one of the most useful techniques in

neural network, as it optimizes the learning process.

Computing completely a huge amount of data in a single

iteration may cause memory overload, reducing

efficiency of the process. Dividing the data in some set

of mini batches leads to more efficient computation,

even though the model will take more iterations to

converge. To check how batching affect training process

in PINN, we vary two different batch sizes. Input data

for boundary is batched using batch size 𝐵𝑏 , while input

data for internal domain is batched using batch size 𝐵𝑝.

The summary of the result can be seen in Table 2.

The two batch sizes give different effect on the model

performance. Higher the value of 𝐵𝑏 , higher the error,

while the value of 𝐵𝑝 gives opposite effect. Behavior of

the model in variation of 𝐵𝑏is quite natural, because

small batch size offers regularization effect. The

difference of behavior is quite interesting. Highest

number of 𝐵𝑝 used in this case is actually the same as 𝑁𝑝

used, which is 100000, which means in this case the

input data for internal domain is not batched.

The strange behavior of 𝐵𝑝 may be caused by high

dimension internal data must represent, as discussed

before. The model needs to learn the dynamics of the

wave at different place and time simultaneously. This

makes any partition of training data gives higher error as

the model learn different dynamics separately. Thus,

Aditya Firman Ihsan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1106 – 1112

DOI: https://doi.org/10.29207/resti.v5i6.3565

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1110

training process without batching gives the best

performance.

3.3. Overall Analysis

Previously, we have computed overall mean squared

difference between the neural network solution and

standard numerical solution. However, overall averaged

difference may not represent how the solutions gives

similar dynamics inside the domain. In that case, we plot

the map of the solution within the domain of simulation.

It can be seen in Figure 5.

We can see that in the map how the wave evolves over

time with different boundary conditions. Dirichlet

boundary represents a wave with attached ends, so it will

form a perfect standing wave. Neumann boundary on the

other hand gives one free end to the wave, makes

additional dynamics at the boundary. The similar

happens to Robin boundary, but the reflection is not

perfect as the wave end is not entirely free, represents

elastic attachment. This forms similar dynamics to the

Neumann case but kind of distorted.

The neural network solutions in Figure 5 are the result

of training with the best combination of parameters

found in previous section. Briefly, we can see that

solutions from both methods are quite similar, especially

in case of Dirichlet-type boundary condition.

Unfortunately, as we see closer at the results of

Neumann-type and Robin-type, the neural network

solutions tend to give smoother wave solution. Sharp

wave fronts resulted from reflection at the boundary

shown in numerical solution hardly appears in the neural

network solution.

(a)

(b)

(c)

Figure 5. Map of the result in spatial and temporal domain of the problem with different boundary condition, i.e., (a) Dirichlet-type; (b)

Neumann-type, (c) Robin-type

Aditya Firman Ihsan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1106 – 1112

DOI: https://doi.org/10.29207/resti.v5i6.3565

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1111

As we have seen that the model architecture used in this

section is already optimal, the source of this issue may

lie at the amount of data used to train the model,

especially the data generated at the boundary. The values

of 𝑁𝑏 and 𝑁𝑛 are still can be increased further to increase

the performance of the model. Unfortunately, at this

point, the training time has already very long, especially

compared to standard numerical computation. One of the

major factors of the training time is the amount of data.

Thus, increasing it further may cause unacceptable

training time without any guarantee that the result may

be better.

This issue has shown one of possible current

disadvantages of neural network approach to solve wave

problem, in addition to the very long computational

time. However, many improvements to the methods may

still open, such as the use of Lagrangian descent

algorithm [14], Xavier initialization of the network

parameters [14], BFGS optimization [15], and many

others. We have to remember that PINN, as well as other

neural network-based approach in solving differential

equations, is still an emerging topic. At least we can see

that because PINN is somehow like an approximation

function, we can compute the solution for any value of

input variables as long as they lie within simulation

domain.

If we plot the graph of each loss over epochs, as shown

in Figure 6-8, we can see that actually both initial

conditions and boundary conditions fitted pretty quickly

in few epochs with monotonic trends. However, the

spikes in problem loss 𝐿𝑝 indicates the difficulties faced

by the model in fitting the governing equation inside the

domain.

As stated before, sampling distribution of the data may

have influence, because different than boundary or

initial conditions, the model need to capture 2-

dimensional information from the governing equation.

The spikes appear in all types of boundary condition but

more frequently in Robin type. It may be caused by the

complexity of interaction of the wave from inside the

domain with the boundary in Robin condition. Also, the

spikes show that the model was not really learning inside

the boundary except few first epochs. Further

investigation and study may be needed to understand

more this phenomenon.

4. Conclusion

A neural network has been implemented to the case of

1-D wave problem. The architecture used are Physics

Inform Neural Network (PINN), which learns to

approximate the solution using governing equation and

initial/boundary conditions. We have studied how the

size of the model architecture, namely depth and width,

affects the performance significantly. Shallower yet

wider networks are shown to give better result, as deeper

network gives too much nonlinearity to the model.

We have seen also how amount of generated data

influence the model performance. More data may give

better result but will consume more computational time

and memory. This becomes one of the disadvantages of

PINN compared to existing numerical solver of PDEs.

However, PINN have large potentials to become

powerful method. Further improvements are still open.

Figure 6. Loss curve of PINN training for Dirichlet problem

Figure 7. Loss curve of PINN training for Neumann problem

Figure 8. Loss curve of PINN training for Robin problem

References

[1] Y. Bengio, A. Courville, and I. J. Goodfellow, Deep Learning.
2016.

[2] J. Horrocks and C. T. Bauch, “Algorithmic discovery of

dynamic models from infectious disease data,” Sci. Rep., vol.
10, no. 1, pp. 1–19, 2020, doi: 10.1038/s41598-020-63877-w.

Aditya Firman Ihsan

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 6 (2021) 1106 – 1112

DOI: https://doi.org/10.29207/resti.v5i6.3565

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1112

[3] N. M. Mangan, T. Askham, S. L. Brunton, J. N. Kutz, and J. L.

Proctor, “Model selection for hybrid dynamical systems via

sparse regression,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol.

475, no. 2223, 2019, doi: 10.1098/rspa.2018.0534.
[4] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor,

“Model selection for dynamical systems via sparse regression

and information criteria,” Proc. R. Soc. A Math. Phys. Eng. Sci.,
vol. 473, no. 2204, pp. 1–14, 2017, doi:

10.1098/rspa.2017.0009.

[5] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear
partial differential equations,” J. Comput. Phys., vol. 378, pp.

686–707, 2019, doi: 10.1016/j.jcp.2018.10.045.

[6] J. Blechschmidt and O. G. Ernst, “Three ways to solve partial
differential equations with neural networks — A review,”

GAMM Mitteilungen, vol. 44, no. 2, pp. 1–29, 2021, doi:

10.1002/gamm.202100006.
[7] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen,

“Solving the Kolmogorov PDE by Means of Deep Learning,” J.

Sci. Comput., vol. 88, no. 3, pp. 1–56, 2021, doi:
10.1007/s10915-021-01590-0.

[8] J. Han, A. Jentzen, and E. Weinan, “Solving high-dimensional

partial differential equations using deep learning,” Proc. Natl.
Acad. Sci. U. S. A., vol. 115, no. 34, pp. 8505–8510, 2018, doi:

10.1073/pnas.1718942115.

[9] H. Eivazi, M. Tahani, P. Schlatter, and R. Vinuesa, “Physics-

informed neural networks for solving Reynolds-averaged

Navier-Stokes equations,” 2021, [Online]. Available:
http://arxiv.org/abs/2107.10711.

[10] B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the

wave equation with physics-informed deep learning,” 2020,
[Online]. Available: http://arxiv.org/abs/2006.11894.

[11] S. Karimpouli and P. Tahmasebi, “Physics informed machine

learning: Seismic wave equation,” Geosci. Front., vol. 11, no.
6, pp. 1993–2001, 2020, doi: 10.1016/j.gsf.2020.07.007.

[12] F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, and E.
Kuhl, “Physics-Informed Neural Networks for Cardiac

Activation Mapping,” Front. Phys., vol. 8, no. February, pp. 1–

12, 2020, doi: 10.3389/fphy.2020.00042.
[13] G. S. Misyris, A. Venzke, and S. Chatzivasileiadis, “Physics-

informed neural networks for power systems,” IEEE Power

Energy Soc. Gen. Meet., vol. 2020-Augus, 2020, doi:
10.1109/PESGM41954.2020.9282004.

[14] T. Dockhorn, “A Discussion on Solving Partial Differential

Equations using Neural Networks.”
[15] S. Markidis, “The Old and the New: Can Physics-Informed

Deep-Learning Replace Traditional Linear Solvers?,” vol. 1, no.

1, pp. 1–20, 2021, [Online]. Available:
http://arxiv.org/abs/2103.09655.

