

 Accepted: 30-06-2022 | Received in revised: 23-10-2022 | Published: 27-12-2022

911

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI
(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 6 No. 6 (2022) 911 - 922 ISSN Media Electronic: 2580-0760

Ant Colony Optimization Modelling for Task Allocation in Multi-Agent

System for Multi-Target

Iis Rodiah1, Medria Kusuma Dewi Hardhienata2, Agus Buono3, Karlisa Priandana4
1,2,3,4 Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University

1rodiah_0412@apps.ipb.ac.id, 2medria.hardhienata@apps.ipb.ac.id, 3agusbuono@apps.ipb.ac.id, 4karlisa@apps.ipb.ac.id

Abstract

Task allocation in multi-agent system can be defined as a problem of allocating a number of agents to the task. One of the
problems in task allocation is to optimize the allocation of heterogeneous agents when there are multiple tasks which require
several capabilities. To solve that problem, this research aims to modify the Ant Colony Optimization (ACO) algorithm so that
the algorithm can be employed for solving task allocation problems with multiple tasks. In this research, we optimize the
performance of the algorithm by minimizing the task completion cost as well as the number of overlapping agents. We also

maximize the overall system capabilities in order to increase efficiency. Simulation results show that the modified ACO
algorithm has significantly decreased overall task completion cost as well as the overlapping agents factor compared to the
benchmark algorithm.

Keywords: task allocation, multi-agent system, multiple tasks, ACO.

1. Introduction

Multi-agent systems have been recently used in various

fields due to their superiority in completing complex

tasks compared to single-agent systems [1]–[4]. One of

the problems in multi-agent systems is task allocation,

i.e. the problem of allocating a group of agents in
completing task to achieve the system’s goal [2], [5]–

[10]. Some real-world task allocation problems in

multi-agent systems include the coordination and

planning problems of multi-robot deployment in

production process [11], coordination problems of

several drones [4], [12]–[14], and multi-robot allocation

problems in precision agriculture [15]–[18].

Task allocation in a multi-agent system is an

optimization problem with high complexity. It is

classified as an NP-hard problem with difficulty in

finding an exact solution [1]. Several approaches have

been used to find the best solution to solve the task
allocation problem in a multi-agent system. Some of the

widely used approaches are the heuristic methods, such

as the Auction-based method which is inspired by the

economic system [3], [19]. The advantage of this

method is that it has a high scalability. However, the

required computational resources increase as the scale

of the problem increases [14].

Other heuristic methods that have been used to solve the

task allocation problem in multi-agent systems are

inspired by natural events (bio-inspired), e.g. Genetic

Algorithm (GA) [20] and Ant Colony Optimization

(ACO) algorithms [7], [18], [21]–[23]. These bio-

inspired methods tend to require lower computational
resources compared to other methods [14]. In general,

GA can find the best solution for multi agent system’s

task allocation faster than other methods. However, the

efficiency of the search process using the GA method

decreases when the scale of the problem increases due

to the increasing number of possible solutions built at

the beginning of the iteration [24]. Another bio-inspired

heuristic method, the ACO algorithm, uses heuristic

information and learning mechanisms in the form of

pheromone trails in finding the solution. Although the

convergence rate at the beginning of its iteration is

relatively slow, the efficiency of the search process
carried out by the ACO algorithm improves as the

pheromone trail increases [24].

The ACO algorithm is an optimization algorithm

introduced by Dorigo [25]. It is inspired by the

behavior of ants, i.e. using pheromone trails to find

foods. Wang [21] introduced a modification of ACO

algorithm to solve the task allocation problem in a

multi-agent system by considering the distance factor

between agents. Another study conducted by Sriatun

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

912

[23] further modified the ACO algorithm by

considering the distance between the agent and the task.

It was found from the study by Sriatun [23] that the

efficiency of the agents’ coalition is better than the basic

ACO algorithm [25] and the ACO algorithm modified

by Wang [21].

This study aims to further develop the method proposed

by Wang [21] and Sriatun [23] by considering the

condition when there is more than one task. In this

study, tasks are defined as targets which need to be
completed by using several agents’ capabilities. Thus,

“tasks” are hereinafter referred to as “targets”, and we

will focus our discussion on the task allocation problem

in a multi-target scenario.

An example of multi-target scenario is landslide

disaster scenario, where there may be more than one

targets (victims) to be rescued. Different from the

single-target scenario, problem in a multi-target

scenario may occur when there are one or more

overlapping agent(s) chosen for different targets. To

overcome this problem, it is necessary to add an
objective function to minimize the number of

overlapping agents which must be optimized

simultaneously with other objective functions (multi-

objective optimization problem). Several studies have

shown that the ACO algorithm can be modified to solve

multi-objective optimization problems [26]–[31]. This

study aims to modify the ACO algorithm to solve the

task allocation problem in a multi-target-multi-agent

system. The final solution was obtained by optimizing

all objective functions, i.e. minimizing the cost of task

completion, minimizing the number of overlapping

agents, and maximizing the system capabilities.
Simulations were conducted to compare the efficiency

of the modified ACO algorithm with the existing

benchmark algorithms.

2. Research Methods

2.1 Ant Colony Optimization (ACO) for Solving Task

Allocation Problems in Multi-Agent Systems

The ACO algorithm is one of the heuristic methods to

solve optimization problems by imitating the behavior

of ant colonies, i.e. utilizing pheromone trails to find

foods. One of the implementations of ACO is to solve

the widely-known Traveling Salesman Problem (TSP).
Here, ants are represented as the artificial agents who

travel through all the cities that must be visited to find

the shortest route by utilizing pheromone trails [25].

The flowchart of the original ACO algorithm for TSP is

depicted in Figure 1. As can be seen from the figure,

initially, the ants randomly choose the starting point for

its solution. Then, the ants use the pheromone values

and the distances between the starting point and the

candidate points to select the next point for its solution.

Figure 1 Flowchart of original ACO algorithm [32]

In addition to solving TSP problems, the ACO

algorithm was also developed to solve other

optimization problems, including the task allocation

problem in multi-agent systems [21], [23]. The task

allocation problem in a multi-agent system is defined as

an optimization problem to find the best agent coalition

to complete a target. In this scenario, a target requires

one or more capabilities of agent(s) to be completed,

and an agent has one or more distinct capabilities. Agent

capabilities are represented in a multi-agent capability

matrix, MGK, where each row element g
i

kj
 indicates

whether agent gi has capability kj or not. The value of

g
i

kj
 indicates the weight of capability kj owned by agent

gi. For example, g
i

kj∈[0,10] and MGK= [
6 0 1

3 8 10
]

indicates that there are two agents and three capabilities

whose capability weight values are between zero to ten.

The elements in the first line of MGK matrix contain

information on the capability weights of the first agent,

which correspond to capabilities 1, 2, and 3 [21], i.e.

agent g1 has capability k1 with a value of six, capability

k2 with a value of zero, and capability k3 with a value of

three.

Similar to TSP, the selection of agents’ coalition in a

multi-agent system can be viewed as a graph trajectory

search problem. For example, assume that there are V

agents in a multi-agent system: G={g
1
, g

2
, g

3
,…, g

V
}. A

target w requires R capabilities to be completed:

Kw={k1, k2, k3,…, kR}. The group of agents that have

capability kr to complete w is denoted as Gw
kr . Since w

requires R capabilities to be completed, there will be R

groups of agents. From each group of agents, one agent

gi ∈ Gw
kr is then selected with 𝑖 ∈ [1, 𝑉] and r =

{1, 2, 3,…,R}. To find the solution using ACO

approach, each agent gi in each group of agents Gw
kr is

represented as a node and the connecting path between

agents in different groups is represented as the edge.

The task allocation process is illustrated in Figure 2.

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

913

Figure 2. Illustration of a multi-agent system task allocation problem where sr is the number of agents with capabilities

kr (r={1,2,,…,R}) [21]

Wang [21] modified the basic ACO algorithm to solve

the task allocation problem in multi-agent systems, i.e.

the problem of resource allocation in cloud computing.

The algorithm is called the Collective Path Ant Colony

Optimization (CPACO) algorithm [21]. In [21], the

problem occurs in a dynamic and rapidly changing

environment so that the chosen coordination type is the

decentralized coordination. Here, the coordination

process is distributed among all agents so that the agents
need to communicate with each other in determining the

best agent coalition. Thus, to produce the optimal

system performance, modifications are carried out by

adding the weight of agents’ capabilities and the

communication cost between agents [21].

The study by Sriatun [23] further developed the

CPACO algorithm to solve the task allocation problem

of a multi-agent system in a landslide disaster scenario.

In this scenario, the victim (target) must be rescued by

a multi-robot system. To produce the best agents

(robots) coalition, the CPACO algorithm is modified by
adding a travel cost factor, i.e. the distance between the

chosen agents/robots and the target. Thus, the modified

algorithm in [23] considers not only the weight of

agents’ capabilities and the communication cost

between agents, but also travel cost between the agents

and the target. The modified CPACO algorithm by

Sriatun [23] is hereinafter called the CPACO-S

algorithm.

In the CPACO and CPACO-S algorithms, the ants in

the colony perform a solution-finding process based on

the transition probability as in any general ant

algorithms. The mth ant will move from agent gi to agent
gj at time t with the probability calculated by Equation

(1) as follows [21], [23]:

𝑝𝑖𝑗(𝑡) = {
[𝜏𝑖𝑗(𝑡)]

𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽
ℎ∈𝐍

, ℎ ∈ 𝐍,

0, ℎ ∉ 𝐍

 (1)

where 𝜏ij(t) is the value of pheromone at the path i-j

from agent gi to agent gj at time t, and α is a parameter

to adjust the effect of pheromone value 𝜏 (α ≥ 0). The

notation 𝜂ij(t) is a heuristic function that represents the

feasibility for the transition from agent gi to agent gj at
time t based on some known information, and β is a

parameter to set the effect of the feasibility value 𝜂 (β ≥

1). In Equation (1), h is a member of the set N which

contains all the agents that belongs to the next group of

agents, i.e. agents that have one same capability that is

still required to be fulfilled for completing the target. In

other words, the group of agents for capabilities that

have not been “visited” by the mth ant. At the beginning

of the iteration, the initial pheromone value is defined

as 𝜏0 = 1 𝑎𝐿𝑎𝑔𝑒𝑛⁄ where a is the number of nodes

(agents) and Lagen is the total distance of each agent to

all other agents.

The CPACO algorithm modified the heuristic function

𝜂ij(t) of the basic ACO algorithm by using the weighted

capabilities of each agent in the numerator and the

communication costs in the denominator as depicted in

Equation (2) [21]:

𝜂𝑖𝑗(𝑡) =
𝜔𝑎
1𝑔𝑖

𝑘𝑎+𝜔𝑏
1𝑔
𝑗

𝑘𝑏

 𝜔2𝑑𝑖𝑗
 . (2)

Here, 𝜔𝑟
1 ∈ [0,1], which is the weight of the capability

factor to represent the importance of the capability kr

which required for target w. The value of

communication cost, 𝜔2𝑑𝑖𝑗 , is proportional to the

distance between agent gi and agent gj (dij) with a

communication weight factor (ω2).

In CPACO-S algorithm, the heuristic function in (2) is

further developed by adding the travel cost from agents

to target as shown in Equation (3) [23]:

𝜂𝑖𝑗(𝑡) =
𝜔𝑎
1𝑔𝑖

𝑘𝑎+𝜔𝑏
1𝑔
𝑗

𝑘𝑏

 𝜔2𝑑𝑖𝑗 + 𝜔2𝑑𝑖𝑤+𝜔
2𝑑𝑗𝑤

 (3)

Here, the travel cost is proportional to the distance

between agent gi and agent gj to the target w (diw, djw)

with a factor of ω2.

In both CPACO and CPACO-S, an iteration is

completed when all ants have reached the last group of
agents, that is, the last capability required by the target.

Then, the best agent coalition is determined by

evaluating the efficiency values of all candidate

solutions formed by each ant. The efficiency value for

the CPACO algorithm is shown in Equation (4) as

follows [21]:

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

914

𝜀𝑚 =
∑ 𝜔𝑟

1𝑔𝑖
𝑘𝑟𝑅

𝑟=1

∑ 𝜔2𝑅−1
𝑖=1 𝑑𝑖𝑗

, 𝑗 = 𝑖 + 1. (4)

The numerator in Equation (4) is the sum of the

weighted capabilities of all selected agents as the

candidate solution by the mth ant. The denominator in

Equation (4) is the sum of the communication costs

between agents in the same candidate solution. Note

that the target requires R number of capabilities to be

completed, which corresponds to the number of agents

in the candidate solution (number of agents in candidate

solution set <= R).

In the CPACO-S algorithm, the efficiency value of the

CPACO algorithm is modified by adding the travel cost

between the agents in the candidate solution and the

target, as shown in Equation (5) [23]:

𝜀𝑚 =
∑ 𝜔𝑟

1𝑔𝑖
𝑘𝑟𝑅

𝑟=1

∑ 𝜔2𝑅−1
𝑖=1 𝑑𝑖𝑗+∑ 𝜔3𝑑𝑖𝑤

𝑅
𝑖=1

, 𝑗 = 𝑖 + 1. (5)

The numerator in Equation (5) is the sum of the

weighted capabilities of all agents in the candidate

solution by the mth ant. The denominator in Equation (5)

is the sum of the total communication costs between

agents and the total travel costs between agents in the

candidate solution and the target.

In both CPACO and CPACO-S, the efficiency values of

all candidate solutions in the colony are calculated at the

end of an iteration. The highest efficiency value in each

iteration corresponds to the best agent coalition in that

particular iteration. This efficiency value is then used as

the basis for updating the best efficiency value and the

best agent coalition from all iterations.

As in other general ant algorithms, in addition to

updating information about the best efficiency value

and the best agent coalition at the end of the iteration,

the CPACO and CPACO-S algorithms also update the
pheromone value. This value is updated at the end of

each iteration to increase the efficiency of the solution

search process. CPACO and CPACO-S algorithms use

the same equation as used in other general ant

algorithms to update the pheromone value, as written in

Equation (6) [21], [23]:

𝜏𝑖𝑗
𝑚(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗

𝑚(𝑡) + ∑∆𝜏𝑖𝑗
𝑚(𝑡). (6)

In Equation (6), the pheromone value of the path i-j in

the ant algorithm consists of the pheromone evaporation

value, which is influenced by the degree of evaporation

(ρ), and the accumulated values of pheromone addition

(∆𝜏𝑖𝑗(𝑡)) [26]. To calculate ∆𝜏𝑖𝑗(𝑡), the value of 𝜀𝑚 is

used as written in Equation (7) [21], [23]:

∆𝜏𝑖𝑗
𝑚(𝑡) = {

𝑄𝜀𝑚 , if mth ant go from point i to j
0, otherwise

. (7)

In Equation (7), Q is a constant value to determine the

strength of the pheromone and 𝜀𝑚 is the efficiency value

of ant mth’s route. After updating the best efficiency

value, the best agent coalition and the pheromone value,

the algorithm will then proceed to the next iteration. The

iterations are repeated again until the algorithm

termination criteria have been met. When the

termination criteria is met, a candidate solution from the

ants with the best 𝜀𝑚 value is then selected as the best

agent coalition to complete the target. Note that both the

CPACO and the CPACO-S algorithms consider only a

single target.

2.2 Developing ACO for Task Allocation Problems in

Multi-Agent Systems for Multi-Target

This study carried out four main stages. These stages

are problem identification, ACO algorithm

modification, simulations as well as analysis and

evaluation. The flowchart of the four stages that we

carried out in this study is shown in Figure 3.

Figure 3. Flowchart of the research stages

2.2.1 Identification of Task Allocation Problem in

Multi-Agent System with Multi-Target

The following assumptions were used in this study. The

problem that we consider involves several

heterogeneous agents that work together to complete

tasks which require certain capabilities. The

coordination between agents is assumed to be
centralized. The process of determining the allocation

of agents to task is carried out by a server or a central

control system. It is assumed that the agents

communicate with each other during the task

completion process and therefore we consider the

communication costs. The communication cost factor

was also used to determine the best agent coalition in

the CPACO and CPACO-S algorithms.

In addition to the communication cost between agents,

we also consider the distance between the agent and the

target. However, in contrast to CPACO-S, which uses
the weight of the communication factor ω2 to determine

the travel cost, we consider an additional variable ω3,

which is the weight of agents’ transition factor. This

variable is employed to calculate the travel cost because

the agents’ movement towards the target during the task

completion process may be influenced by other factors

besides the distance between the agent and the target.

Note that the weight of the agent transition factor is

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

915

different from the weight of the communication factor,

so it is necessary to assign a different variable.

Variables used in this study for task allocation problem

are as follows:

• A set of agents in a multi-agent system: There are a

number of V agents in a multi-agent system which

is denoted as G = {g
1
,g

2
,g

3
,…,g

V
}.

• Targets: There are a number of Z targets in a multi-

agent system environment. A set of targets is written

as W = {w1, w2, w3, …,wz, …, wZ}.

• Capabilities to complete tasks: Each target requires

a number of Rz = R1, R2, …, RZ capabilities. The set

of capabilities required for target wz is denoted as

Kwz
 containing the capabilities kr where r is the

index of capabilities.

• Group of Agents: A group of agents with the

capability kr required for target wz is denoted by Gwz

kr .

• Agent coalition: A coalition of agents for target wz

is denoted as Gwz
.

• A set of agent coalitions for all targets is denoted as:

}.,...,,{
21 Zwwww GGGG =

• The collection of the best agents’ coalition that is the

solution to the task allocation problem in a multi-

agent system with multi-targets is denoted as Gw
best.

A problem that arises when there is more than one target

in a task allocation problem is the problem of

overlapping agents, i.e. when the same agent(s) are

selected to an agents coalition for different targets. For

example, assume that there are two targets w1 and w2

that require some capabilities to complete the task, i.e.

Kw1
={k1, k3, k7} and Kw2

={k1, k2, k7}. The agents in the

multi-agent system are then grouped according to the

capabilities required by each target. For target w1, the

agent group formed for example are Gw1

k1 ={g
2
,g

5
,g

6
,g

8
},

Gw1

k3 ={g
1
, g

2
, g

4
,g

7
,g

8
} and Gw1

k7 = {g
5
,g

7
,g

8
, g

9
,g

10
}. For

target w2, the agent group formed are Gw2

k1 =

{g
2
,g

5
,g

6
,g

8
} , Gw2

k2 = {g
3
, g

5
,g

6
,g

8
,g

10
}, and Gw2

k7 =

{g
5
,g

7
,g

8
, g

9
,g

10
}. From each group of agents, if only

the weight of the agents’ capability and task completion

cost are considered as in the CPACO-S algorithm, then

the best solution obtained are Gw1
={g

2
,g

2
,g

5
} and

Gw2
={g

2
,g
3
,g

5
}. We can see that from those agent

coalitions for the two targets, agent g
2
 and g

5
 are

selected for both targets. This condition is called
overlapping agents, which has to be minimized so that

the task completion process on all targets can be carried

out in the shortest possible time. In order to search for a

suitable solution, an objective function is added, which

is used to minimize overlapping agents.

In this study, the objective functions are designed to: (1)

minimize the task completion costs, (2) maximize the

system capabilities, and (3) minimize overlapping

agents. The task allocation problem that we consider

can, thus, be considered as a multi-objective

optimization problem. All objective functions must be

optimized simultaneously to obtain the best solution.

The final solution is represented in the form of agents’

coalition that optimizes all objective functions.

2.2.2 ACO Algorithm Modification for Task

Allocation Problem in Multi-Agents System with Muti-

Targets

The basic ACO algorithm in this study is modified to
solve the task allocation problem in a multi-agent

system with multi-target. The proposed model is then

referred as the Modified ACO Model. Generally, there

are five elements which are specified to define a

suitable ant algorithm for different optimization

problem [28].

The first element is constructing a candidate solution.

As mentioned earlier, the final solution for the task

allocation that we consider is to form an agent coalition

for each target that optimizes all objective functions. To

minimize overlapping agents, finding the final solution
is done by finding a solution for each target. Once the

solution for one target is obtained, we calculate the best

solution for the next target. Therefore, the number of

ant colonies used to construct candidate solutions is as

much as the number of targets. Each ant colony seeks a

solution for a target by forming a candidate solution for

the corresponding target.

The second element is the heuristic function. In this

study, more than one heuristic function is used to

determine the visibility value of the ant transition. Each

heuristic function is affected by a different objective

function. The first heuristic function is influenced by
the objective function of minimizing task completion

costs consisting of communication costs and travel

costs as used in the CPACO-S algorithm. The heuristic

function of the CPACO-S algorithm is modified to

maximize the capability of the system by increasing the

probability of selecting the same agent, as defined in

Equation (8),

𝜂𝑖𝑗1
𝑧 (𝑡) =

{

 𝜔𝑎

1𝑔𝑖
𝑘𝑎+𝜔𝑏

1𝑔
𝑗

𝑘𝑏

𝜔2𝑑𝑖𝑗 + 𝜔
3𝑑𝑖𝑤𝑧

, 𝑔𝑖 = 𝑔𝑗

𝜔𝑎
1𝑔𝑖

𝑘𝑎+𝜔𝑏
1𝑔
𝑗

𝑘𝑏

 𝜔2𝑑𝑖𝑗 + 𝜔
3𝑑𝑖𝑤𝑧+ 𝜔

3𝑑𝑗𝑤𝑧
, 𝑔𝑖 ≠ 𝑔𝑗

. (8)

The numerator of Equation (8) is the sum of the

capabilities possessed by agent gi and agent gj on two

adjacent agent groups (ka, kb ∈ Kwz
), with ω

a

1

 and ω
b

1

being the capability weights of ka and kb. The

denominator in Equation (8) is the sum of

communication costs and travel costs.

To increase the probability of choosing the same agent

in the same group, the value of the travel cost for the

same agent is only calculated once. For example, a target

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

916

w1 requires four capabilities, and one of the candidate

solutions is Gw1
={g

2
,g

2
,g

2
,g

5
}, then the travel cost for

agent g
2
 will be counted only once.

Note that for the same agent, the value of the

communication cost is considered zero because the

distance between the agent and itself is zero. For

different agents, the heuristic function used is the same

as the heuristic function in the CPACO-S algorithm,

with modifications to the variables used to calculate the

travel cost.

In CPACO-S, the variable used for the travel cost is the

same variable for the weight of the communication
factor (ω2). In the Modified ACO Model, a new variable

is used for travel costs, which is the weight of the agent

transfer factor (ω3). In this study, a second heuristic

function is added to minimize overlapping agents, which

is defined as follows:

𝜂𝑖𝑗2
𝑧 (𝑡) =

1

𝛹
∑𝜓𝑗𝑤𝑦

, 𝜓𝑗𝑤𝑦 = {
1, 𝑔𝑗 ∈ 𝐺𝑤𝑦 , (𝑦 ≠ 𝑧)

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (9)

where variables 𝛹 and 𝜓 in Equation (9) are variables to

determine the value of the overlapping value. The value

of the variable 𝛹 is chosen so that the total denominator
becomes relatively large to reduce the visibility value of

the agent chosen in the coalition of other targets. The

value of the variable 𝛹 is selected based on the η
ij1
z (t)

range of values. For example, if the η
ij1
z (t) range of

values is 10-1 – 103, then the chosen value for 𝛹 is 104.

In addition, variable 𝜓𝑗𝑤𝑦 is used to consider the

selection of agent gj in other targets. Its value increases

when agent gj is chosen more often in other targets wy

with y = {1,2,…,Z} and y ≠z. Thus, the visibility value

is getting smaller and allows the selection of other agents

whose visibility value is relatively small but have never

been chosen or are less chosen in the agent coalition for

other targets.

The total ant route transition visibility from agent gi to

agent gj for target wz at time t (ηij
z (t)) is calculated as

follows:

𝜂𝑖𝑗
𝑧 (𝑡) = 𝜂𝑖𝑗1

𝑧 (𝑡) × 𝜂𝑖𝑗2
𝑧 (𝑡). (10)

The third element is the efficiency function which is a

function to measure how good a solution is. As

mentioned earlier, the process of finding a solution for

each target is done one-by-one. The best solution for

each target is calculated using the efficiency function

that we refer as the local efficiency function.

The local efficiency function is determined based on the
objective function to be optimized. As there is more

than one objective function that we consider, we use

more than one local efficiency function to determine the

best agent coalition for a target. The first local

efficiency function is determined by the objective

function to minimize the task completion cost as

employed in the CPACO-S algorithm.

To maximize the overall capabilities of the system, the

total task completion cost is calculated by considering

the travel and communication costs. If an agent is

selected to complete multiple capabilities, that agent is

only listed once in the set of the candidate solution. The

first local efficiency function is defined as follows:

εm1
z (t)=

∑ ωr
1g

i

kr𝑅z
r=1

∑ ω2dij
𝑅z-1
i=1

+∑ ω3diw
𝑅z
i=1

, j = i + 1. (11)

The numerator of Equation (11) is the total number of

agent capabilities of the candidate solution chosen by

the m-th ant for the wz target.

The numerator is calculated based on all capabilities kr

that are members of the capability set required to

complete the task on target wz (∇kr ∈ Kw𝑧
).

The denominator of Equation (11) is the total task

completion cost for the target wz of the candidate

solution formed by the m-th ant by considering different

agents.

The communication cost (ω2dij) is calculated based on

the total distance between agents gi ∈ Gwz

kr for ∀kr ∈

Kw𝑧
. The travel cost (ω3diw) is calculated based on the

distance between all agents gi ∈ Gwz

kr for ∀kr ∈ Kw𝑧
 to

target wz . The additional condition that if there is one

agent selected for multiple capabilities, the travel cost

for that agent will only be counted once.

The next objective function is designed to minimize

overlapping agents. This function is defined as the

second local efficiency function as follows:

𝜀𝑚2
𝑧 =

1

𝛹
∑𝜓𝑗𝑤𝑦

, 𝜓𝑗𝑤𝑦 = {
1, 𝑔𝑗 ∈ 𝐺𝑤𝑦 , (𝑦 ≠ 𝑧)

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (12)

where 𝜀𝑚2
𝑧 is influenced by the value of variable 𝛹 ; see

Equation (9). When candidate solution of the m-th ant

is consisted of the same agents which are selected for

several different targets, the value of 𝜀𝑚2
𝑧 becomes

smaller.

Based on the two efficiency functions, the total local

efficiency value of the m-th ant for target wz is

calculated as: 𝜀𝑚
𝑧 = 𝜀𝑚1

𝑧 × 𝜀𝑚2
𝑧 . Then after the

candidate solution for the wz target has been formed for

all ants in a colony, the best solution candidate is

selected based on the biggest 𝜀𝑚
𝑧 value, which is the best

local efficiency value for the wz target (𝜀𝑏𝑒𝑠𝑡
𝑧).

In addition to the local efficiency values, a global

efficiency value (𝜀𝑔𝑙𝑜𝑏𝑎𝑙) is used to determine the best

overall solution. The 𝜀𝑏𝑒𝑠𝑡
𝑧 values of all targets are

added, which then produce 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 value in each

iteration.

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

917

The value of 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 is then compared at the end of each

iteration to obtain the best overall efficiency value

(𝜀𝑏𝑒𝑠𝑡).The fourth element is the probability of ant

transition, which is influenced by the ant transition

visibility value (heuristic function) and the value of the

pheromones. In this study, the probability of ants m-th

movement from agent gi to agent gj in the process of

finding solution for the target wz at time t p
ij
z (t) is

calculated using Equation (1) with the value of visibility

η
ij

z

(t) and the pheromone valueτij
z (t).

The last element is the pheromone update rule. Each ant

colony uses a different pheromone matrix to store the

accumulated pheromone values to avoid selecting the

same agent for different targets. The equation used to

update the pheromone value on the path between agent

gi to agent gj for target wz (𝜏𝑖𝑗
𝑧 (𝑡 + 1)) is the same as

CPACO and the CPACO-S algorithms in Equation (6)

by considering the pheromone value on the path to find

solution for target wz (𝜏𝑖𝑗
𝑧 (𝑡)). In this study, the

pheromone update rule is applied on the ant paths that

are formed by only the best agent coalition for target wz.

If the ant in the best agent coalition for target wz moves

from agent gi to agent gj, the amount of pheromone

deposited at time t is calculated as ∆𝜏𝑖𝑗
𝑧 (𝑡) = 𝑄𝜀𝑏𝑒𝑠𝑡

𝑧 ;

otherwise, the value is zero.

From the description of each element in the ACO

algorithm developed in this study, it can be concluded

that the modifications are mainly carried out on the

heuristic and efficiency functions. In summary, the

pseudocode of the proposed Modified ACO is shown in

Figure 4.

Pseudocode of Modified ACO Model Algorithm

Input: number of ants M, number of agents a,

agents’ capability kr, agents’ position [x,y], number

of targets Z, capability collection needed of each

target Kz, target’s position [x,y], group of agents 𝐺𝑤𝑧
𝑘𝑟

(based on capability needed of each target), initial

value 𝜀𝑏𝑒𝑠𝑡
𝑧 = 0 and 𝜀𝑏𝑒𝑠𝑡 = 0, initial pheromone

value 𝜏0, ants colony parameter value (Q, α, β, ρ, 𝜔𝑟
1,

ω2, ω3) new heuristic constant value Ψ and number

of maximum iteration IterMax.

For iter in range IterMax:

Define chosen_agent = [];

Define 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 = 0;

For z th target in range Z:
For m th ant in range M:

Choose an agent gi from 𝐺𝑤𝑧
𝑘𝑟 randomly;

Write the choosen agent gi in

colony.ant[m].tour[1];

For r+1 th in Kz

Choose an agent gj from 𝐺𝑤𝑧
𝑘𝑟 based

on 𝑝𝑖𝑗
𝑧 (𝑡) using 𝜂𝑖𝑗

𝑧 (𝑡) (considering

chosen_agent) and 𝜏𝑖𝑗
𝑧 (𝑡);

Write the chosen agent gj in

colony.ant[m].tour[c];

End for

Calculate the candidate solution local

efficiency using 𝜀𝑚
𝑧 (considering

chosen_agent);

If 𝜀𝑚
𝑧 > 𝜀𝑏𝑒𝑠𝑡

𝑧

𝜀𝑏𝑒𝑠𝑡
𝑧 = 𝜀𝑚

𝑧 ;

Gwz
= colony.ant[m].tour;

End if

chosen_agent ← Gwz
;

𝜀𝑔𝑙𝑜𝑏𝑎𝑙 = 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜀𝑏𝑒𝑠𝑡
𝑧 ;

Update pheromone in ant colony for

target wz using 𝜏𝑖𝑗
𝑧 (𝑡 + 1) ;

End for

End for

If 𝜀𝑔𝑙𝑜𝑏𝑎𝑙 > 𝜀𝑏𝑒𝑠𝑡

𝜀𝑏𝑒𝑠𝑡 = 𝜀𝑔𝑙𝑜𝑏𝑎𝑙

Gw
best = chosen_agent;

End if

End for

Output: Gw
best

 in the last iteration.
Figure 1 Pseudocode for Modified ACO Model algorithm

The final solution generated by the Modified ACO
Model is an agent coalition from all targets that produce

the 𝜀𝑏𝑒𝑠𝑡 . The process of finding the final solution is

carried out one by one for each target. When an agent

coalition is define for a target, the results affect the

process of selecting the agent coalition for the next

target. Thus, it is possible that the sequence of finding

solutions affects the selection of an agent coalition for

all targets. Testing needs to be carried out to determine

the effect of finding solutions sequences on existing

targets so that the best Modified ACO Model is

achieved to solve the task allocation problem of multi-

agent systems with multi-target.

2.2.3 Simulation

Simulations were carried out using Matlab R2015a

software to test the performance of the Modified ACO

Model in solving the multi-agent-multi-target task

allocation problem. In the simulation, the problem was

generated in a two-dimensional area with 0 ≤ x ≤ 50 and

0 ≤ y ≤ 50. The multi-agent system consists of ten

heterogeneous agents with ten types of capabilities. To

simplify the simulation, an agents’ capability is

represented in binary number, i.e. 1 represents that the
agent has a certain capability whereas 0 represents that

the agent has no capability of a certain type. With this

binary weighting system, the heuristic function η
ij1
z (t) in

Equation (8) and the local efficiency function εm1
z (t) in

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

918

Equation (11) can be simplified into Equation (13) and

Equation (14).

η
ij1
z (t) = {

ωa
1+ωb

1

ω3diwz

, g
i
=g

j

ωa
1+ωb

1

ω2dij+ω3diwz+ω3djwz

, g
i
≠g

j

, (13)

εm1
z (t)=

∑ ωr
1R

r=1

∑ ω2dij
R-1
i=1 +∑ ω3diwz

R
i=1

, j = i + 1. (14)

Here, the value for each agents’ capability (g
i

ka , g
i

kb , g
i
kr

for r = {1,2,…,R}) in Equation (8) and Equation (9) is

equal to one. Therefore, in Equation (13) and Equation
(14), we need to only consider the importance of the

agents’ capability in solving the target, i.e. ωa
1, ωb

1, ωr
1

for r = {1,2,…,R}.

In the simulation, information on the agents’

capabilities is written in a MGK capability matrix, as

shown in Table 1. Meanwhile, the information on the

position of each agent is shown in Table 2.

Table 1. Multi-agent capability matrix MGK

Agent
Capability

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

g
1
 0 0 1 0 1 0 0 1 0 1

g2 1 0 1 0 0 1 0 0 1 1

g
3
 0 1 0 0 0 0 0 1 1 1

g4 0 0 1 0 0 1 0 0 0 0

g5 1 1 0 0 1 0 1 0 0 0

g6 1 1 0 0 1 0 0 0 1 1

g7 0 0 1 1 1 0 1 1 0 0

g8 1 1 1 1 0 0 1 1 0 0

g9 0 0 0 1 0 1 1 1 1 0

g
10 0 1 0 1 0 0 1 0 0 0

Table 2. Positions of agents

Agent
Position

x y

g
1
 10 35

g2 20 50

g
3
 30 50

g4 40 50

g5 50 35

g6 50 15

g7 40 0

g8 30 0

g9 20 0

g
10 10 15

Two simulations were carried out:

1. Simulation to analyze the process of finding the

optimum solution using the proposed Modified

ACO Model, and

2. Simulation to evaluate the proposed Modified ACO

Model and its comparison to the benchmark

algorithm, i.e. CPACO and CPACO-S.

In the proposed Modified ACO Model, the optimum

solution for each target is calculated iteratively, starting

from the first target, the second target, and so on.

Therefore, the determination of target sequence may

affect the selection of agents’ coalitions. To analyze this

issue, in the first simulation, the target sequence was

determined using two approaches: (1) based on initial

information and (2) randomly. Four tests were carried

out for each approach with different number of targets,

i.e. 5, 10, 15 and 20. Each test was simulated 30 times

with random target combination.

In the second simulation, evaluation to the proposed
Modified ACO Model was done by comparing this

algorithm to a benchmark algorithm, namely the

CPACO-S [23], which is proven to be more efficient

than the original ACO algorithm and the CPACO

algorithm. For each algorithm, six tests were conducted

by varying the number of targets, i.e. 3, 5, 8, 10, 15, and

20. Each test was simulated 30 times with random target

combination.

In the first and second simulations, the targets were

taken randomly from the following data:

1. The data contains 30 targets with different positions
and capability requirements to be completed.

2. Target positions were within the simulation area, i.e.

0 ≤ x ≤ 50 and 0 ≤ y ≤ 50.

3. None of the targets was in the exact same location

as other targets or agents in the simulation area.

4. Each target requires more than one capability to be

completed and there might be more than one target

with the same capability requirement.

2.2.4 Analysis dan Evaluation

Two algorithmic performance evaluation metrics were

utilized to analyse the simulation results, those ares:

1. The total value of the task completion cost, which is
the sum of the communication costs and travel costs

of the agent coalitions of all targets.

Note that the agent coalition on a target contains all

the agents selected to complete the target, and that if

there is one agent selected for multiple capabilities,

the travel cost for that agent will only be counted

once. The total task completion cost (Σtcc) is

calculated using Equation (15):

∑𝑡𝑐𝑐 =∑ ∑ (ω2dij+ω3di𝑤𝑧
)gi∈Gwzwz∈W , j = i + 1, (15)

where W is the set of all targets to be solved and Gwz

is the best agent coalition for target wz. In Equation

(15), 𝜔2𝑑𝑖𝑗 represent the communication cost

between two consecutive agents gi and gj, which is

proportional to the distance between agent gi and

agent gj (dij) with a communication weight factor

(ω2). Meanwhile, ω3di𝑤𝑧
 represents the travel cost,

which is proportional to the distance between agent

gi and target wz with a factor of ω3.

2. The overlapping value (ϑ).

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

919

This evaluation metric is utilized to determine the

algorithm's efficiency in minimizing the

overlapping agent. The overlapping value (ϑ) is

calculated using Equation (16):

𝜗 = zmax
g

×
∑ target with overlapping agents

total number of targets
, (16)

where 𝑧𝑚𝑎𝑥
𝑔

 refers to the maximum number of

targets that select the same agent in the system. For

example, if agent gi is selected by three targets, agent

gj is selected by five targets, and other agents are

selected by one target only, then the value of 𝑧𝑚𝑎𝑥
𝑔

 =

5. This 𝑧𝑚𝑎𝑥
𝑔

 is then multiplied by the ratio between

the number of targets with overlapping agents and

the total number of targets.

Evaluation of the simulation results was then carried out

using the two performance matrices as described in

Equation (15) and Equation (16).

3. Results and Discussions

3.1. Simulation 1

In the first simulation, we determined the target

sequence for solution finding using two approaches.

The first approach is based on the initial target

information without any change in the target sequence.

In other words, first target would be the first target as

listed on the initial data. The second approach is by

randomly determine the target sequence for the target

solution, which is changed in each iteration. Each

approach of determining the target solution search

sequence was tested with four different number of

targets, i.e. 5, 10, 15 and 20. Each test was simulated 30

times with different combinations of targets, taken from

the data from 30 targets. The results are shown in Figure

5 and Figure 6, and the summary of the results is shown

in Table 3.

Using a 95% confidence interval, Figure 5 and Table 3

show that the total average value of the task completion

cost for random target sequencing is significantly lower

than initial target sequencing. The total average values

of task completion cost by determining the target

sequence randomly are 11.08%, 17.41%, 14.28% and

20.84% lower than that of initial target sequence for 5,

10, 15 and 20 targets, respectively. Figure 6 and Table

3 show that random target sequencing returns slightly

lower overlapping values compared to the initial target

sequencing. As a conclusion, random target sequence
determination is superior to target sequence

determination based on initial information. These

results also show that random target sequence

determination allows better solution search so that a

more optimum agent allocation can be found.

Figure 2. Results of Simulation 1: total average task completion cost

Figure 3. Results of Simulation 1: total average overlapping value

0

60

120

180

5 10 15 20

T
o

ta
l

a
v

e
r
a
g

e
 t

a
sk

 c
o

m
p

le
ti

o
n

 c
o

st

Number of targets

Initial information Random

0

2

4

6

5 10 15 20T
o

ta
l

a
v

e
r
a
g

e
 o

v
e
r
la

p
p

in
g

 v
a
lu

e

Number of targets

Initial information Random

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

920

Table 3. Summary of simulation 1 test results

Number of targets

Total average

task completion cost

Total average

overlapping value
Target sequence

based on initial

information

Random target

sequence

Target sequence

based on initial

information

Random target

sequence

5 36.03 ± 3.29 32.03 ± 2.74 0.89 ± 0.19 0.48 ± 0.16

10 78.39 ± 4.13 64.74 ± 3.17 2.84 ± 0.14 2.58 ± 0.18

15 119.44 ± 5.76 102.39 ± 6.07 4.03 ± 0.11 4.03 ± 0.14

20 169.57 ± 6.39 134.24 ± 7.94 5.10 ± 0.11 5.10 ± 0.14

3.2. Simulation 2 Scenario

In the second simulation, the proposed Modified ACO

Model is compared with CPACO-S algorithm which

has been proven to be superior to the basic ACO

algorithm and the CPACO algorithm in terms of the

efficiency of the resulting agent coalition [23]. Six tests

were conducted for each algorithm using different

number of targets, i.e. 3, 5, 8, 10, 15, and 20. The results

are shown in Figure 7 and Figure 8. The summary of the

test results is shown in Table 4.

Figure 4. Results of simulation 2: total average task completion cost

Figure 5. Results of simulation 2: total average overlapping value

0

60

120

180

3 5 8 10 15 20

T
o

ta
l

a
v

e
r
a
g

e
 t

a
sk

 c
o

m
p

le
ti

o
n

 c
o

st

Number of targets

CPACO-S Modified ACO Model

0

2

4

6

8

3 5 8 10 15 20

T
o

ta
l

a
v

e
r
a
g

e
 o

v
e
r
la

p
p

in
g

 v
a
lu

e

Number of targets

CPACO-S Modified ACO Model

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

921

Table 4. Summary of simulation 2 test results

Number of

targets

Total average task completion cost Total average overlapping value

CPACO-S Modified ACO Model CPACO-S Modified ACO Model

3 22.90 ± 2.83 17.19 ± 2.08 1.27 ± 0.29 0.00

5 37.82 ± 3.42 32.03 ± 2.74 2.51 ± 0.31 0.38 ± 0.16

8 57.93 ± 4.70 51.27 ± 3.00 3.56 ± 0.03 1.88 ± 0.19

10 72.07 ± 4.00 64.74 ± 3.17 4.22 ± 0.27 2.84 ± 0.14

15 107.34 ± 4.22 102.39 ± 6.07 6.06 ± 0.36 3.97 ± 0.14

20 140.82 ± 3.49 134.24 ± 7.94 7.40 ± 0.33 5.10 ± 0.14

Figure 7 and Figure 8 show that the Modified ACO

Model in this study has a better performance than the

CPACO-S algorithm in terms of the total average task

completion cost and overlapping values. At 95%

confidence interval, Table 4 shows that the Modified
ACO Model produces a significantly lower total

average task completion cost in several tests. The

superiority of the Modified ACO Model is significant

when the number of targets is less than the number of

agents. The Modified ACO Model produces less task

completion cost compared to the CPACO-S by 24.95%,

15.30%, 11.50%, 10.17%, 4.62% and 4.67% for 3, 5, 8,

10, 15 and 20 targets, respectively. When the number of

targets increases, the total average task completion cost

of the Modified ACO Model is not significantly better

to that of the CPACO-S algorithm. This may be due to
the limited number of agents available, so that the

allocated agents to a specific target may not be the

agents that produce the best task allocation cost.

However, since our modifications maximize the agents’

capability and minimize agents’ overlap, the efficiency

of the agent coalition generated by the proposed

Modified ACO Model becomes superior to the

CPACO-S algorithm.

In this study, ACO algorithm has been modified to

minimize the number of overlapping agents, i.e. an

agent selected by different targets. In addition,

modifications were also made to prioritize the selection
of the same agent in a agent coalition to minimize the

number of agents allocated to a target. Figure 8 proves

that the two modifications in the proposed Modified

ACO Model have succeeded in minimizing the

overlapping agents. It is evident that the Modified ACO

Model produced a significantly lower average

overlapping value than that of the CPACO-S algorithm

at a 95% confidence interval, as also shown in Table 4.

This indicates that the Modified ACO Model is more

efficient in allocating agents to targets than the

CPACO-S algorithm. Overall, it can be concluded that
the Modified ACO Model proposed in this study

performs better than the CPACO-S algorithm in solving

the task allocation problem of multi-agent system with

multi-target.

4. Conclusion

This study proposes a Modified ACO Model to solve

the task allocation problem in a multi-agent system with

multi-target. Modifications are made to minimize the

number of overlapping agents, where the same agent is
selected to solve some different targets. The simulation

results show that the proposed Modified ACO Model

has a superior performance in minimizing task

completion costs by ±11.87% than the benchmark

algorithm (CPACO-S). Furthermore, the simulation

results also show that the Modified ACO Model

performs well in minimizing overlapping agents with a

lower overlapping value of ±55.11% compared to the

benchmark algorithm.

Further research can be conducted to evaluate the

performance of the proposed Modified ACO Model in
comparison with other well-known optimization

methods to solve the task allocation problems in multi-

agent systems with multi-target. Some benchmark

optimization methods may include: (1) the Auction-

based method which is inspired by economic system

and (2) Genetic Algorithm (GA), which is a bio-

inspired based algorithm.

Acknowledgement

The authors would like to thank the Institute for

Research and Community Service (LPPM) IPB

University for their support in completing this research.

Part of this research is funded by the Ministry of
Research and Technology of the Republic of Indonesia

(RISTEK-BRIN) through the Basic Research Program

for Higher Education (PDUPT), research grant number

3626/IT3.L1/PT.01.03/P/B/2022.

Reference

[1] J. Parker, “Task allocation for multi-agent systems in dynamic

environments,” 12th Int. Conf. Auton. Agents Multiagent Syst.

2013, AAMAS 2013, vol. 2, pp. 1445–1446, 2013.

[2] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot Task

Allocation: A Review of the State-of-the-Art,” Stud. Comput.

Intell., vol. 604, pp. 31–51, 2015, doi: 10.1007/978-3-319-

18299-5_2.

[3] M. Irfan and A. Farooq, “Auction-based task allocation scheme

for dynamic coalition formations in limited robotic swarms

 Iis Rodiah, Medria Kusuma Dewi Hardhienata, Agus Buono, Karlisa Priandana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 6 (2022)

DOI: https://doi.org/10.29207/resti.v6i6.4201

Creative Commons Attribution 4.0 International License (CC BY 4.0)

922

with heterogeneous capabilities,” 2016 Int. Conf. Intell. Syst.

Eng. ICISE 2016, pp. 210–215, 2016, doi:

10.1109/INTELSE.2016.7475122.

[4] Y. Miao, L. Zhong, Y. Yin, C. Zou, and Z. Luo, “Research on

dynamic task allocation for multiple unmanned aerial

vehicles,” Trans. Inst. Meas. Control, vol. 39, no. 4, pp. 466–

474, 2017, doi: 10.1177/0142331217693077.

[5] F. Tang and L. E. Parker, “A complete methodology for

generating multi-robot task solutions using ASyMTRe-D and

market-based task allocation,” Proc. - IEEE Int. Conf. Robot.

Autom., no. April, pp. 3351–3358, 2007, doi:

10.1109/ROBOT.2007.363990.

[6] M. K. D. Hardhienata, K. E. Merrick, and V. Ugrinovskii,

“Task allocation in multi-agent systems using models of

motivation and leadership,” 2012 IEEE Congr. Evol. Comput.

CEC 2012, 2012, doi: 10.1109/CEC.2012.6256114.

[7] J. P. Wang, Y. Gu, and X. M. Li, “Multi-robot task allocation

based on ant colony algorithm,” J. Comput., vol. 7, no. 9, pp.

2160–2167, 2012, doi: 10.4304/jcp.7.9.2160-2167.

[8] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive

taxonomy for multi-robot task allocation,” Int. J. Rob. Res.,

vol. 32, no. 12, pp. 1495–1512, 2013, doi:

10.1177/0278364913496484.

[9] H. Liu, P. Zhang, B. Hu, and P. Moore, “A novel approach to

task assignment in a cooperative multi-agent design system,”

Appl. Intell., vol. 43, no. 1, pp. 162–175, 2015, doi:

10.1007/s10489-014-0640-z.

[10] M. Khani, A. Ahmadi, and H. Hajary, “Distributed task

allocation in multi-agent environments using cellular learning

automata,” Soft Comput., vol. 23, no. 4, pp. 1199–1218, 2019,

doi: 10.1007/s00500-017-2839-5.

[11] S. S. Chiddarwar and N. R. Babu, “Multi-agent system for off-

line coordinated motion planning of multiple industrial

robots,” Int. J. Adv. Robot. Syst., vol. 8, no. 1, pp. 102–112,

2011, doi: 10.5772/10533.

[12] Yan Jin, A. A. Minai, and M. M. Polycarpou, “Cooperative

real-time search and task allocation in UAV teams,” in 42nd

IEEE International Conference on Decision and Control

(IEEE Cat. No.03CH37475), 2003, vol. 1, no. December, pp.

7–12. doi: 10.1109/CDC.2003.1272527.

[13] Q. Cheng, D. Yin, J. Yang, and L. Shen, “An Auction-Based

Multiple Constraints Task Allocation Algorithm for Multi-

UAV System,” Proc. - 2016 Int. Conf. Cybern. Robot. Control.

CRC 2016, pp. 1–5, 2017, doi: 10.1109/CRC.2016.7.

[14] H. A. Kurdi et al., “Autonomous task allocation for multi-UAV

systems based on the locust elastic behavior,” Appl. Soft

Comput. J., vol. 71, pp. 110–126, 2018, doi:

10.1016/j.asoc.2018.06.006.

[15] N. Noguchi and O. C. Barawid, Robot farming system using

multiple robot tractors in Japan agriculture, vol. 44, no. 1

PART 1. IFAC, 2011. doi: 10.3182/20110828-6-IT-

1002.03838.

[16] A. T. J. R. Cobbenhagen, D. J. Antunes, M. J. G. van de

Molengraft, and W. P. M. H. Heemels, “Heterogeneous multi-

agent resource allocation through multi-bidding with

applications to precision agriculture⁎,” IFAC-PapersOnLine,

vol. 51, no. 23, pp. 194–199, 2018, doi:

10.1016/j.ifacol.2018.12.034.

[17] M. Davoodi, J. M. Velni, and C. Li, “Coverage control with

multiple ground robots for precision agriculture,” Mech. Eng.,

vol. 140, no. 6, pp. 4–8, 2018, doi: 10.1115/1.2018-jun-4.

[18] R. Cao et al., “Task assignment of multiple agricultural

machinery cooperation based on improved ant colony

algorithm,” Comput. Electron. Agric., vol. 182, p. 105993,

Mar. 2021, doi: 10.1016/J.COMPAG.2021.105993.

[19] A. Hussein and A. Khamis, “Market-based approach to Multi-

robot Task Allocation,” in 2013 International Conference on

Individual and Collective Behaviors in Robotics (ICBR), Dec.

2013, pp. 69–74. doi: 10.1109/ICBR.2013.6729278.

[20] J. Yang and Z. Luo, “Coalition formation mechanism in multi-

agent systems based on genetic algorithms,” Appl. Soft

Comput., vol. 7, no. 2, pp. 561–568, Mar. 2007, doi:

10.1016/j.asoc.2006.04.004.

[21] L. Wang, Z. Wang, S. Hu, and L. Liu, “Ant Colony

Optimization for task allocation in Multi-Agent Systems,”

China Commun., vol. 10, no. 3, pp. 125–132, Mar. 2013, doi:

10.1109/CC.2013.6488841.

[22] P. C. Pendharkar, “An ant colony optimization heuristic for

constrained task allocation problem,” J. Comput. Sci., vol. 7,

pp. 37–47, 2015, doi: 10.1016/j.jocs.2015.01.001.

[23] M. Sriatun, “Modifikasi ant colony optimization untuk

menyelesaikan masalah task allocation dalam skenario

bencana tanah longsor mamik sriatun,” 2019.

[24] H. Cui, X. Liu, T. Yu, H. Zhang, Y. Fang, and Z. Xia, “Cloud

Service Scheduling Algorithm Research and Optimization,”

Secur. Commun. Networks, vol. 2017, no. Dc, pp. 1–7, 2017,

doi: 10.1155/2017/2503153.

[25] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System : An

Autocatalytic Optimizing Process Technical Report 91-016,”

Leonardo, pp. 1–21, 1991.

[26] J. Li and W. Zhang, “Solution to Multi-objective Optimization

of Flow Shop Problem Based on ACO Algorithm,” in 2006

International Conference on Computational Intelligence and

Security, Nov. 2006, pp. 417–420. doi:

10.1109/ICCIAS.2006.294166.

[27] I. Alaya, C. Solnon, and K. Ghédira, “Ant colony optimization

for multi-objective optimization problems,” Proc. - Int. Conf.

Tools with Artif. Intell. ICTAI, vol. 1, pp. 450–457, 2007, doi:

10.1109/ICTAI.2007.108.

[28] S. K. Chaharsooghi and A. H. Meimand Kermani, “An

effective ant colony optimization algorithm (ACO) for multi-

objective resource allocation problem (MORAP),” Appl. Math.

Comput., vol. 200, no. 1, pp. 167–177, 2008, doi:

10.1016/j.amc.2007.09.070.

[29] B. Yagmahan and M. M. Yenisey, “Ant colony optimization

for multi-objective flow shop scheduling problem,” Comput.

Ind. Eng., vol. 54, no. 3, pp. 411–420, 2008, doi:

10.1016/j.cie.2007.08.003.

[30] D. Angus and C. Woodward, “Multiple objective ant colony

optimisation,” Swarm Intell., vol. 3, no. 1, pp. 69–85, 2009,

doi: 10.1007/s11721-008-0022-4.

[31] Y. Li, H. Soleimani, and M. Zohal, “An improved ant colony

optimization algorithm for the multi-depot green vehicle

routing problem with multiple objectives,” J. Clean. Prod., vol.

227, pp. 1161–1172, 2019, doi: 10.1016/j.jclepro.2019.03.185.

[32] K. Khurshid, S. Irteza, and A. A. Khan, “Application of ant

colony optimization based algorithm in MIMO detection,”

2010 IEEE World Congr. Comput. Intell. WCCI 2010 - 2010

IEEE Congr. Evol. Comput. CEC 2010, 2010, doi:

10.1109/CEC.2010.5586173.

