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Abstract  

The water level on peatlands is one of the causes of peatland fires, so water levels must be maintained at a safe standard value. 
Government Regulation No. 71/2014 stipulates water level standard value is 0.4 meters. The forest and land fires in 2015 
caused huge losses of 220 trillion Rupiah. However, fires still occur frequently. BRGM (Peatland and Mangrove Restoration 
Agency) installed sensors measuring peatland water levels to obtain real-time water level data. These data can be used to 
predict water levels. Several previous studies used drought indices, regression models, and artificial neural networks to predict 
water levels. In this study, it is proposed to use deep learning Long Short-Term Memory (LSTM), and apply the CRISP-DM 
methodology. The dataset in this study contains water level data from 15 measurement stations in Central Kalimantan from 

2018 through 2021. It was concluded that the LSTM model was able to predict water level well, as indicated by the average 
RMSE of 0.07 m, the average R2 of 0.85, and the average MAE of 0.04 m. The optimal LSTM model parameters are 50 epochs, 
a 70%:30% ratio of training data to testing data, and 2 hidden layers. 
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1. Introduction  

The water levels of peatlands hold a significant role in 

determining greenhouse gas emissions and holding the 

global climate system. Water level management in 

peatlands is critical to preventing peatland fires and 

greenhouse gas emissions [1]. Peatlands in Indonesia 
cover more than 7% of the country's land, therefore the 

use of peatlands is unavoidable. Land clearing and 

construction of drainage networks can damage peat, 

resulting in a decrease in water level, subsidence of the 

peat surface, CO2 emissions, land fires, and total 

drought (irreversible drying). 

Major forest fires in 2015 burned 2,611,411.44 hectares 

of forest, including peatlands  [2]. Handling forest fires 

requires a ton of money [3]. The National Disaster 

Management Agency (BNPB) budget in 2019 is mainly 

for handling forest fires, reaching 50% of the total 

budget of 6.7 trillion Rupiah [4]. 

The standard water levels value is 0.4 meters  [5], and 

if it is more than that, the peatlands are declared 

vulnerable and prone to fire.  Therefore, it is necessary 

to monitor the water level of peatlands, namely by 

predicting their value to estimate the water level 

condition for the next period. 

Many studies have been carried out to predict 

hydrological phenomena, including water levels. 

Among these are studies that use the drought index to 

predict the water levels of peatlands [1] and the use of 

Artificial Neural Network (ANN) and LSTM to 

construct rain runoff models  [6]. Research that uses 
LSTM to predict rainfall has also been carried out [7], 

[8], [9]. Another study was conducted to predict water 

depth in agricultural areas using LSTM and Fast 

Forward Neural Network (FFNN) [10]. The use of 

linear regression estimation models has also been done 

to predict the water levels on tropical peatlands  [11]. In 

addition, research  [12] concluded the use of 

Autoregressive (AR) and LSTM resulted in a viable 

model for predicting the hydrological time series. 

Furthermore, the literature review [13] shows that 

research related to hydrology and water resources suits 

the use of deep learning methods. 

This research complements previous research in terms 

of utilizing deep learning LSTM. This study uses the 

data on water levels in peatlands which sets it apart from 

previous research. The resulting model is expected to 

become supporting information in peatland monitoring 

efforts and in determining policies to reduce the 

potential for peatland fires. 
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2. Research Methods 

The research methodology used in this study is the 

CRISP-DM (Cross Industry Standard Process for Data 

Mining) methodology. CRISP-DM is a standard 

process for data mining introduced in 1996 by a 

consortium of companies established as a standard 

process in data mining by the European Commission. 

CRISP-DM can be applied in various industrial sectors 

[14]. 

CRISP-DM applies a life cycle process for a data 
mining project consisting of six stages shown in Figure 

1. The sequence is not rigid and can move back and 

forth between stages. 

 

Figure 1. Stages in CRISP-DM  [14] 

These stages are business understanding, data 

understanding, data preparation, modeling, evaluation, 

and deployment. 

Stage 1, Business Understanding is the stage of 

understanding the goals and needs from a business point 

of view, then translating this knowledge into problem 

definition. Afterward, plans and strategies are 

determined to achieve these goals. This stage builds an 

understanding of the water level and the problems that 

need to be solved. That started with an analysis of the 

importance of obtaining alternative information about 

the condition of the water levels of peatlands in the form 

of water levels prediction using existing historical data. 

Stage 2, Data Understanding begins with data collection 

and continues with understanding the data, identifying 

data quality problems, or checking for interesting parts 

of the data to develop hypotheses based on the 

concealed information. In this case, the hypothesis is a 

prediction and temporary conclusion regarding the 

connection between variables or phenomena in peatland 

water levels. 

Stage 3, Data Preparation includes all activities to build 

the final dataset (data to be processed at the modeling 
stage) from raw data. This stage also includes the 

selection of tables, records, and data attributes, 

including the process of cleaning and transforming data 

to be used as input in the modeling stage. 

Stage 4, Modeling is the selection and application of 

modeling techniques with the parameters adjusted to get 

the optimal value. 

Stage 5, Evaluation, evaluates the effectiveness and 

quality of the model and determines whether the model 

can achieve the goals set at Stage 1 (Business 

Understanding). 

Stage 6, Deployment, at this stage, the gathered 
knowledge or information will be compiled and 

presented in a special form so that the users can use it. 

This stage often involves applying live models in the 

organization's decision-making process, like using real-

time personalization of web pages. 

In this study, the process in stage 2-6 has been 

simplified as shown in the flowchart in Figure 2, which 

is the steps taken to predict water levels on peatlands. 

 

Figure 2. Water Levels Prediction Flowchart 

The stages start from the collection of water level data, 
followed by data pre-processing so the data can be used 

in model development. The built model is then 

evaluated using the R2, RMSE and MAE metrics to 

ensure that it has good performance. In the final stage, 

the model is deployed on a web-based application, so 

that it can be easier to use in predicting water levels. 

2.1 Data Set 

The data containing the peatland water levels was 

obtained from the internal data (on-premise) server of 

the Peat and Mangrove Restoration Agency (BRGM), 

managed by the Agency for the Assessment and 

Application of Technology (BPPT). The data is 
collected from the recording of sensors (water logger 

telemetry) installed by BPPT on peatlands. Data 

aggregation (average) is carried out on this data so that 

the previous hour period is converted into the daily 
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period. Water level data is obtained in Comma-

separated values (CSV) file format with the data period 

December 2018 to November 2021. 

Tabel 1. Example of Water Level Data  

datetime tma 

12/2/2018 -78,3 

12/3/2018 -28,3 

12/4/2018 -6,2 

12/5/2018 0,8 

… … 

11/12/2021 61,3 

11/13/2021 79,1 

Table 1 is an example of data in one of the files 

consisting of date (datetime column) and water level in 

cm (tma column). The negative value in the tma 

column indicates that the water is below the peatland 

surface. 

2.2 LSTM Model 

LSTM or Long Short-Term Memory is a special type of 

Recurrent Neural Network (RNN), which was created 

to avoid the problem of a long-term dependency on 

RNN so that LSTM can remember long-term 
information in the deep learning process. Figure 3 

shows the iteration of the module in the RNN, which 

only uses one simple layer, the tanh layer  [15]. 

 

Figure 3. Repeating Module in RNN with One Layer  [15]  

Meanwhile, with LSTM, the module is repeated for 

several layers, as shown in Figure 4. 

 

Figure 4. Repeating Module in RNN with Four Layers [15] 

In this research, the Python programming language and 

its supporting libraries are used to build the LSTM 

model. 

2.3. Model Evaluation and Deployment 

In this study, three parameters were tested in building 

and training the LTSM model, namely the number of 

epochs; ratio of training data and testing data; and the 

number of hidden layers. The goal is to select the 

optimal parameters for the entire dataset. 

The dataset for the parameter trial was chosen at 

random, and the Tanjung Sangalang measurement 

station dataset was selected from the entire dataset. 

Figure 5 shows the steps taken in selecting the optimal 

parameters. 

 

Figure 5. LSTM with Optimal Parameters 

In Figure 5, three LSTM parameters are used, namely 

the number of epochs, the ratio of the training and 

testing data, and the number of hidden layers. Then, 

LSTM models were formed using the dataset of one of 
the measurement stations (Tanjung Sangalang). The 

optimal parameter values are determined based on the 

model's evaluation results. 

Furthermore, the optimal parameter values are 

determined in the LSTM model using the entire dataset. 

After being evaluated and having good performance, 

the model is then implemented in a web-based 

application for forecasting purposes. 

Three measurement metrics are used to evaluate the 

performance of the model prediction results, namely R2 

(Coefficient Determination) and RMSE (Root Mean 
Square Error), and MAE (Mean Absolute Error). R2 

measures the degree to which the results are replicated 

by the model. The value ranges between [−∞, 1] where 

for optimal model prediction, the R2 score is close to 1. 

R2 is expressed by equation (1). 

𝑅2 =
∑ (𝑦𝑖−�̅�)2−∑ (𝑦𝑖−𝑦�̂�)2𝑁

𝑖=1
𝑁
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑁
𝑖=1

            (1) 

Where yi is the measured value at the time i, �̅�  is the 

average value of yi, at i = 1, …, N, while  �̂� is the 

predicted value at the time i. 

RMSE is used to measure the average value of the error 

value of the model prediction results. The RMSE 

formula is shown in equation 2, where the measured 

value at the time i is expressed by yi , while  �̂�𝑖 is the 

predicted value at the time i. 

𝑅𝑀𝑆𝐸 =  √1

𝑛
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1                           (2) 
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Whereas MAE measures the difference between the 

observed and modeled results. MAE is the mean of 

absolute error as shown in equation (3), where the 

measured value at the time i is expressed by yi, while  
�̂�𝑖  is the predicted value at the time i. 

𝑀𝐴𝐸 =  1

𝑛
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1                           (3) 

In this study, the model is deployed in the operational 

environment in the form of a web application. In 

addition to the model itself, an interface, library, and 

supporting infrastructure are also prepared so that users 

can predict the water levels generated from the model. 

3.  Results and Discussions 

3.1 Data Pre-Processing  

Data cleaning is done to clean the dataset from 

unexpected data, such as outliers. Figure 6 indicates an 

example of an outlier, which is a water level data in 

2000, while the data period should begin from 2018. 

 
Figure 6. Example of an Outlier 

The data is cleaned, or removed from the dataset. Figure 

7 is the dataset plot after cleaning. 

 

Figure 7. Complete Dataset Plot 

To support data understanding, the description of the 

dataset statistics used is served in Table 2. 

The next process is to normalize or rescale the data from 

its original range so that all values are in the range of 0 

and 1. The method used is Minmax as the equation (4) 

so that water level data that is too high or too low does 

not affect the modeling process. 

𝑦 =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
              (4) 

In equation (4), y is the normalized value, x is the 

original value (input), while min and max are the 

minimum and maximum values of the entire data, 

respectively. 

Table 2. Statistic Descriptive of Water Levels 

Stasiun 
Average 

(cm) 

Standard 

deviation 

(cm) 

Min 

(cm) 

Max  

(cm) 

Talio Hulu -8,5 22,0 -70,5 37,2 

Dandang -13,1 26,8 -113,2 40,7 

Bukit Liti 1 -65,4 49,2 -166,7 21,5 

Bukit Liti 2 -44,7 25,9 -206,4 10,1 

Sigi -41,4 32,7 -168,7 19,4 

Bukit Rawi -27,0 24,6 -151,9 16,0 

Tanjung Sangalang -18,1 31,0 -114,7 79,1 

Buntoi -90,9 54,6 -239,0 -8,1 

Henda 1 -56,9 70,6 -218,0 11,3 

Saka Kajang 1,6 30,9 -59,9 72,5 

Garung -27,4 36,1 -160,4 21,5 

Henda 2 -39,7 29,9 -168,7 15,6 

Pilang 2 -20,3 40,2 -157,4 47,8 

Medura Sebangau -54,9 32,4 -150,1 2,3 

Tanjung Taruna 7,8 31,2 -144,2 90,7 

 

3.2 Modeling and Analysis 

The LSTM model is applied to the Tanjung Sangalang 
dataset with the initial parameter, which is 50 epoch, 

training and testing data split into a 70:30 ratio, and 2 

hidden layers. The epoch parameter has been tested in 

the LSTM model to determine the optimal quantity of 

epoch, with the amount of  1, 10, 30, 50, 100, and 200 

epochs. 

The model is trained and validated using several 

combinations of dataset ratios, namely (90:10), (80:20), 

(70:30), and (60:40) each for data training and data 

testing. 

Table 3 is the result of RMSE, R2, and MAE from the 

application of the model parameters. It shows that with 
various variations in the ratio of data on training and 

testing, the best prediction results can be obtained by 

using 50 epochs. This is indicated by the small value of 

RMSE (0.05 and 0.06 meters), and the R2 value is close 

to 1, and MAE is no more than 0.04. 

Table 3. RMSE, R2 , dan MAE with various numbers of epochs 

Rasio Epoch: 1 10 30 50 100 200 

 

90:10 

RMSE 0,25 0,10 0,09 0,07 0,06 0,08 

R2 0,56 0,93 0,94 0,97 0,98 0,96 
 MAE 0,18 0,06 0,06 0,04 0,04 0,05 

 

80:20 

RMSE 0,21 0,09 0,06 0,06 0,06 0,06 

R2 0,50 0,91 0,96 0,96 0,96 0,96 
 MAE 0,15 0,07 0,05 0,03 0,04 0,03 

 

70:30 

RMSE 0,18 0,10 0,06 0,05 0,05 0,05 

R2 0,53 0,86 0,95 0,97 0,96 0,96 
 MAE 0,12 0,06 0,05 0,04 0,04 0,04 

 

60:40 

RMSE 0,18 0,10 0,06 0,05 0,05 0,05 

R2 0,57 0,86 0,96 0,97 0,96 0,96 

 MAE 0,12 0,07 0,03 0,03 0,03 0,04 

Figure 8 and 9 are examples of actual data plots and 

water level predictions at Tanjung Sangalang 

measurement stations with 30, and 50 epochs. The blue 

line shows the actual data (or prediction target), while 

the red line shows the prediction results. 
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Figure 8. Plot Prediction with 30 Epoch 

Figure 9. Plot Prediction with 50 Epoch 

Once the epoch value is set to 50, more trials are applied 

to various combinations of ratios of testing data and 

training data. The goal is to obtain an optimal ratio of 

testing data and training data. The LSTM program code 

was run four times for each data ratio, and the RMSE, 

R2, and MAE values were calculated, as shown in Table 

4. 

Table 4 shows that the composition of training data and 

testing data that provides a satisfactory average 
predictive result with 50 epochs is the ratio (70:30) and 

(60:40). Both generated RMSE, R2, and MAE values of 

0.05 m; 0.96; and 0.03 m respectively. In this study, the 

ratio (70:30) was chosen as the best parameter, to use 

more testing data than the ratio (60:40). 

Table 4. RMSE, R2, and MAE with Various of Data Ratio 

Ratio Trial: 0 1 2 3 4 Average 

 

90:10 

RMSE 0,07 0,06 0,06 0,05 0,06 0,06 

R2 0,97 0,98 0,97 0,98 0,98 0,98 
 MAE 0,04 0,04 0,04 0,04 0,04 0,04 

 

80:20 

RMSE 0,06 0,05 0,06 0,08 0,05 0,06 

R2 0,96 0,97 0,96 0,93 0,97 0,96 
 MAE 0,03 0,04 0,05 0,06 0,04 0,04 

 

70:30 

RMSE 0,05 0,05 0,06 0,05 0,06 0,05 

R2 0,97 0,97 0,96 0,97 0,96 0,96 
 MAE 0,04 0,03 0,03 0,03 0,04 0,03 

 

60:40 

RMSE 0,05 0,05 0,05 0,05 0,05 0,05 

R2 0,97 0,96 0,97 0,96 0,96 0,96 

 MAE 0,03 0,04 0,03 0,03 0,03 0,03 

The LSTM model has been tested with a variety of 

hidden layers to find the optimal number of hidden 

layers while maintaining good model performance. 

Table 5 shows the results of the RMSE, R2, and MAE 

metrics from these tests. 

Tabel 5. RMSE, R2 , and MAE with Various Hidden Layer 

 
Training Data :  

Testing Data Ratio (70 : 30) 

Hidden Layer RMSE R2 MAE 

2 0,05 0,97 0,04 

3 0,05 0,96 0,04 

4 0,05 0,96 0,04 

5 0,05 0,95 0,04 

Table 5 shows that the addition of a hidden layer to the 

LSTM model in this study did not provide a significant 

increase in performance. In this case the model with 2 

hidden layers provides better performance than the 3, 4, 

or 5 hidden layers. 

3.3 Evaluation and Deployment 

Based on the analysis of the results of the LSTM 

parameter tests, it is concluded that the optimal LSTM 

parameters in this study are as shown in Table 6. 

Table 6. Optimal Parameter 

Parameter Value 

Number of epoch 50 

Ratio of training data and testing data 70% : 30% 

Number of hidden layer 2 

The model is evaluated by applying the optimal 
parameters from Table 6 to the entire dataset, which 

includes water level data from 15 measurement stations. 

After completing the training process, each model's 

average value of RMSE, R2, and MAE were calculated, 

and the results were presented in Table 7. 

Table 7. Summary of RMSE, R2, dan MAE 

No Station RMSE R2 MAE 

1 Talio Hulu 0,09 0,62 0,07 

2 Dandang 0,10 0,68 0,05 

3 Bukit Litih 1 0,05 0,74 0,05 

4 Bukit Litih 2 0,05 0,75 0,04 

5 Sigi 0,06 0,91 0,04 

6 Bukit Rawi 0,04 0,83 0,02 

7 Tanjung Sangalang 0,05 0,96 0,04 

8 Buntoi 0,07 0,96 0,04 

9 Henda 1 0,13 0,98 0,06 

10 Saka Kajang 0,03 0,97 0,02 

11 Garung 0,06 0,87 0,03 

12 Henda 2 0,09 0,80 0,05 

13 Pilang 2 0,07 0,89 0,03 

14 Medura Sebangau 0,06 0,95 0,04 

15 Tanjung Taruna 0,05 0,91 0,04 

   Rata-rata: 0,07 0,85 0,04 

The model is implemented as a web-based application 

so that it can be used live and in real-time. Table 8 lists 

the specifications and supporting data for the web 

applications that were successfully implemented. 

Figure 10 shows a web application that has been created 

as a result of model implementation. 

The user can predict the water level for the next 60-day 

period (after the last date in the dataset) by selecting the 

name of the measurement station, and pressing the 

‘Tampilkan’ button shown in Figure 10. 
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Table 8. Web Deployment Specifications  

Specification Value 

Server Heroku.com 

Web address (URL) https://prediksi-tma.herokuapp.com/ 

Programming Language / 

Framework 

Python / Flask, Javascript, HTML 

Tools Anaconda, pip, Heroku CLI, git 

Python runtime (version) 3.7.12 

Requirements Flask==2.0.2, gunicorn==20.1.0 

joblib==1.1.0, numpy==1.21.5 

pandas==1.3.5, pickleshare==0.7.5 

plotly==5.5.0, requests==2.26.0 

scikit-learn==0.21.3,  

tensorflow-cpu==2.7.0 

 

 

Figure 10. Web Application Display 

4.  Conclusion 

From a series of model experiments and model training, 

the optimal modeling parameters for LSTM in this 

study were 50 epochs, 70% training data and 30% 
testing data ratios, and 2 hidden layers. The LSTM 

model is proven to be able to predict the water level on 

peatlands. This is indicated by the average value of the 

RMSE, R2, and MAE metrics of 0.07, 0.85, and 0.04, 

respectively. This means that on average, the difference 

between the predicted results and the actual water level 

is 0.07 m or 7 cm, while the average error is 0.04 m, 

with a prediction accuracy of 85%. 

These results support the results of previous studies in 

the use of LSTM, for example the RMSE value in study 

[7] was around 0.11 to 0.12, while in this study it was 
0.07. While the value of R2 in this study is in accordance 

with the results of research [9], which is above 0.8. This 

indicates that the LSTM model generated from this 

study is suitable for predicting water level on peatlands.  

For future research, it is recommended to build an 

LSTM model by optimizing other LSTM parameters 

and using datasets from other regions or provinces. 
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