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Abstract  

Task allocation in multi-agent system can be defined as a problem of allocating a number of agents to the task. One of the 
problems in task allocation is to optimize the allocation of heterogeneous agents when there are multiple tasks which require 
several capabilities. To solve that problem, this research aims to modify the Ant Colony Optimization (ACO) algorithm so that 
the algorithm can be employed for solving task allocation problems with multiple tasks. In this research, we optimize the 
performance of the algorithm by minimizing the task completion cost as well as the number of overlapping agents. We also 

maximize the overall system capabilities in order to increase efficiency. Simulation results show that the modified ACO 
algorithm has significantly decreased overall task completion cost as well as the overlapping agents factor compared to the 
benchmark algorithm. 

Keywords: task allocation, multi-agent system, multiple tasks, ACO.

1. Introduction  

Multi-agent systems have been recently used in various 

fields due to their superiority in completing complex 

tasks compared to single-agent systems [1]–[4]. One of 

the problems in multi-agent systems is task allocation, 

i.e. the problem of allocating a group of agents in 
completing task to achieve the system’s goal [2], [5]–

[10]. Some real-world task allocation problems in 

multi-agent systems include the coordination and 

planning problems of multi-robot deployment in 

production process [11], coordination problems of 

several drones [4], [12]–[14], and multi-robot allocation 

problems in precision agriculture [15]–[18]. 

Task allocation in a multi-agent system is an 

optimization problem with high complexity. It is 

classified as an NP-hard problem with difficulty in 

finding an exact solution [1]. Several approaches have 

been used to find the best solution to solve the task 
allocation problem in a multi-agent system. Some of the 

widely used approaches are the heuristic methods, such 

as the Auction-based method which is inspired by the 

economic system [3], [19]. The advantage of this 

method is that it has a high scalability. However, the 

required computational resources increase as the scale 

of the problem increases [14].  

Other heuristic methods that have been used to solve the 

task allocation problem in multi-agent systems are 

inspired by natural events (bio-inspired), e.g. Genetic 

Algorithm (GA) [20] and Ant Colony Optimization 

(ACO) algorithms [7], [18], [21]–[23]. These bio-

inspired methods tend to require lower computational 
resources compared to other methods [14]. In general, 

GA can find the best solution for multi agent system’s 

task allocation faster than other methods. However, the 

efficiency of the search process using the GA method 

decreases when the scale of the problem increases due 

to the increasing number of possible solutions built at 

the beginning of the iteration [24]. Another bio-inspired 

heuristic method, the ACO algorithm, uses heuristic 

information and learning mechanisms in the form of 

pheromone trails in finding the solution. Although the 

convergence rate at the beginning of its iteration is 

relatively slow, the efficiency of the search process 
carried out by the ACO algorithm improves as the 

pheromone trail increases [24]. 

The ACO algorithm is an optimization algorithm 

introduced by Dorigo [25]. It is inspired by the  

behavior of ants, i.e. using pheromone trails to find 

foods. Wang [21] introduced a modification of ACO 

algorithm to solve the task allocation problem in a 

multi-agent system by considering the distance factor 

between agents. Another study conducted by Sriatun 
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[23] further modified the ACO algorithm by 

considering the distance between the agent and the task. 

It was found from the study by Sriatun [23] that the 

efficiency of the agents’ coalition is better than the basic 

ACO algorithm [25] and the ACO algorithm modified 

by Wang [21].  

This study aims to further develop the method proposed 

by Wang [21] and Sriatun [23] by considering the 

condition when there is more than one task. In this 

study, tasks are defined as targets which need to be 
completed by using several agents’ capabilities. Thus, 

“tasks” are hereinafter referred to as “targets”, and we 

will focus our discussion on the task allocation problem 

in a multi-target scenario. 

An example of multi-target scenario is landslide 

disaster scenario, where there may be more than one 

targets (victims) to be rescued. Different from the 

single-target scenario, problem in a multi-target 

scenario may occur when there are one or more 

overlapping agent(s) chosen for different targets. To 

overcome this problem, it is necessary to add an 
objective function to minimize the number of 

overlapping agents which must be optimized 

simultaneously with other objective functions (multi-

objective optimization problem). Several studies have 

shown that the ACO algorithm can be modified to solve 

multi-objective optimization problems [26]–[31]. This 

study aims to modify the ACO algorithm to solve the 

task allocation problem in a multi-target-multi-agent 

system. The final solution was obtained by optimizing 

all objective functions, i.e. minimizing the cost of task 

completion, minimizing the number of overlapping 

agents, and maximizing the system capabilities. 
Simulations were conducted to compare the efficiency 

of the modified ACO algorithm with the existing 

benchmark algorithms. 

2. Research Methods 

2.1 Ant Colony Optimization (ACO) for Solving Task 

Allocation Problems in Multi-Agent Systems  

The ACO algorithm is one of the heuristic methods to 

solve optimization problems by imitating the behavior 

of ant colonies, i.e. utilizing pheromone trails to find 

foods. One of the implementations of ACO is to solve 

the widely-known Traveling Salesman Problem (TSP). 
Here, ants are represented as the artificial agents who 

travel through all the cities that must be visited to find 

the shortest route by utilizing pheromone trails [25].  

The flowchart of the original ACO algorithm for TSP is 

depicted in Figure 1. As can be seen from the figure, 

initially, the ants randomly choose the starting point for 

its solution. Then, the ants use the pheromone values 

and the distances between the starting point and the 

candidate points to select the next point for its solution.   

 

Figure 1 Flowchart of original ACO algorithm [32] 

In addition to solving TSP problems, the ACO 

algorithm was also developed to solve other 

optimization problems, including the task allocation 

problem in multi-agent systems [21], [23]. The task 

allocation problem in a multi-agent system is defined as 

an optimization problem to find the best agent coalition 

to complete a target. In this scenario, a target requires 

one or more capabilities of agent(s) to be completed, 

and an agent has one or more distinct capabilities. Agent 

capabilities are represented in a multi-agent capability 

matrix, MGK, where each row element g
i

kj
 indicates 

whether agent gi has capability kj or not. The value of 

g
i

kj
 indicates the weight of capability kj owned by agent 

gi. For example, g
i

kj∈[0,10] and MGK= [
6 0 1

3 8 10
] 

indicates that there are two agents and three capabilities 

whose capability weight values are between zero to ten. 

The elements in the first line of MGK matrix contain 

information on the capability weights of the first agent, 

which correspond to capabilities 1, 2, and 3 [21], i.e. 

agent g1 has capability k1 with a value of six, capability 

k2 with a value of zero, and capability k3 with a value of 

three. 

Similar to TSP, the selection of agents’ coalition in a 

multi-agent system can be viewed as a graph trajectory 

search problem. For example, assume that there are V 

agents in a multi-agent system: G={g
1
, g

2
, g

3
,…, g

V
}. A 

target w requires R capabilities to be completed: 

Kw={k1, k2, k3,…, kR}. The group of agents that have 

capability kr to complete w is denoted as Gw
kr . Since w 

requires R capabilities to be completed, there will be R 

groups of agents. From each group of agents, one agent 

gi ∈ Gw
kr  is then selected with 𝑖 ∈ [1, 𝑉] and r =

{1, 2, 3,…,R}. To find the solution using ACO 

approach, each agent gi in each group of agents Gw
kr  is 

represented as a node and the connecting path between 

agents in different groups is represented as the edge. 

The task allocation process is illustrated in Figure 2.
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Figure 2. Illustration of a multi-agent system task allocation problem where sr is the number of agents with capabilities 

kr (r={1,2,,…,R}) [21]

Wang [21] modified the basic ACO algorithm to solve 

the task allocation problem in multi-agent systems, i.e.  

the problem of resource allocation in cloud computing. 

The algorithm is called the Collective Path Ant Colony 

Optimization (CPACO) algorithm [21]. In [21], the 

problem occurs in a dynamic and rapidly changing 

environment so that the chosen coordination type is the 

decentralized coordination. Here, the coordination 

process is distributed among all agents so that the agents 
need to communicate with each other in determining the 

best agent coalition. Thus, to produce the optimal 

system performance, modifications are carried out by 

adding the weight of agents’ capabilities and the 

communication cost between agents [21]. 

The study by Sriatun [23] further developed the 

CPACO algorithm to solve the task allocation problem 

of a multi-agent system in a landslide disaster scenario. 

In this scenario, the victim (target) must be rescued by 

a multi-robot system. To produce the best agents 

(robots) coalition, the CPACO algorithm is modified by 
adding a travel cost factor, i.e. the distance between the 

chosen agents/robots and the target. Thus, the modified 

algorithm in [23] considers not only the weight of 

agents’ capabilities and the communication cost 

between agents, but also travel cost between the agents 

and the target. The modified CPACO algorithm by 

Sriatun [23] is hereinafter called the CPACO-S 

algorithm.  

In the CPACO and CPACO-S algorithms, the ants in 

the colony perform a solution-finding process based on 

the transition probability as in any general ant 

algorithms. The mth ant will move from agent gi to agent 
gj at time t with the probability calculated by Equation 

(1) as follows [21], [23]: 

𝑝𝑖𝑗(𝑡) = {
[𝜏𝑖𝑗(𝑡)]

𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽
ℎ∈𝐍

,   ℎ ∈ 𝐍,

0,   ℎ ∉ 𝐍

                        (1) 

where 𝜏ij(t) is the value of pheromone at the path i-j 

from agent gi to agent gj at time t, and α is a parameter 

to adjust the effect of pheromone value 𝜏 (α ≥ 0). The 

notation 𝜂ij(t) is a heuristic function that represents the 

feasibility for the transition from agent gi to agent gj at 
time t based on some known information, and β is a 

parameter to set the effect of the feasibility value 𝜂 (β ≥ 

1). In Equation (1), h is a member of the set N which 

contains all the agents that belongs to the next group of 

agents, i.e. agents that have one same capability that is 

still required to be fulfilled for completing the target. In 

other words, the group of agents for capabilities that 

have not been “visited” by the mth ant. At the beginning 

of the iteration, the initial pheromone value is defined 

as 𝜏0 = 1 𝑎𝐿𝑎𝑔𝑒𝑛⁄  where a is the number of nodes 

(agents) and Lagen is the total distance of each agent to 

all other agents.  

The CPACO algorithm modified the heuristic function 

𝜂ij(t) of the basic ACO algorithm by using the weighted 

capabilities of each agent in the numerator and the 

communication costs in the denominator as depicted in 

Equation (2) [21]: 

𝜂𝑖𝑗(𝑡) =  
𝜔𝑎
1𝑔𝑖

𝑘𝑎+𝜔𝑏
1𝑔
𝑗

𝑘𝑏

 𝜔2𝑑𝑖𝑗
 .                                               (2) 

Here, 𝜔𝑟
1 ∈ [0,1], which is the weight of the capability 

factor to represent the importance of the capability kr 

which required for target w. The value of 

communication cost, 𝜔2𝑑𝑖𝑗 , is proportional to the 

distance between agent gi and agent gj (dij) with a 

communication weight factor (ω2).  

In CPACO-S algorithm, the heuristic function in (2) is 

further developed by adding the travel cost from agents 

to target as shown in Equation (3) [23]: 

𝜂𝑖𝑗(𝑡) =  
𝜔𝑎
1𝑔𝑖

𝑘𝑎+𝜔𝑏
1𝑔
𝑗

𝑘𝑏

 𝜔2𝑑𝑖𝑗 + 𝜔2𝑑𝑖𝑤+𝜔
2𝑑𝑗𝑤

                                    (3) 

Here, the travel cost is proportional to the distance 

between agent gi and agent gj to the target w (diw, djw) 

with a factor of ω2.  

In both CPACO and CPACO-S, an iteration is 

completed when all ants have reached the last group of 
agents, that is, the last capability required by the target. 

Then, the best agent coalition is determined by 

evaluating the efficiency values of all candidate 

solutions formed by each ant. The efficiency value for 

the CPACO algorithm is shown in Equation (4) as 

follows [21]: 
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𝜀𝑚 =
∑ 𝜔𝑟

1𝑔𝑖
𝑘𝑟𝑅

𝑟=1

∑ 𝜔2𝑅−1
𝑖=1 𝑑𝑖𝑗

, 𝑗 = 𝑖 + 1.                                          (4) 

The numerator in Equation (4) is the sum of the 

weighted capabilities of all selected agents as the 

candidate solution by the mth ant. The denominator in 

Equation (4) is the sum of the communication costs 

between agents in the same candidate solution. Note 

that the target requires R number of capabilities to be 

completed, which corresponds to the number of agents 

in the candidate solution (number of agents in candidate 

solution set <= R). 

In the CPACO-S algorithm, the efficiency value of the 

CPACO algorithm is modified by adding the travel cost 

between the agents in the candidate solution and the 

target, as shown in Equation (5) [23]: 

𝜀𝑚 =
∑ 𝜔𝑟

1𝑔𝑖
𝑘𝑟𝑅

𝑟=1

∑ 𝜔2𝑅−1
𝑖=1 𝑑𝑖𝑗+∑ 𝜔3𝑑𝑖𝑤

𝑅
𝑖=1

, 𝑗 = 𝑖 + 1.                        (5) 

The numerator in Equation (5) is the sum of the 

weighted capabilities of all agents in the candidate 

solution by the mth ant. The denominator in Equation (5) 

is the sum of the total communication costs between 

agents and the total travel costs between agents in the 

candidate solution and the target.  

In both CPACO and CPACO-S, the efficiency values of 

all candidate solutions in the colony are calculated at the 

end of an iteration. The highest efficiency value in each 

iteration corresponds to the best agent coalition in that 

particular iteration. This efficiency value is then used as 

the basis for updating the best efficiency value and the 

best agent coalition from all iterations.  

As in other general ant algorithms, in addition to 

updating information about the best efficiency value 

and the best agent coalition at the end of the iteration, 

the CPACO and CPACO-S algorithms also update the 
pheromone value. This value is updated at the end of 

each iteration to increase the efficiency of the solution 

search process. CPACO and CPACO-S algorithms use 

the same equation as used in other general ant 

algorithms to update the pheromone value, as written in 

Equation (6) [21], [23]:  

𝜏𝑖𝑗
𝑚(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗

𝑚(𝑡) + ∑∆𝜏𝑖𝑗
𝑚(𝑡).                   (6) 

In Equation (6), the pheromone value of the path i-j in 

the ant algorithm consists of the pheromone evaporation 

value, which is influenced by the degree of evaporation 

(ρ), and the accumulated values of pheromone addition 

(∆𝜏𝑖𝑗(𝑡)) [26]. To calculate ∆𝜏𝑖𝑗(𝑡), the value of 𝜀𝑚 is 

used as written in Equation (7) [21], [23]: 

∆𝜏𝑖𝑗
𝑚(𝑡) = {

𝑄𝜀𝑚 ,  if mth ant go from point i to j
0,                      otherwise                      

.     (7) 

In Equation (7), Q is a constant value to determine the 

strength of the pheromone and 𝜀𝑚 is the efficiency value 

of ant mth’s route. After updating the best efficiency 

value, the best agent coalition and the pheromone value, 

the algorithm will then proceed to the next iteration. The 

iterations are repeated again until the algorithm 

termination criteria have been met. When the 

termination criteria is met, a candidate solution from the 

ants with the best 𝜀𝑚 value is then selected as the best 

agent coalition to complete the target. Note that both the 

CPACO and the CPACO-S algorithms consider only a 

single target. 

2.2 Developing ACO for Task Allocation Problems in 

Multi-Agent Systems for Multi-Target 

This study carried out four main stages. These stages 

are problem identification, ACO algorithm 

modification, simulations as well as analysis and 

evaluation. The flowchart of the four stages that we 

carried out in this study is shown in Figure 3. 

 

Figure 3. Flowchart of the research stages 

2.2.1 Identification of Task Allocation Problem in 

Multi-Agent System with Multi-Target 

The following assumptions were used in this study. The 

problem that we consider involves several 

heterogeneous agents that work together to complete 

tasks which require certain capabilities. The 

coordination between agents is assumed to be 
centralized. The process of determining the allocation 

of agents to task is carried out by a server or a central 

control system. It is assumed that the agents 

communicate with each other during the task 

completion process and therefore we consider the 

communication costs. The communication cost factor 

was also used to determine the best agent coalition in 

the CPACO and CPACO-S algorithms.  

In addition to the communication cost between agents, 

we also consider the distance between the agent and the 

target. However, in contrast to CPACO-S, which uses 
the weight of the communication factor ω2 to determine 

the travel cost, we consider an additional variable ω3, 

which is the weight of agents’ transition factor.   This 

variable is employed to calculate the travel cost because 

the agents’ movement towards the target during the task 

completion process may be influenced by other factors 

besides the distance between the agent and the target. 

Note that the weight of the agent transition factor is 
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different from the weight of the communication factor, 

so it is necessary to assign a different variable.  

Variables used in this study for task allocation problem 

are as follows: 

• A set of agents in a multi-agent system: There are a 

number of V agents in a multi-agent system which 

is denoted as G = {g
1
,g

2
,g

3
,…,g

V
}. 

• Targets: There are a number of Z targets in a multi-

agent system environment. A set of targets is written 

as W = {w1, w2, w3, …,wz, …, wZ}.  

• Capabilities to complete tasks: Each target requires 

a number of Rz = R1, R2, …, RZ capabilities. The set 

of capabilities required for target wz is denoted as 

Kwz
 containing the capabilities kr where r is the 

index of capabilities. 

• Group of Agents: A group of agents with the 

capability kr required for target wz is denoted by Gwz

kr . 

• Agent coalition: A coalition of agents for target wz 

is denoted as Gwz
. 

• A set of agent coalitions for all targets is denoted as: 

}.,...,,{
21 Zwwww GGGG =  

• The collection of the best agents’ coalition that is the 

solution to the task allocation problem in a multi-

agent system with multi-targets is denoted as Gw
best. 

A problem that arises when there is more than one target 

in a task allocation problem is the problem of 

overlapping agents, i.e. when the same agent(s) are 

selected to an agents coalition for different targets. For 

example, assume that there are two targets w1 and w2 

that require some capabilities to complete the task, i.e. 

Kw1
={k1, k3, k7} and Kw2

={k1, k2, k7}. The agents in the 

multi-agent system are then grouped according to the 

capabilities required by each target. For target w1, the 

agent group formed for example are  Gw1

k1 ={g
2
,g

5
,g

6
,g

8
}, 

Gw1

k3 ={g
1
, g

2
, g

4
,g

7
,g

8
} and Gw1

k7 = {g
5
,g

7
,g

8
, g

9
,g

10
}. For 

target w2, the agent group formed are Gw2

k1 = 

{g
2
,g

5
,g

6
,g

8
} , Gw2

k2 = {g
3
, g

5
,g

6
,g

8
,g

10
}, and Gw2

k7  = 

{g
5
,g

7
,g

8
, g

9
,g

10
}. From each group of agents, if only 

the weight of the agents’ capability and task completion 

cost are considered as in the CPACO-S algorithm, then 

the best solution obtained are Gw1
={g

2
,g

2
,g

5
} and 

Gw2
={g

2
,g
3
,g

5
}. We can see that from those agent 

coalitions for the two targets, agent g
2
 and g

5
 are 

selected for both targets. This condition is called 
overlapping agents, which has to be minimized so that 

the task completion process on all targets can be carried 

out in the shortest possible time. In order to search for a 

suitable solution, an objective function is added, which 

is used to minimize overlapping agents. 

In this study, the objective functions are designed to: (1) 

minimize the task completion costs, (2) maximize the 

system capabilities, and (3) minimize overlapping 

agents. The task allocation problem that we consider 

can, thus, be considered as a multi-objective 

optimization problem. All objective functions must be 

optimized simultaneously to obtain the best solution.  

The final solution is represented in the form of agents’ 

coalition that optimizes all objective functions. 

2.2.2 ACO Algorithm Modification for Task 

Allocation Problem in Multi-Agents System with Muti-

Targets  

The basic ACO algorithm in this study is modified to 
solve the task allocation problem in a multi-agent 

system with multi-target. The proposed model is then 

referred as the Modified ACO Model. Generally, there 

are five elements which are specified to define a 

suitable ant algorithm for different optimization 

problem [28].  

The first element is constructing a candidate solution. 

As mentioned earlier, the final solution for the task 

allocation that we consider is to form an agent coalition 

for each target that optimizes all objective functions. To 

minimize overlapping agents, finding the final solution 
is done by finding a solution for each target.  Once the 

solution for one target is obtained, we calculate the best 

solution for the next target.  Therefore, the number of 

ant colonies used to construct candidate solutions is as 

much as the number of targets. Each ant colony seeks a 

solution for a target by forming a candidate solution for 

the corresponding target. 

The second element is the heuristic function. In this 

study, more than one heuristic function is used to 

determine the visibility value of the ant transition. Each 

heuristic function is affected by a different objective 

function. The first heuristic function is influenced by 
the objective function of minimizing task completion 

costs consisting of communication costs and travel 

costs as used in the CPACO-S algorithm. The heuristic 

function of the CPACO-S algorithm is modified to 

maximize the capability of the system by increasing the 

probability of selecting the same agent, as defined in 

Equation (8),  

𝜂𝑖𝑗1
𝑧 (𝑡) =

{
 
 

 
 𝜔𝑎

1𝑔𝑖
𝑘𝑎+𝜔𝑏

1𝑔
𝑗

𝑘𝑏

𝜔2𝑑𝑖𝑗 + 𝜔
3𝑑𝑖𝑤𝑧

,   𝑔𝑖 = 𝑔𝑗

𝜔𝑎
1𝑔𝑖

𝑘𝑎+𝜔𝑏
1𝑔
𝑗

𝑘𝑏

 𝜔2𝑑𝑖𝑗 + 𝜔
3𝑑𝑖𝑤𝑧+ 𝜔

3𝑑𝑗𝑤𝑧
,   𝑔𝑖 ≠ 𝑔𝑗

.             (8) 

The numerator of Equation (8) is the sum of the 

capabilities possessed by agent gi and agent gj on two 

adjacent agent groups (ka, kb ∈ Kwz
), with ω

a

1

 and ω
b

1

  

being the capability weights of ka and kb. The 

denominator in Equation (8) is the sum of 

communication costs and travel costs. 

To increase the probability of choosing the same agent 

in the same group, the value of the travel cost for the 

same agent is only calculated once. For example, a target 
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w1 requires four capabilities, and one of the candidate 

solutions is Gw1
={g

2
,g

2
,g

2
,g

5
}, then the travel cost for 

agent g
2
 will be counted only once.  

Note that for the same agent, the value of the 

communication cost is considered zero because the 

distance between the agent and itself is zero. For 

different agents, the heuristic function used is the same 

as the heuristic function in the CPACO-S algorithm, 

with modifications to the variables used to calculate the 

travel cost.  

In CPACO-S, the variable used for the travel cost is the 

same variable for the weight of the communication 
factor (ω2). In the Modified ACO Model, a new variable 

is used for travel costs, which is the weight of the agent 

transfer factor (ω3). In this study, a second heuristic 

function is added to minimize overlapping agents, which 

is defined as follows:  

𝜂𝑖𝑗2
𝑧 (𝑡) =

1

𝛹
∑𝜓𝑗𝑤𝑦

, 𝜓𝑗𝑤𝑦 = {
1,   𝑔𝑗 ∈ 𝐺𝑤𝑦 , (𝑦 ≠ 𝑧)

   0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 ,          (9)   

where variables 𝛹 and 𝜓 in Equation (9) are variables to 

determine the value of the overlapping value. The value 

of the variable 𝛹 is chosen so that the total denominator 
becomes relatively large to reduce the visibility value of 

the agent chosen in the coalition of other targets. The 

value of the variable 𝛹 is selected based on the η
ij1
z (t) 

range of values. For example, if the η
ij1
z (t) range of 

values is 10-1 – 103, then the chosen value for 𝛹 is 104. 

In addition, variable 𝜓𝑗𝑤𝑦  is used to consider the 

selection of agent gj in other targets. Its value increases 

when agent gj is chosen more often in other targets wy 

with y = {1,2,…,Z} and y ≠z. Thus, the visibility value 

is getting smaller and allows the selection of other agents 

whose visibility value is relatively small but have never 

been chosen or are less chosen in the agent coalition for 

other targets. 

The total ant route transition visibility from agent gi to 

agent gj for target wz at time t (ηij
z (t)) is  calculated as 

follows: 

𝜂𝑖𝑗
𝑧 (𝑡) = 𝜂𝑖𝑗1

𝑧 (𝑡) × 𝜂𝑖𝑗2
𝑧 (𝑡).                                         (10) 

The third element is the efficiency function which is a 

function to measure how good a solution is. As 

mentioned earlier, the process of finding a solution for 

each target is done one-by-one. The best solution for 

each target is calculated using the efficiency function 

that we refer as the local efficiency function. 

The local efficiency function is determined based on the 
objective function to be optimized. As there is more 

than one objective function that we consider, we use 

more than one local efficiency function to determine the 

best agent coalition for a target. The first local 

efficiency function is determined by the objective 

function to minimize the task completion cost as 

employed in the CPACO-S algorithm.  

To maximize the overall capabilities of the system, the 

total task completion cost is calculated by considering 

the travel and communication costs. If an agent is 

selected to complete multiple capabilities, that agent is 

only listed once in the set of the candidate solution. The 

first local efficiency function is defined as follows: 

εm1
z (t)=

∑ ωr
1g

i

kr𝑅z
r=1

∑ ω2dij
𝑅z-1
i=1

+∑ ω3diw
𝑅z
i=1

,  j = i + 1.                           (11) 

The numerator of Equation (11) is the total number of 

agent capabilities of the candidate solution chosen by 

the m-th ant for the wz target. 

The numerator is calculated based on all capabilities kr 

that are members of the capability set required to 

complete the task on target wz (∇kr ∈ Kw𝑧
).  

The denominator of Equation (11) is the total task 

completion cost for the target wz of the candidate 

solution formed by the m-th ant by considering different 

agents.  

The communication cost (ω2dij) is calculated based on 

the total distance between agents gi ∈ Gwz

kr  for ∀kr ∈ 

Kw𝑧
. The travel cost (ω3diw) is calculated based on the 

distance between all agents gi ∈ Gwz

kr  for ∀kr ∈ Kw𝑧
 to 

target wz . The additional condition that if there is one 

agent selected for multiple capabilities, the travel cost 

for that agent will only be counted once. 

The next objective function is designed to minimize 

overlapping agents. This function is defined as the 

second local efficiency function as follows: 

𝜀𝑚2
𝑧 =

1

𝛹
∑𝜓𝑗𝑤𝑦

, 𝜓𝑗𝑤𝑦 = {
1,   𝑔𝑗  ∈  𝐺𝑤𝑦  , (𝑦 ≠ 𝑧)

   0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
,   (12)   

where 𝜀𝑚2
𝑧  is influenced by the value of variable 𝛹 ; see 

Equation (9). When candidate solution of the m-th ant 

is consisted of the same agents which are selected for 

several different targets, the value of 𝜀𝑚2
𝑧  becomes 

smaller.  

Based on the two efficiency functions, the total local 

efficiency value of the m-th ant for target wz is 

calculated as: 𝜀𝑚
𝑧 = 𝜀𝑚1

𝑧 × 𝜀𝑚2
𝑧 . Then after the 

candidate solution for the wz target has been formed for 

all ants in a colony, the best solution candidate is 

selected based on the biggest 𝜀𝑚
𝑧  value, which is the best 

local efficiency value for the wz target (𝜀𝑏𝑒𝑠𝑡
𝑧 ). 

In addition to the local efficiency values, a global 

efficiency value (𝜀𝑔𝑙𝑜𝑏𝑎𝑙) is used to determine the best 

overall solution. The 𝜀𝑏𝑒𝑠𝑡
𝑧  values of all targets are 

added, which then produce  𝜀𝑔𝑙𝑜𝑏𝑎𝑙  value in each 

iteration.  
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The value of 𝜀𝑔𝑙𝑜𝑏𝑎𝑙  is then compared at the end of each 

iteration to obtain the best overall efficiency value 

(𝜀𝑏𝑒𝑠𝑡).The fourth element is the probability of ant 

transition, which is influenced by the ant transition 

visibility value (heuristic function) and the value of the 

pheromones. In this study, the probability of ants m-th 

movement from agent gi to agent gj in the process of 

finding solution for the target wz at time t p
ij
z (t) is 

calculated using Equation (1) with the value of visibility 

η
ij

z

(t) and the pheromone valueτij
z (t). 

The last element is the pheromone update rule. Each ant 

colony uses a different pheromone matrix to store the 

accumulated pheromone values to avoid selecting the 

same agent for different targets. The equation used to 

update the pheromone value on the path between agent 

gi to agent gj for target wz (𝜏𝑖𝑗
𝑧 (𝑡 + 1)) is the same as 

CPACO and the CPACO-S algorithms in Equation (6) 

by considering the pheromone value on the path to find 

solution for target wz (𝜏𝑖𝑗
𝑧 (𝑡)). In this study, the 

pheromone update rule is applied on the ant paths that 

are formed by only the best agent coalition for target wz. 

If the ant in the best agent coalition for target wz moves 

from agent gi to agent gj, the amount of pheromone 

deposited at time t is calculated as ∆𝜏𝑖𝑗
𝑧 (𝑡) = 𝑄𝜀𝑏𝑒𝑠𝑡

𝑧 ; 

otherwise, the value is zero. 

From the description of each element in the ACO 

algorithm developed in this study, it can be concluded 

that the modifications are mainly carried out on the 

heuristic and efficiency functions. In summary, the 

pseudocode of the proposed Modified ACO is shown in 

Figure 4. 

Pseudocode of Modified ACO Model Algorithm 

Input:  number of ants M, number of agents a, 

agents’ capability kr, agents’ position [x,y], number 

of targets Z, capability collection needed of each 

target Kz, target’s position [x,y], group of agents 𝐺𝑤𝑧
𝑘𝑟 

(based on capability needed of each target), initial 

value 𝜀𝑏𝑒𝑠𝑡
𝑧 = 0 and 𝜀𝑏𝑒𝑠𝑡 = 0, initial pheromone 

value  𝜏0, ants colony parameter value (Q, α, β, ρ, 𝜔𝑟
1, 

ω2, ω3) new heuristic constant value Ψ and number 

of maximum iteration IterMax. 

For iter in range IterMax: 

Define chosen_agent = [ ]; 

Define 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 = 0; 

For z th target in range Z: 
For m th ant in range M: 

Choose an agent gi from 𝐺𝑤𝑧
𝑘𝑟 randomly; 

Write the choosen agent gi in 

colony.ant[m].tour[1]; 

For r+1 th in Kz 

Choose an agent gj from 𝐺𝑤𝑧
𝑘𝑟 based 

on 𝑝𝑖𝑗
𝑧 (𝑡) using 𝜂𝑖𝑗

𝑧 (𝑡) (considering 

chosen_agent) and 𝜏𝑖𝑗
𝑧 (𝑡); 

Write the chosen agent gj in 

colony.ant[m].tour[c]; 

End for 

Calculate the candidate solution local 

efficiency using 𝜀𝑚
𝑧  (considering 

chosen_agent); 

If 𝜀𝑚
𝑧 > 𝜀𝑏𝑒𝑠𝑡

𝑧  

𝜀𝑏𝑒𝑠𝑡
𝑧 = 𝜀𝑚

𝑧  ; 

Gwz
= colony.ant[m].tour; 

End if 

chosen_agent ← Gwz
; 

𝜀𝑔𝑙𝑜𝑏𝑎𝑙 = 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜀𝑏𝑒𝑠𝑡
𝑧  ; 

Update pheromone in ant colony for 

target wz using 𝜏𝑖𝑗
𝑧 (𝑡 + 1) ; 

End for 

End for 

If 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 > 𝜀𝑏𝑒𝑠𝑡  

𝜀𝑏𝑒𝑠𝑡 = 𝜀𝑔𝑙𝑜𝑏𝑎𝑙   

Gw
best = chosen_agent; 

End if 

End for 

Output: Gw
best

 in the last iteration. 
Figure 1 Pseudocode for Modified ACO Model algorithm 

The final solution generated by the Modified ACO 
Model is an agent coalition from all targets that produce 

the 𝜀𝑏𝑒𝑠𝑡 . The process of finding the final solution is 

carried out one by one for each target. When an agent 

coalition is define for a target, the results affect the 

process of selecting the agent coalition for the next 

target. Thus, it is possible that the sequence of finding 

solutions affects the selection of an agent coalition for 

all targets. Testing needs to be carried out to determine 

the effect of finding solutions sequences on existing 

targets so that the best Modified ACO Model is 

achieved to solve the task allocation problem of multi-

agent systems with multi-target. 

2.2.3   Simulation  

Simulations were carried out using Matlab R2015a 

software to test the performance of the Modified ACO 

Model in solving the multi-agent-multi-target task 

allocation problem. In the simulation, the problem was 

generated in a two-dimensional area with 0 ≤ x ≤ 50 and 

0 ≤ y ≤ 50. The multi-agent system consists of ten 

heterogeneous agents with ten types of capabilities. To 

simplify the simulation, an agents’ capability is 

represented in binary number, i.e. 1 represents that the 
agent has a certain capability whereas 0 represents that 

the agent has no capability of a certain type. With this 

binary weighting system, the heuristic function η
ij1
z (t) in 

Equation (8) and the local efficiency function εm1
z (t) in 
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Equation (11) can be simplified into Equation (13) and 

Equation (14). 

η
ij1
z (t) = {

ωa
1+ωb

1

ω3diwz

,  g
i
=g

j

ωa
1+ωb

1

ω2dij+ω3diwz+ω3djwz

,  g
i
≠g

j

,                               (13) 

εm1
z (t)=

∑ ωr
1R

r=1

∑ ω2dij
R-1
i=1 +∑ ω3diwz

R
i=1

,  j = i + 1.                           (14)  

Here, the value for each agents’ capability (g
i

ka , g
i

kb , g
i
kr 

for r = {1,2,…,R})  in Equation (8) and Equation (9) is 

equal to one. Therefore, in Equation (13) and Equation 
(14), we  need to only consider the importance of the 

agents’ capability in solving the target, i.e. ωa
1, ωb

1, ωr
1 

for r = {1,2,…,R}.  

In the simulation, information on the agents’ 

capabilities is written in a MGK capability matrix, as 

shown in Table 1. Meanwhile, the information on the 

position of each agent is shown in Table 2.  

Table 1. Multi-agent capability matrix MGK 

Agent 
Capability 

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 

g
1
 0 0 1 0 1 0 0 1 0 1 

g2 1 0 1 0 0 1 0 0 1 1 

g
3
 0 1 0 0 0 0 0 1 1 1 

g4 0 0 1 0 0 1 0 0 0 0 

g5 1 1 0 0 1 0 1 0 0 0 

g6 1 1 0 0 1 0 0 0 1 1 

g7 0 0 1 1 1 0 1 1 0 0 

g8 1 1 1 1 0 0 1 1 0 0 

g9 0 0 0 1 0 1 1 1 1 0 

g
10 0 1 0 1 0 0 1 0 0 0 

 

Table 2. Positions of agents 

Agent 
Position 

x y 

g
1
 10 35 

g2 20 50 

g
3
 30 50 

g4 40 50 

g5 50 35 

g6 50 15 

g7 40 0 

g8 30 0 

g9 20 0 

g
10 10 15 

Two simulations were carried out:  

1. Simulation to analyze the process of finding the 

optimum solution using the proposed Modified 

ACO Model, and 

2. Simulation to evaluate the proposed Modified ACO 

Model and its comparison to the benchmark 

algorithm, i.e. CPACO and CPACO-S. 

In the proposed Modified ACO Model, the optimum 

solution for each target is calculated iteratively, starting 

from the first target, the second target, and so on. 

Therefore, the determination of target sequence may 

affect the selection of agents’ coalitions. To analyze this 

issue, in the first simulation, the target sequence was 

determined using two approaches: (1) based on initial 

information and (2) randomly. Four tests were carried 

out for each approach with different number of targets, 

i.e. 5, 10, 15 and 20. Each test was simulated 30 times 

with random target combination. 

In the second simulation, evaluation to the proposed 
Modified ACO Model was done by comparing this 

algorithm to a benchmark algorithm, namely the 

CPACO-S [23], which is proven to be more efficient 

than the original ACO algorithm and the CPACO 

algorithm. For each algorithm, six tests were conducted 

by varying the number of targets, i.e. 3, 5, 8, 10, 15, and 

20. Each test was simulated 30 times with random target 

combination. 

In the first and second simulations, the targets were 

taken randomly from the following data:  

1. The data contains 30 targets with different positions 
and capability requirements to be completed. 

2. Target positions were within the simulation area, i.e. 

0 ≤ x ≤ 50 and 0 ≤ y ≤ 50. 

3. None of the targets was in the exact same location 

as other targets or agents in the simulation area. 

4. Each target requires more than one capability to be 

completed and there might be more than one target 

with the same capability requirement. 

2.2.4 Analysis dan Evaluation 

Two algorithmic performance evaluation metrics were 

utilized to analyse the simulation results, those ares:  

1. The total value of the task completion cost, which is 
the sum of the communication costs and travel costs 

of the agent coalitions of all targets.  

Note that the agent coalition on a target contains all 

the agents selected to complete the target, and that if 

there is one agent selected for multiple capabilities, 

the travel cost for that agent will only be counted 

once. The total task completion cost (Σtcc) is 

calculated using Equation (15): 

∑𝑡𝑐𝑐 =∑ ∑ (ω2dij+ω3di𝑤𝑧
)gi∈Gwzwz∈W , j = i + 1,  (15) 

where W is the set of all targets to be solved and Gwz
 

is the best agent coalition for target wz. In Equation 

(15), 𝜔2𝑑𝑖𝑗  represent the communication cost 

between two consecutive agents gi and gj, which is 

proportional to the distance between agent gi and 

agent gj (dij) with a communication weight factor 

(ω2). Meanwhile, ω3di𝑤𝑧
 represents the travel cost, 

which is proportional to the distance between agent 

gi and target wz with a factor of ω3. 

2.  The overlapping value (ϑ). 
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This evaluation metric is utilized to determine the 

algorithm's efficiency in minimizing the 

overlapping agent. The overlapping value (ϑ) is 

calculated using Equation (16): 

𝜗 = zmax
g

×
∑ target with overlapping agents

total number of targets
,                          (16) 

where 𝑧𝑚𝑎𝑥
𝑔

 refers to the maximum number of 

targets that select the same agent in the system. For 

example, if agent gi is selected by three targets, agent 

gj is selected by five targets, and other agents are 

selected by one target only, then the value of 𝑧𝑚𝑎𝑥
𝑔

 = 

5.  This 𝑧𝑚𝑎𝑥
𝑔

 is then multiplied by the ratio between 

the number of targets with overlapping agents and 

the total number of targets. 

Evaluation of the simulation results was then carried out 

using the two performance matrices as described in 

Equation (15) and Equation (16).  

3.  Results and Discussions 

3.1. Simulation 1  

In the first simulation, we determined the target 

sequence for solution finding using two approaches. 

The first approach is based on the initial target 

information without any change in the target sequence. 

In other words, first target would be the first target as 

listed on the initial data. The second approach is by 

randomly determine the target sequence for the target 

solution, which is changed in each iteration. Each 

approach of determining the target solution search 

sequence was tested with four different number of 

targets, i.e. 5, 10, 15 and 20. Each test was simulated 30 

times with different combinations of targets, taken from 

the data from 30 targets. The results are shown in Figure 

5 and Figure 6, and the summary of the results is shown 

in Table 3. 

Using a 95% confidence interval, Figure 5 and Table 3 

show that the total average value of the task completion 

cost for random target sequencing is significantly lower 

than initial target sequencing. The total average values 

of task completion cost by determining the target 

sequence randomly are 11.08%, 17.41%, 14.28% and 

20.84% lower than that of initial target sequence for 5, 

10, 15 and 20 targets, respectively. Figure 6 and Table 

3 show that random target sequencing returns slightly 

lower overlapping values compared to the initial target 

sequencing. As a conclusion, random target sequence 
determination is superior to target sequence 

determination based on initial information. These 

results also show that random target sequence 

determination allows better solution search so that a 

more optimum agent allocation can be found. 

 

Figure 2. Results of Simulation 1: total average task completion cost 

 

Figure 3. Results of Simulation 1: total average overlapping value 
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Table 3. Summary of simulation 1 test results 

Number of targets 

Total average 

task completion cost 

Total average 

overlapping value 
Target sequence 

based on initial 

information 

Random target 

sequence 

Target sequence 

based on initial 

information 

Random target 

sequence 

5 36.03 ± 3.29 32.03 ± 2.74 0.89 ± 0.19 0.48 ± 0.16 

10 78.39 ± 4.13 64.74 ± 3.17 2.84 ± 0.14 2.58 ± 0.18 

15 119.44 ± 5.76 102.39 ± 6.07 4.03 ± 0.11 4.03 ± 0.14 

20 169.57 ± 6.39 134.24 ± 7.94 5.10 ± 0.11 5.10 ± 0.14 

3.2. Simulation 2 Scenario 

In the second simulation, the proposed Modified ACO 

Model is compared with CPACO-S algorithm which 

has been proven to be superior to the basic ACO 

algorithm and the CPACO algorithm in terms of the 

efficiency of the resulting agent coalition [23]. Six tests 

were conducted for each algorithm using different 

number of targets, i.e. 3, 5, 8, 10, 15, and 20. The results 

are shown in Figure 7 and Figure 8. The summary of the 

test results is shown in Table 4.

 

Figure 4. Results of simulation 2: total average task completion cost 

 

Figure 5. Results of simulation 2: total average overlapping value 
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Table 4. Summary of simulation 2 test results 

Number of 

targets 

Total average task completion cost Total average overlapping value 

CPACO-S Modified ACO Model CPACO-S Modified ACO Model 

3 22.90 ± 2.83 17.19 ± 2.08 1.27 ± 0.29 0.00 

5 37.82 ± 3.42 32.03 ± 2.74 2.51 ± 0.31 0.38 ± 0.16 

8 57.93 ± 4.70 51.27 ± 3.00 3.56 ± 0.03 1.88 ± 0.19 

10 72.07 ± 4.00 64.74 ± 3.17 4.22 ± 0.27 2.84 ± 0.14 

15 107.34 ± 4.22 102.39 ± 6.07 6.06 ± 0.36 3.97 ± 0.14 

20 140.82 ± 3.49 134.24 ± 7.94 7.40 ± 0.33 5.10 ± 0.14 

Figure 7 and Figure 8 show that the Modified ACO 

Model in this study has a better performance than the 

CPACO-S algorithm in terms of the total average task 

completion cost and overlapping values. At 95% 

confidence interval, Table 4 shows that the Modified 
ACO Model produces a significantly lower total 

average task completion cost in several tests. The 

superiority of the Modified ACO Model is significant 

when the number of targets is less than the number of 

agents. The Modified ACO Model produces less task 

completion cost compared to the CPACO-S by 24.95%, 

15.30%, 11.50%, 10.17%, 4.62% and 4.67% for 3, 5, 8, 

10, 15 and 20 targets, respectively. When the number of 

targets increases, the total average task completion cost 

of the Modified ACO Model is not significantly better 

to that of the CPACO-S algorithm. This may be due to 
the limited number of agents available, so that the 

allocated agents to a specific target may not be the 

agents that produce the best task allocation cost. 

However, since our modifications maximize the agents’ 

capability and minimize agents’ overlap, the efficiency 

of the agent coalition generated by the proposed 

Modified ACO Model becomes superior to the 

CPACO-S algorithm.  

In this study, ACO algorithm has been modified to 

minimize the number of overlapping agents, i.e. an 

agent selected by different targets. In addition, 

modifications were also made to prioritize the selection 
of the same agent in a agent coalition to minimize the 

number of agents allocated to a target. Figure 8 proves 

that the two modifications in the proposed Modified 

ACO Model have succeeded in minimizing the 

overlapping agents. It is evident that the Modified ACO 

Model produced a significantly lower average 

overlapping value than that of the CPACO-S algorithm 

at a 95% confidence interval, as also shown in Table 4. 

This indicates that the Modified ACO Model is more 

efficient in allocating agents to targets than the 

CPACO-S algorithm. Overall, it can be concluded that 
the Modified ACO Model proposed in this study 

performs better than the CPACO-S algorithm in solving 

the task allocation problem of multi-agent system with 

multi-target. 

4.  Conclusion 

This study proposes a Modified ACO Model to solve 

the task allocation problem in a multi-agent system with 

multi-target. Modifications are made to minimize the 

number of overlapping agents, where the same agent is 
selected to solve some different targets. The simulation 

results show that the proposed Modified ACO Model 

has a superior performance in minimizing task 

completion costs by ±11.87% than the benchmark 

algorithm (CPACO-S). Furthermore, the simulation 

results also show that the Modified ACO Model 

performs well in minimizing overlapping agents with a 

lower overlapping value of ±55.11% compared to the 

benchmark algorithm. 

Further research can be conducted to evaluate the 

performance of the proposed Modified ACO Model in 
comparison with other well-known optimization 

methods to solve the task allocation problems in multi-

agent systems with multi-target. Some benchmark 

optimization methods may include: (1) the Auction-

based method which is inspired by economic system 

and (2) Genetic Algorithm (GA), which is a bio-

inspired based algorithm.   
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