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Abstract  

Artificial neural network has become an emerging popular method to handle various problems, especially in case where it has 

deep multiple neural layers. In this study, we use a deep artificial neural network model to solve one-dimensional wave 

equation, without any external datasets. Different type of boundary conditions, i.e., Dirichlet, Neumann, and Robin, are used. 

We analyze the model learning capabilities in a set of settings, such as data setup and the model width and depth. We also 

present some discussions of advantages and disadvantages of the model in comparison with other matured existing techniques 

to solve wave equation.   
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1. Introduction 

Artificial neural network (ANN) has revolutionized 

many computational tasks, with broad applications and 

implementations. It is well known in its capability in 

handling data-based learning tasks, such as 

classification, object detection, forecasting, captioning, 

and many others [1]. These tasks are handled with some 

probability aspects in its result, which makes ANN is not 

popular yet in areas with demand of high accuracy such 

as scientific or mathematical problems. Recently, some 

studies began shifting the use of ANN to scientific 

problem, especially dynamical systems [2] and partial 

differential equations (PDE).  

The application of ANN in science and engineering 

consists of two major tasks. The first is data-driven 

system identification, which usually use some forms of 

sparse regression [3]–[5]. The second is prediction of 

physical behavior by observed data or already identified 

governing system [5]. For the latter, there are at least 

three methods has been developed to solve PDE using 

neural networks [6], namely Physics-Informed Neural 

Network (PINN) [5], Feynman-Kac formula based 

method [7], and backward stochastic differential 

equation (BSDE) [8]. While last two of these methods 

are based on stochastic process and aimed specifically to 

solve PDE posed on high-dimensional domains, PINN 

has more flexibility and more applicable to wide variety 

of PDEs [6].  

PINN overcomes the lack of information from data by 

utilizing the underlying physical laws of the system. 

Instead learning purely by supervision of data, PINN is 

supervised also by mathematical equations that governs 

the behavior of corresponding physical phenomena. It 

has been applied to various problems since proposed, 

hyperbolic or parabolic, including Navier-Stokes [9], 2D 

wave acoustic [10], seismic wave [11], cardiac 

activation mapping [12], and power systems [13].  

Although PINN has been applied in complex system, an 

analysis of its performance in simpler system is needed. 

In this paper, we apply PINN in a simpler form of 

hyperbolic PDE, which is one-dimensional wave 

problem with finite domain. We analyze its performance 

and applicability to various model settings and 

condition.  

Using a homogeneous Dirichlet-type boundary 

condition on one side, we apply three different basic 

types of boundary condition on the other boundary, i.e. 

Dirichlet, Neumann, and Robin. We use standard 

numerical solution by finite difference schema as 

comparison for the result obtained by PINN. This result 

obtained in this study can be a consideration for future 

usage of this method, especially the advantage and 

disadvantage of this method for a simple physics 

systems such as one-dimensional wave, as studied in this 

paper. 
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2. Research Method 

2.1. Problem Formulation 

For current study, we consider following one 

dimensional wave equation with finite domain [0, 𝐿]. 

utt = cuxx,   0 < x < L,   t > 0 (1) 

As it involves second derivatives of time, we need 

following two initial conditions, i.e. initial displacement 

and initial velocity of the wave. 

𝑢(𝑥, 0) = 𝑓(𝑥) (2) 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥) (3) 

We also need two boundary conditions, which we set 

homogeneous in this study, i.e. 

𝑢(𝑥, 𝐿) = 0 (4) 

𝐵[𝑢](𝑡) = 0 (5) 

Equation (5) is boundary condition at 𝑥 = 0, where 

operator 𝐵 depends on the type of the boundary 

condition. Here, we use three different types, i.e. 

(a) Dirichlet: 𝐵[𝑢] = 𝑢(0, 𝑡) (6) 

(b) Neumann: 𝐵[𝑢] = 𝑢𝑥 (0, 𝑡) (7) 

(c) Robin: 𝐵[𝑢] = 𝑢(0, 𝑡) − 𝑢𝑥 (0, 𝑡) (8) 

For the simulation, we choose 𝐿 = 1 and 𝑇 = 2 as our 

domain boundary. We set initial conditions that 

represents small displacement which released without 

initial velocity: 𝑓(𝑥) = 2 sin(𝜋𝑥) and 𝑔(𝑥) = 0. 

2.2. Neural Network 

Artificial neural network (ANN) is basically an 

approximation of a function with predefined input and 

output. ANN is equipped with the so-called gradient 

descent technique, which is basically an optimization 

method with some objective function to be minimized 

[1]. Usually, the objective function is a loss function 

between the approximate output and the true must-be 

output. ANN approximate a function by a combination 

of linear units called neuron activated by a nonlinear 

function. ANN updates its state iteratively by computing 

the gradient of the loss function. Typically, because 

ANN requires some data to be optimize itself, it is part 

of machine learning methods, which learn from data to 

optimize its capability to a given task. If the set of 

neurons are stacked to form some layers, ANN is called 

Deep Neural Network (DNN), which deep represents the 

depth of the neural layers. 

DNN can be used to approximate a function given some 

set of data. In this matter, we use DNN to approximate 

wave displacement 𝑢(𝑥, 𝑡) with input location 𝑥 and 

time 𝑡 as its independent variable. DNN refines the 

approximation by iteratively update its state using 

gradient descent algorithm based on predefined 

objective function or metric. One of standard used 

metrics is mean squared error between output prediction 

and true data. 

Neural network we use is a stack of linear layer with 

hyperbolic tangent activation. Each layer has the same 

number of units, except the output layer with only 1 

neuron. This last neuron is not equipped with any 

activation function. We vary the width (number of 

neurons each layer) and the depth (number of layers) of 

the DNN. The illustration of the network is shown in 

Figure 1. 

 

Figure 1. Neural network used for PINN. The input is randomly 

generated values of 𝑥 and 𝑡. It can be seen as an approximation of 

function 𝑢(𝑥, 𝑡).  

2.3. Physics-Informed Neural Network (PINN) 

Physical problems rarely have large amount of clean 

data to be used. To overcome this issue, we can utilize 

other source of information as additional supervision for 

the DNN. In this case, PINN uses all known governing 

equations related to the function to be approximated as 

supervisor to the learning of the DNN. 

PINN uses randomly generated data of independent 

variables (in this case 𝑥 and 𝑡) to be inputted to DNN to 

Physical equations governing the problem are then used 

as information for DNN to update its state. In this case, 

the wave equations (1), initial conditions (2)-(3), and 

boundary conditions (4)-(8) are then used to form a loss 

function for the prediction, which then backpropagated 

to update the state of the DNN. 

To reach our objective, for each equation we need some 

samples of 𝑥 and 𝑡 to be inputted to the model. In that 

case, we generate three different sets of data by random 

with values within domain of simulation, i.e., 𝑥 ∈ [0, 𝐿] 
and 𝑡 ∈ [0, 𝑇]. These input datasets are (𝑥𝑝, 𝑡𝑝), 𝑥𝑛, and 

𝑡𝑏, each with size 𝑁𝑝, 𝑁𝑛, and 𝑁𝑏, respectively. 

Next, we formulate the objective of the DNN as follows. 

min(𝐿𝑝 + 𝐿𝑖𝑛𝑖𝑡 + 𝐿𝑏𝑜𝑢𝑛𝑑)  (9) 

where 𝐿𝑝, 𝐿𝑖𝑛𝑖𝑡 , and 𝐿𝑏𝑜𝑢𝑛𝑑 represents how close the 

output fit the governing equation (1) inside given 

domain, fit the initial conditions (2) and (3), and fit the 
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boundary conditions (4) and (5) respectively. To be 

exact, the formula for each loss function is following. 

𝐿𝑝 =
1

𝑁𝑝
∑ (𝑢𝑡𝑡(𝑥𝑖

𝑝
, 𝑡𝑖

𝑝
) − 𝑐𝑢𝑥𝑥(𝑥𝑖

𝑝
, 𝑡𝑖

𝑝
))

2𝑁𝑝

𝑖=1
, (10) 

𝐿𝑖𝑛𝑖𝑡 =
1

𝑁𝑛
∑ [(𝑢(𝑥𝑖

𝑛, 0) − 𝑓(𝑥𝑖
𝑛))

2
 +

𝑁𝑛
𝑖=1

   (𝑢𝑡(𝑥𝑖
𝑛, 0) − 𝑔(𝑥𝑖

𝑛))
2

] , (11) 

𝐿𝑏𝑜𝑢𝑛𝑑 =
1

𝑁𝑏
∑ [(𝑢(0, 𝑡𝑖

𝑏))
2

+ (𝐵[𝑢](𝑡𝑖
𝑏))

2

]
𝑁𝑏
𝑖=1 , (12) 

By differential programming, we can compute the values 

of all derivatives of u from the output of the DNN. Using 

gradient descent or its variation, derivatives of three loss 

functions above will be used to update the parameters of 

the DNN. This learning mechanism of PINN is 

illustrated at Figure 2. Each loss is computed in different 

ways as stated in equation (10)-(12). Note first that 𝑢𝑥 in 

the computation of 𝐿𝑏𝑜𝑢𝑛𝑑  only used in Neumann and 

Robin type condition. 

 

 Figure 2. Illustration of how PINN we used in this study works.  

3.  Result and Discussion 

We use different values of 𝑁𝑛 and 𝑁𝑝 where 𝑁𝑏 is set to 

be 2𝑁𝑛 because of ratio of the domain. We train the 

model with maximum 100 epochs and terminate if the 

total loss value is not decreasing after some epochs. 

Adam (Adaptive Moment Estimation) optimization 

technique is used with 0.005 learning rate. This value of 

learning rate is actually a result of hyperparameter 

tuning done prior. Higher learning rate gives more 

unstable training process. As we will see later, the 

problem loss tends to give periodic spike. 

The simulation result is then evaluated by computing the 

mean squared differences with the result from finite 

difference numerical result.  

3.1. Variations of Architecture 

In this initial simulation, we use 𝑁𝑛 = 10000 and 𝑁𝑝 =

100000 as the size of our input data. We also batched 

the boundary data with 200 as the batch size. We 

simulate all types of boundary condition while varying 

different depths and widths of the DNN which represents 

the variation of model architecture.  

It will be a natural expectation that larger the model, 

better result we will get. It is also mentioned in the first 

paper of PINN, where adding more neurons or layers to 

the PINN decreases the relative error of the result [5]. 

However, as we run the simulation for some values of 

number of neurons and number of layers, surprisingly 

what we found is quite different. The result can be seen 

in Figure 3-4. 

On one hand, how the number of neural units affects the 

performance is quite fit the expectation. Lower number 

of neurons gives worse result as less hidden features are 

captured by the model. However, the trend changes as 

64 units of neuron gives worse result than model with 32 

units. Interestingly, this pattern occurs in all types of 

boundary condition. Small anomaly happens in Robin-

type where model with 4 neurons gives slightly better 

result than model with 8 neurons. Why 32 units model 

gives optimal result rather than model with lower or 

higher number of units is quite a mystery. As units 

represent additional hidden features extracted by the 

model, it is possible that too many features reduce model 

capability to fit all the governing equations 

simultaneously. 

 

Figure 3. Mean squared error of the model with of layers is  

fixed to 2 while the number of neural units varies 
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Figure 4. Mean squared error of the model with number of units per 

layer is fixed to 32 while the number of layers varies 

What is quite out of expectation is how the performance 

behaves with different model depths. We can see at 

Figure 4, as the number of layers increases, the error also 

increases, except for the Dirichlet-type system where 5 

layers model gives better result than 4 layers one. This 

means that high model complexity, which represented 

by the depth of the neural network, is not well-suited to 

the wave problem. Non-linearity the model needs to 

have to properly fit all the governing equations in this 

case is not much, where 2 stacks of hyperbolic tangent 

activated linear layer is enough to approximate the 

solution. 

3.2. Variations of Data Size 

In this section, we use a model with 2 layers of 32 neural 

units, as it gives the best result from previous section. 

We vary the number of input data, i.e., 𝑁𝑏 and 𝑁𝑝. 

Despite the number of total input data, for each case, we 

set constant batch size for training. This is due to our 

findings that some values of batch size may cause 

instability to training process, which will be shown later. 

Other hyperparameters, such as learning rate, are tuned 

beforehand. Overall result can be seen in Table 1. 

For the values of 𝑁𝑏, it is shown that increasing it will 

give better result. The values of 𝑁𝑏, together with 𝑁𝑛, 

are crucial for model to fit the boundary at the domain. 

On the other hand, 𝑁𝑝 only affect how the model learn 

the solution behavior inside of the domain. The model is 

not fitting exact values inside the domain, it only fit the 

governing equation – how the values are changing inside 

the domain, which in wave problem represented by 

second derivatives. This is one of the possible reasons 

why 𝑁𝑝 does not need to be too large. Because as long 

as the model learns enough the general dynamics inside 

the domain, it can generalize well to all other points. This 

conclusion is proven by the fact that the optimal value of 

𝑁𝑝 is not the largest one, as shown in Table 1.  

Table  1. Mean squared errors of results from model trained with 

different values of input data 

𝑵𝒑 
𝑵𝒃 

1000 5000 10000 

10000 0.20554 0.00399 0.0008 

50000 0.10472 0.00222 0.0003 

100000 0.17894 0.00401 0.00036 

 
Table 2. Mean squared errors of results from model trained with 

different number of batch size 

𝑩𝒑 
𝑩𝒃 

50 200 500 

1000 0.00012 0.00165 0.00169 

10000 0.00025 0.00095 0.00152 

100000 0.00012 0.00035 0.00099 

 

It is shown in the table that the best evaluation result, i.e., 

less error, is obtained when the number of internal 

domain data 𝑁𝑝 is 5000 not 100000. One important 

thing to be noted is that value of 𝑁𝑝 are the number of 

data used to represent 2-dimensional internal domain, 

while 𝑁𝑏 used to represent 1-dimensional domain 

boundary. Sampling distribution used may have effect. 

In this study, we use uniform distribution for each 

variable 𝑥 and 𝑡. 

3.3. Variations of Batch Size 

Batch processing is one of the most useful techniques in 

neural network, as it optimizes the learning process. 

Computing completely a huge amount of data in a single 

iteration may cause memory overload, reducing 

efficiency of the process. Dividing the data in some set 

of mini batches leads to more efficient computation, 

even though the model will take more iterations to 

converge. To check how batching affect training process 

in PINN, we vary two different batch sizes. Input data 

for boundary is batched using batch size 𝐵𝑏 , while input 

data for internal domain is batched using batch size 𝐵𝑝. 

The summary of the result can be seen in Table 2. 

The two batch sizes give different effect on the model 

performance. Higher the value of 𝐵𝑏 , higher the error, 

while the value of 𝐵𝑝 gives opposite effect. Behavior of 

the model in variation of 𝐵𝑏is quite natural, because 

small batch size offers regularization effect. The 

difference of behavior is quite interesting. Highest 

number of 𝐵𝑝 used in this case is actually the same as 𝑁𝑝 

used, which is 100000, which means in this case the 

input data for internal domain is not batched.  

The strange behavior of 𝐵𝑝 may be caused by high 

dimension internal data must represent, as discussed 

before. The model needs to learn the dynamics of the 

wave at different place and time simultaneously. This 

makes any partition of training data gives higher error as 

the model learn different dynamics separately. Thus, 
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training process without batching gives the best 

performance. 

3.3. Overall Analysis 

Previously, we have computed overall mean squared 

difference between the neural network solution and 

standard numerical solution. However, overall averaged 

difference may not represent how the solutions gives 

similar dynamics inside the domain. In that case, we plot 

the map of the solution within the domain of simulation. 

It can be seen in Figure 5. 

We can see that in the map how the wave evolves over 

time with different boundary conditions. Dirichlet 

boundary represents a wave with attached ends, so it will 

form a perfect standing wave. Neumann boundary on the 

other hand gives one free end to the wave, makes 

additional dynamics at the boundary. The similar 

happens to Robin boundary, but the reflection is not 

perfect as the wave end is not entirely free, represents 

elastic attachment. This forms similar dynamics to the 

Neumann case but kind of distorted. 

The neural network solutions in Figure 5 are the result 

of training with the best combination of parameters 

found in previous section. Briefly, we can see that 

solutions from both methods are quite similar, especially 

in case of Dirichlet-type boundary condition. 

Unfortunately, as we see closer at the results of 

Neumann-type and Robin-type, the neural network 

solutions tend to give smoother wave solution. Sharp 

wave fronts resulted from reflection at the boundary 

shown in numerical solution hardly appears in the neural 

network solution. 

 

  
(a) 

 

  
(b) 

 

  
(c) 

Figure 5. Map of the result in spatial and temporal domain of the problem with different boundary condition, i.e., (a) Dirichlet-type; (b) 

Neumann-type, (c) Robin-type 
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As we have seen that the model architecture used in this 

section is already optimal, the source of this issue may 

lie at the amount of data used to train the model, 

especially the data generated at the boundary. The values 

of 𝑁𝑏 and 𝑁𝑛 are still can be increased further to increase 

the performance of the model. Unfortunately, at this 

point, the training time has already very long, especially 

compared to standard numerical computation. One of the 

major factors of the training time is the amount of data. 

Thus, increasing it further may cause unacceptable 

training time without any guarantee that the result may 

be better. 

This issue has shown one of possible current 

disadvantages of neural network approach to solve wave 

problem, in addition to the very long computational 

time. However, many improvements to the methods may 

still open, such as the use of Lagrangian descent 

algorithm [14], Xavier initialization of the network 

parameters [14], BFGS optimization [15], and many 

others. We have to remember that PINN, as well as other 

neural network-based approach in solving differential 

equations, is still an emerging topic. At least we can see 

that because PINN is somehow like an approximation 

function, we can compute the solution for any value of 

input variables as long as they lie within simulation 

domain.  

If we plot the graph of each loss over epochs, as shown 

in Figure 6-8, we can see that actually both initial 

conditions and boundary conditions fitted pretty quickly 

in few epochs with monotonic trends. However, the 

spikes in problem loss 𝐿𝑝 indicates the difficulties faced 

by the model in fitting the governing equation inside the 

domain.  

As stated before, sampling distribution of the data may 

have influence, because different than boundary or 

initial conditions, the model need to capture 2-

dimensional information from the governing equation. 

The spikes appear in all types of boundary condition but 

more frequently in Robin type. It may be caused by the 

complexity of interaction of the wave from inside the 

domain with the boundary in Robin condition. Also, the 

spikes show that the model was not really learning inside 

the boundary except few first epochs. Further 

investigation and study may be needed to understand 

more this phenomenon. 

4.  Conclusion 

A neural network has been implemented to the case of 

1-D wave problem. The architecture used are Physics 

Inform Neural Network (PINN), which learns to 

approximate the solution using governing equation and 

initial/boundary conditions. We have studied how the 

size of the model architecture, namely depth and width, 

affects the performance significantly. Shallower yet 

wider networks are shown to give better result, as deeper 

network gives too much nonlinearity to the model. 

We have seen also how amount of generated data 

influence the model performance. More data may give 

better result but will consume more computational time 

and memory. This becomes one of the disadvantages of 

PINN compared to existing numerical solver of PDEs. 

However, PINN have large potentials to become 

powerful method. Further improvements are still open. 

 

Figure 6. Loss curve of PINN training for Dirichlet problem 

 

Figure 7. Loss curve of PINN training for Neumann problem 

 

Figure 8. Loss curve of PINN training for Robin problem 
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