
 Accepted: 02-02-2022 | Received in revised: 29-03-2022 | Published: 20-04-2022

207

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 6 No. 2 (2022) 207 – 212 ISSN Media Electronic: 2580-0760

Critical Section Overhead Reduction for OpenMP Program by Nesting a

Serial Loop to Increase Task Granularity of Parallel Loop

Adnan1, Intan Sari Areni2, Zulkifli Tahir3
1,3Department Teknik Informatika, Fakultas Teknik, Universitas Hasanuddin

2Department Teknik Elektro, Fakultas Teknik, Universitas Hasanuddin
1adnan@unhas.ac.id*, 2intan@unhas.ac.id, 3zulkifli@unhas.ac.id

Abstract

This paper presents a simple method to reduce performance loss due to a parallel program's massive critical sections of
parallel numerical integration. The method is to transform a fine grain parallel loop into a coarse grain parallel loop which
is nesting a sequential loop. The coarse grain parallel loop is by nesting a loop block to make task granularities coarser than
that naive one. In addition to the overhead reduction, the method makes the parallel work fraction significantly larger than the

serial fraction. As a result, nesting a serial loop within a parallel loop improves the parallel program’s performance. Compared
to the naïve method, which does not scale performance of parallel program of numerical integration, the nesting serial loop
method scales a parallel program up to 3.26 times fold relative to its sequential program on quad-core processor. This result
shows that the proposed method makes parallel program much faster compared to the naïve method.

Keywords: critical section, overhead reduction, OpenMP, task granularity, Parallel loop

1. Introduction

Parallel programming is a method to increase processor

utilization in a parallel computer due to almost all

computers with multicore integrates multiple individual

processors and cache memory [1]. Ranging from small

laptops to big servers in data centers has more than one

processor. However, without parallel programming,

only one processor can be utilized. The rest will be

useless and have low resource utilization.

Parallel programming is not so easy to do. A

programmer may deal with some problems in this

regard among race conditions, or it could be

performance lost due to high overhead, high rate of a

cache miss, or load imbalance.

In this paper, our research concern is large overhead due

to low parallel works to critical section ratio. We

assume a rectangular integration method in the pi value

estimation program. Although the program is simple,

many other programs assume the same pattern. At least
part of many of those programs has the same pattern.

The pattern is a parallel R-W operation to a shared

variable within a massively parallel loop. To avoid race

condition due to parallel R/W operations, the naïve

approach is to involve critical section. However, critical

section contributes to large overhead in small

granularity of work of parallel loop. In other words, the

problem is the fine grain computation results in low

performance of parallel program.

A detailed study that analyzes the effect of task

granularity on the performance of parallel java

programs is shown in [2]. The study takes advantage of

a novel profiler that measures the granularity of every

executed task [3].

There is an efficient method to overcome the problem

in parallel R/W operations, such as the method of in

OpenMP reduction clause [4], Cilk++ hyper objects [5],

or MPI reduce [6]. All of the methods are to reduce

overhead by eliminating critical sections.

The most efficient parallel method so far is lazy task

creation [7]. Lazy task creation is a technique to

increase task granularity. Its overhead is almost the

same as the overhead of a function call. Cilk and

StackThreads /MP [8] adopt the lazy task creation

method.

Another method to increase task granularity in the

work-stealing method is the extended work-stealing

stealing strategies [9] and Dynamic multiple items

work-stealing strategy [10] . Those methods increase

the task granularity of stolen tasks and make processors

 Adnan, Intan Sari Areni, Zulkifli Tahir

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3848

Creative Commons Attribution 4.0 International License (CC BY 4.0)

208

busy at works. These researchs improve the

performance of the StackThread/MP fine grain task

parallel library such that it outperforms the Cilk in the

UTS benchmark and has comparable performances in

other benchmarks.

Controlling the granularity of parallel task is an

interesting idea. One research of this is an algorithm to

control task granularity [11]. However, currently we

argue that controlling the task granularity manually is

better than the automatic one for some reasons.

The transformation of a single sequential loop into a

pair of the nested sequential loop is known as loop

blocking or tiling [12]. These practices are originally to

take benefit from cache hierarchy. Our research aims to

have parallel slackness and optimal task granularity and

may benefit from the cache hierarchy. Because the

multicore processor incorporates multiple processors

and multiple levels of cache memory, our method is a

simultaneous practice to exploit both parallelism and

locality in a multicore processor at once.

Our approach is quite different from them, as our
method reduces the overheads by transforming a single

parallel loop into a parallel loop and nested sequential

loop pair. In this research, the specific purpose of the

loop transformation is to increase the grain size of

parallel works. In addition, this method to increase task

granularity is quite different from Cilk language and

StackThreads/MP which are based on Lazy task

creation. All of the previous research mentioned above

are more appropriate for recursive task structures.

While the method in this study is suitable for iterative

task structures.

2. Research Methods

The rectangle rule of the numerical integration program

is chosen as a base of two benchmark programs in the

first step. The first program is implemented with the

naïve method, and the second is the improved version.

We evaluate the sequential execution time TS of the

benchmark programs and then evaluate parallel

execution.

2.1. Rectangular Rule of Numerical Integration

In this paper, we propose a simple method that makes

tasks granularity large enough to reduce the amount of

synchronization. As a case study, we consider a parallel
program commonly used in teaching. This program

performs numerical integration for the estimated value

of pi.

As the first step of the research we evaluate the serial

implementation of the rectangular integration for pi

number estimation. The implementation is based on

equation 1. In the equation, x is the midpoint of each

rectangle i.

𝑝𝑖 = ∑
4.0

(1+𝑥2)
∆𝑥𝑛

𝑖=0 (1)

From the serial implementation, we obtain serial

execution time data TS which is used as a baseline. The

baseline will be used to evaluate parallel work
overheads and speedup. In further discussions, we refer

to the TS while mentioning works. We execute a time

command in the MSYS2 command prompt to obtain the

serial execution time (real part). We obtain the real part,

which is the wall time, from the time command in

MSYS2.

Serial algorithm listing is shown as the following:

Serial Algorithm
Input: N
Output: pi
BEGIN
 NUMBER = 2000000000;
 NUMBER i
 NUMBER step = 1.0/N
 NUMBER x = 0.0
 NUMBER sum = 0.0
 FOR i = 0 to N STEP 1 DO
 X = (i + 0.5) * step;
 Sum = sum + 4.0/(1 + x^2);
 END FOR
 pi = sum * step;
 END

The straightforward implementation of OpenMP is used

for the naïve parallel version of the test program. The

OpenMP implementation means that the program is

multithreaded. In the multithreaded program, we can

assign the number of threads executing parallel regions.
Parallel region refers to the structured block of code

which follows the pragma omp parallel in an OpenMP

program.

Equivalent parallel algorithm listing is shown as in the

parallel Algorithm 1.

Naïve Parallel Algorithm 1 (pi_wcs)
Input: N
Output: pi
BEGIN
 NUMBER N = 2000000000;
 NUMBER i
 NUMBER dx = 1.0/N
 NUMBER x = 0.0
 NUMBER sum = 0.0
 PARALLEL FOR i = 0 to N STEP 1 DO PRIVATE(x)
 X = (i + 0.5) * dx;
 CRITICAL SECTION DO
 Sum = sum + 4.0/(1 + x^2);
 CRITICAL SECTION END
 END PARALLEL FOR
 pi = sum * dx;
 END

The naïve parallel algorithm, which presented as in

parallel algorithm 1, looks very similar to that of the

serial one. We add a few lines of OpenMP directives

and clauses to transform the serial program to be
parallel. Behind the scenes, the compiler translates the

OpenMP directives and following structured blocks

into multithreaded codes. The compiler links additional

works from the OpenMP library to our code. We refer

 Adnan, Intan Sari Areni, Zulkifli Tahir

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3848

Creative Commons Attribution 4.0 International License (CC BY 4.0)

209

to these additional works while mentioning overhead.

As a result, the for-loop that follows #pragma omp

parallel is shared by multiple threads and executed

simultaneously.

The naïve version of the parallel program for the

rectangular rule of the pi program performs worse than

its serial version. Work overhead, which is additional

works in a parallel program, is significantly larger than

the granularity of parallel works. Fine grain parallel

works always result in significant overhead. The work
overhead wo is quantitatively defined in equation 2. In

equation 2, TP(1) is the parallel execution time with the

processors equal to 1. According to equation 2, we

calculate the work overhead by subtracting the work TS

from the TP(1).

𝑇𝑝(1) = 𝑇𝑆 + 𝑤𝑜 (2)

Parallel work overhead is similar to the work overhead,

but we scale the parallel execution time by the number

of processors.

Our research is aimed to reduce the work overhead wo.

A method to reduce the overhead is to make task

granularities are large enough such that the ratio B of

computation to critical section is significantly large. In

the naïve implementation, this ratio is equal to 1. We

propose this method because the most significant

overhead is due to the time for starting and finishing the

critical section. Making coarse the task granularity is

usually adopted to reduce the degree of parallelism (N).

Each iteration is a parallel task in the naïve parallel

program (Parallel Algorithm 1). Each parallel task
contributes to work overhead and also synchronization

overhead. Therefore, we reduce O(N) to O(N/B)

overhead. It means that the less parallelism is, the less

overhead to manage parallel tasks is. This method is

appropriate for OpenMP because the OpenMP is not a

language to implement lazy task creation to increase

task granularities.

Parallel algorithm 2 shows the method to reduce the

overhead. The parallel algorithm 2 that optimizes the

program cost by nesting a sequential loop within a

parallel loop. In the parallel algorithm 2 the critical
number section is now reduced to N/B. In the algorithm,

each thread allocates additional memory for localsum

and ii variables from its stack as a private memory.

2.2. Experimental Setup and Configuration

We conducted some experiments to measure serial

execution time and parallel execution time for some

implementations. Based on the serial program

execution time and parallel program execution time, we

analyze work overhead and speed up, which shows how

faster the parallel program is related to its serial version.

For the parallel program, we set the number of threads
to 1, 2, 4, and 8 (SMT mode). In addition, we scale the

parameter task grain size B to analyze its effect on the

work overhead wo.

Parallel Algorithm 2 (pi_nl)
Input: N, B
Output: pi
BEGIN
NUMBER N = 2000000000;
NUMBER pi = 0.0;
NUMBER i;
NUMBER dx = 1.0/N;
NUMBER x = 0.0;
NUMBER sum = 0.0

PARALLEL FOR i = 0 TO N STEP B DO PRIVATE(x)
 PRIVATE NUMBER ii;
 PRIVATE NUMBER localsum = 0.0;
 FOR ii = i TO i+B STEP 1 DO
 IF ii < N
 X = (ii + 0.5) * dx;
 localsum = localsum + 4/(1+x^2);
 ELSE BREAK //inner loop
 END FOR
 CRITICAL SECTION BEGIN
 sum = sum + localsum;
 CRITICAL SECTION END
END PARALLEL FOR
pi = sum * dx;
END

Table 1 shows the specifications of the hardware in this

research. The hardware is a laptop equipped with 8th

generation Core i7 Quad Core processor.

Tabel 1. Hardware Specification

Hardware Specification

CPUs Gen 8th Core i7

4 Cores, 2 Threads/Core

3 GHz, HyperThreading Enabled

RAM DDR4 16 GB

Storage SSD 512 GB SATA

Table 2 shows the specifications of the hardware. All

versions of test case programs are compiled with
compiler optimization switch -O2. This compiler option

ensures that the compiler generates an optimized serial

program and does so for all the parallel versions.

Tabel 2. Software Specification

Software Specification

Operating System Windows 10 64 bits

Home Edition

Software distribution

and development

Platform

MSYS2 For Windows

64bits

GCC

OpenMP Library

3. Results and Discussions

This section presents the results of our experiments. Our

experiments measure serial programs execution time

and also parallel programs execution times.

The first parameter to be discussed is accuracy. Tthis

parameter is the most important parameter before

parallel program performance. The rapid execution time

of a parallel program is useless if the program is not

accurate. In this case, accuracy is the similarity between

 Adnan, Intan Sari Areni, Zulkifli Tahir

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3848

Creative Commons Attribution 4.0 International License (CC BY 4.0)

210

the estimated values of pi between serial and parallel

programs. The accuracy result is shown in Table 3.

Tabel 3. The Result of Accuracy

Number

of

threads

Pi number estimation Accuracy

(%) Serial program Parallel program

1 3.141592653589 3.141592653589 100

2 3.141592653589 100

4 3.141592653589 100

8 3.141592653589 100

From the results of the experiments, we make work

overhead and speedup analysis.

3.1. Serial programs execution time

The serial execution time is displayed in Table 4. The

results show that the proposed method improves the

sequential execution time of the benchmark.

Table 4. Sequential Execution Time

Method Sequential execution time

Single loop 2.581 secs

Nested loop 2.350 secs

3.2. Parallel execution time

Parallel program execution time is the program's

execution time that is compiled with OpenMP

directives and APIs. However, it is executed with one

single thread. The results show in Table 5.

Table 5. Parallel Execution Time

Number

of threads

pi_wcs pi_nl

1 30.338 secs 2.567 secs

2 50.983 secs 1.321 secs

4 106.621 secs 0.829 secs

8 90.343 secs 0.791 secs

3.3. Overhead and Scalability analysis

This section presents work overhead and scalability

analysis. The work overhead analysis is derived from

the parallel program execution time using a single
thread (TP(1)) and serial program execution time TS as

denoted in equation 2.

Figure 1 compares work overhead in both the proposed

and naïve parallel programs. The proposed method

results in the numerical integration are better than the

naïve one. It can be seen from the lower TP(1).

Execution of fine grain parallel works with critical

sections in a loop contributes to the large overhead.

Figure 2 shows overhead analysis when a single process

single thread executes the parallel program with fine

grain parallel works. In a parallel program with fine

grain parallel works, there are a significant fraction of
sequential codes and a relatively small fraction of

parallel codes. According to Amdahl’s Law [13], such

a parallel program has a low speedup.

Figure 1. Overhead comparison of two methods

Figure 2. Overhead Illustration of Fine Grain Parallel Works in

Single Thread Mode

Figure 3 shows overhead analysis when multiple

threads execute a parallel program with fine grain

parallel works. In this case, the overhead (wait time)

due to the critical section increases as the number of

threads increases.

Figure 3. Overhead Illustration of Fine Grain Parallel Works in

Multiple Threads Mode

As the grain size of parallel works increases, the

overhead due to critical section decreases. In addition,

this method has parallel fraction increases. Figure 4
depicts an improvement in parallel works fraction and

lowers the overhead of the critical section. In the

multiple threads scenario presented in Figure 5, making

the granularity parallel works increase effectively to

reduce overhead (wait time and critical sections).

2.581
2.350

27.76

0.22

0

5

10

15

20

25

30

35

pi_wcs pi_nl

Tp
(1

) i
n

 s
ec

o
n

d
s

Tp(1)-Ts

Ts

 Adnan, Intan Sari Areni, Zulkifli Tahir

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3848

Creative Commons Attribution 4.0 International License (CC BY 4.0)

211

Figure 4. Overhead Reduction of Coarse Grain Parallel Works in

Single Thread Mode

Figure 5. Overhead Reduction of Coarse Grain Parallel Works in

Multiple Thread Mode

Figure 6 shows an analysis of how the overhead

increases as the number of threads increases. However,

the overhead rate of the proposed method is

significantly lower than the naïve one.

Furthermore, we evaluate the parallel work overhead of

the proposed method with the number of threads equal

to one but with the grain size scaled from 1 to 106.

Figure 7 presents work overhead analysis for the

benchmark program with the proposed method (pi_nl).

As the figure shows, the overhead decreases as the grain
size increase. We can see that task granularity B of 105

iterations diminishes the work overhead. In general,

increasing the grain size will lead to better efficiency.

However, the grain size should not be too large to avoid

either load imbalance or lack of parallelism.

Figure 6. Work Overhead Rate to the Number of Threads

Figure 7. Overhead Rate to the Grain Size

A scalability analysis is depicted in Figure 8 that shows

the proposed method obtains the parallel program of

numerical integration scales with good performance.

Although its speedup is low when the number of threads

equals 8, this fact is known well. The cause is not the

program, but the program is executed in SMT mode

[14]. As presented in [15] , SMT mode may slightly

improve performance in non-uniform workloads.

However, in this research, the benchmark program has

a uniform workload. In contrast with the naïve method,
the method results in large overhead such that the

numerical integration performs poorly and does not

scale at all.

0.22 0.29

0.97

3.98

27.76

99.39

423.90 720.16

0.10

1.00

10.00

100.00

1000.00

1 2 4 8

O
ve

rh
ea

d
 (

lo
g

sc
al

e
in

 s
ec

o
n

d
s)

nthreads

pi_nl

pi_wcs

27.988

14.933

6.269

2.133
0.291

0

5

10

15

20

25

30

35

1
.E

+0
0

2
.E

+0
0

4
.E

+0
0

1
.E

+0
1

1
.E

+0
2

1
.E

+0
3

1
.E

+0
4

1
.E

+0
5

1
.E

+0
6

Tp
(1

)
in

 s
ec

o
n

d
s

grain size

Overhead

Ts

 Adnan, Intan Sari Areni, Zulkifli Tahir

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3848

Creative Commons Attribution 4.0 International License (CC BY 4.0)

212

Figure 8. Speed Up of Parallel Numerical Integration Programs

Using Naïve Method and Nested Loop Method

4. Conclusion

This research reduces the overhead of massive critical

sections such that a parallel program has a better

performance than the naïve method. The contributed of

the method is performance improvement such that

parallel program performs faster than the naïve parallel

program. The method to improve the performance is to

make the grain size of parallel works much larger than

the number of critical section operations. This research
shows the method proven to be useful to improve the

performance of parallel programs such as parallel

numerical integration using rectangular rule and other

parallel programs with the same pattern.

References

[1] S. Najem N and S. Sami I, "Multi-core Processor : Conceppts

And Implementations," International Journal of Computer

Science and Information Technology, pp. 01-10, 2018.

[2] A. Rosà, E. Rosales and W. Binder, "Analysis and

Optimization of Task Granularity on the Java Virtual

Machine," ACM Transaction on Programming Languages and

Systems, vol. 41, no. 5, p. 47, 2019.

[3] A. Rosà, E. Rosales and W. Binder, "Analyzing and

Optimizing Task Granularity on the JVM," in Association for

Computing Machinery, New York, 2018.

[4] J. M. Bull, "Measuring synchronisation and scheduling

overheads in OpenMP," in Proceedings of First European

Workshop on OpenMP, 1999.

[5] M. Frigo, P. Halpern, C. E. Leiserson, Lewin-Berlin and

Stephen, "Reducers and other Cilk++ hyperobjects," in

Proceedings of the twenty-first annual symposium on

Parallelism in algorithms and architectures, 2009.

[6] K. Hasanov and A. Lastovetsky, "Hierarchical redesign of

classic MPI reduction algorithms," The Journal of

Supercomputing, vol. 73, no. 2, pp. 713-725, 2017.

[7] E. Mohr, D. Kranz and R. Halstead, "Lazy task creation: a

technique for increasing the granularity of parallel programs,"

IEEE Transactions on Parallel and Distributed Systems, vol.

2, no. 3, pp. 264-280, 1991.

[8] K. Taura, K. Tabata and A. Yonezawa, "StackThreads/MP:

Integrating Futures into Calling Standards," ACM SIGPLAN

Notice, vol. 34, no. 8, pp. 60-71, 1999.

[9] Adnan and M. Sato, "Efficient Work-Stealing Strategies for

Fine-Grain Task Parallelism," in 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops

and Phd Forum, Anchorage, 2011.

[10] Adnan and M. Sato, "Dynamic Multiple Work Stealing

Strategy for Flexible Load Balancing," IEICE Transactions on

Information and Systems, vol. E95.D, no. 6, pp. 1565-1576,

2012.

[11] A. Fonseca and B. Cabral, "Controlling the granularity of

automatic parallel programs," Journal of Computational

Science, vol. 17, no. 3, pp. 620-629, 2016.

[12] J. M. Cardoso, J. G. F. Coutinho and P. C. Diniz, "Chapter 5 -

Source code transformations and optimizations," in Embedded

Computing for High Performance, Boston, Morgan Kaufmann,

2017, pp. 137-183.

[13] J. L. "Gustafson, ""Amdahl's Law"," in "Encyclopedia of

Parallel Computing", "Springer US", 2011, pp. "53--60".

[14] C. Jung, D. Lim, J. Lee and S. Han, "Adaptive Execution

Techniques for SMT Multiprocessor Architectures," in

Proceedings of the tenth ACM SIGPLAN symposium on

Principles and practice of parallel programming, Chicago.

[15] Adnan, D. K. Oktahidayat and A. Achmad, "Performance

Improvement with Non-Uniform Loads on SMT Processors,"

in 5th International Conference on Computing Engineering

and Design (ICCED), 2019.

