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Abstract  

The abstract isthe early stages of ship design, the decision of the ship's main dimensions significantly impacts the ship's 
performance and the total cost of ownership. This paper focuses on an optimization approach based on surrogate models at 
the early stages of ship design. The objectives are to minimize power requirements and building costs while still satisfying the 
constraints. We compare three approaches of surrogate models: Kriging, BPNN-PSO (Backpropagation Neural Network-

Particle Swarm Optimizer), and MLP (Multi-Layer Perceptron) in two multi-objective optimization algorithms: MOEA/D 
(Multi-Objective Evolutionary Algorithm Decomposition) and NSGA-II (Non-Dominated Sorting Genetic Algorithm II). The 
experimental results show that MLP surrogate models get the best performance with MAE 6.03, and BPNN-PSO gets the 
second position with MAE 7.2. BPNN-PSO and MLP with MOEA/D and NSGA-II improve the design with around 58% smaller 
adequate power and 6% less steel weight than the original design. However, BPNN-PSO and MLP have lower hypervolume 
than Kriging for both optimization algorithms MOEA/D and NSGA-II. On the other hand, Kriging has the most inadequate 
model accuracy performance, with an MAE of 22.2, but produces the highest hypervolume, lowest computational time, and far 
lower objective values than BPNN-PSO and MLP for both optimization algorithms, MOEA/D and NSGA-II. Nevertheless, the 

three surrogate model approaches can significantly improve ship design solutions and reduce work time in the early stages of 
design. 

Keywords: ship design, multi-objective optimization, surrogate model, neural network, particle swarm optimizer

1. Introduction  

The growing competitiveness of the shipping sector as 

a result of digitalization and rules from the International 

Maritime Organization (IMO) to decrease CO2 
emissions requires ship design solutions to be created 

with shorter lead times and a lower Energy Efficiency 

Design Index (EEDI) (the time between the initiation 

and completion of a production process) [1]. The ship's 

EEDI is proportional to the power required; thus, naval 

architects try to minimize the ship's power requirements 

in every possible way to reduce the ship's carbon 

emissions [2]. Aside from the environmental objective, 

naval architects should ensure that the design can fulfill 

the ship owner’s requirements while meeting the 

applicable regulations [3]. 

Calculating total cost ownership is equally essential but 
rarely explained further in ship design. The total cost of 

ownership for ships generally consists of building costs 

(CAPEX) and operational costs (OPEX). Building costs 

are strongly affected by material costs, and the required 

steel weight can represent them. Meanwhile, operating 

costs are affected by ship speed and moved cargo, 

which defines ship power requirements and further 

affects fuel consumption. Therefore, minimizing the 
need for ship power and steel weight can reduce the 

total cost of ownership [4]. 

Conventionally, the ship design process is divided into 

four phases, from concept design to detailed design, as 

described in the Design Spiral concept (Figure 1). In the 

early stages, concept design translates the ship owner’s 

requirements into fundamental elements of the 

proposed method, such as estimating the ship’s 

dimensions, construction weight, building costs, and 

performance. In this design spiral concept, an iterative 

process of sequential design work sections is employed 

to optimize the design components [3]. However, this 
approach is very time-consuming. Furthermore, since 

naval architects cannot consider all dependencies 

between decision variables, constraints, and objectives, 

the design process will likely lead to the local optima 
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solution. Hence, there is no guarantee of achieving 

optimal design from the point of view of each discipline 

[4].  

The ship's dimensions have a significant impact on 

assessing the ship's power requirement and building 

cost. Optimizing the ship's measurements in the early 

stages of ship design is preferable since the effort for 

the early stages is relatively low [5]. 

Surrogate model-based optimization is one approach to 

optimization problems. A surrogate model 
approximates the input-output data obtained from a 

simulation. Once the surrogate model is trained using 

input-output data, analytical representations of the 

constraints and objectives of the black-box problem 

become available, and it is computationally cheaper to 

evaluate [6]. Therefore, a surrogate model replacing the 

time-consuming process of ship design simulations is 

highly appreciated. 

Previous studies have mainly performed optimization 

with machine learning approaches for a single objective 

of ship design. Li (2014) performed optimization of 
ship resistance using an approximation approach based 

on Support Vector Regression (as a surrogate model) in 

the optimization [7]. Jafaryeganeh (2020) determined 

an internal layout design of the ship with the Pareto 

optimal set [8]. Abramowski (2013) built a neural 

network model to calculate adequate power and 

optimize it using a Genetic Algorithm [9]. The use of 

multi-objective optimization based on the surrogate 

model approach in ship design has been shown by De 

Winter (2019). CEGO [3] is used for multi-objective 

optimization, where Kriging is employed as a surrogate 

model for objectives function and Cubic Radial Basis 
Functions (CRBF) as a surrogate model for constraints 

 
1 Accelerated Concept Design (ACD) framework is a 

commercially used software from C-Job Naval Architects, 
2019. https://c-job.com/ 

function. Later, the feasible solution was selected by 

using S-metric multi-objective optimization. While De 

Winter optimized the next iteration of the dredger 

design, which was first set up in the ACD framework1 

by naval architects [3], this study focuses differently on 

the early stages of ship design, namely for a type of 

vessel: tanker ships.  

Other studies focus on other areas of engineering 

design. In antenna structure design, Qin (2018) used 

Backpropagation Neural Networks – Particle Swarm 
Optimizer (BPNN-PSO) as a surrogate model for Multi-

Objective Evolutionary Algorithms Decomposition 

(MOEA/D) [10]. As for the result, the proposed 

approach can provide higher accuracy and lower 

optimization time than other existing antenna structure 

optimization methods. In nuclear engineering, Whyte 

(2020) applied deep learning methods, MLP, and CNN 

as surrogate models for optimizing the design of a 

'micro core' simulation [11]. As for the results, 

surrogate models can accelerate optimization at the start 

of the process. 

In this study, we compare three approaches of the 

surrogate models that have been proven to solve multi-

objective problems in their respective fields: Kriging 

[3]; Backpropagation – particle swarm optimizer 

(BPNN-PSO) [10]; and Multi-layer Perceptron (MLP) 

[11]. We evaluate the surrogate models in two multi-

objective optimization algorithms: MOEA/D [12] and 

NSGA-II [13]. This study has two design objectives: 

minimizing power requirements and shipbuilding costs 

while still satisfying various constraints. 

There are two main contributions to this paper. First, we 

apply different surrogate model-based multi-objective 
optimization in the early stages of ship design with two 

objectives, to minimize both power requirements and 

shipbuilding costs. Since this study also evaluates three 

surrogate model approaches and two optimization 

problems, the second contribution is the result that 

provides new insights for performance measures in 

multi-objective optimization.  

The next part of the paper is organized as follows. 

Section II explains the research methods that describe 

problem formulations, stages, and scenarios used in the 

experiments. Section III presents the experiment result 
and its discussion. Finally, Section IV concludes the 

paper and suggests some future work. 

2. Research Methods 

This study compares three surrogate models and two 

optimization algorithms to solve a ship design 

optimization problem. First, we describe the 

Figure 1. Classical Ship Design Spiral 
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formulation of the optimization problem. Then, we 

explain the research stages. 

2.1 Ship Design Optimization Problem 

Generally, the multi-objective ship design optimization 

can be stated as a Multi-objective Problem (MOP), 

 f⃗x⃗⃗
min  ( x⃗⃗ )     where ∶ f⃗ (x⃗⃗) = [f1(x⃗⃗), … , fk(x⃗⃗)]         (1) 

where 𝑓 is a vector function, which has 𝑘 design 

objective, and 𝑥 is a decision variable vector. A decision 

variable vector 𝑥 consists of n variables, 𝑥 =

[𝑥1, … , 𝑥𝑛  ] and is part of the feasible solution 𝑥 ∈ Ω. 
The feasible region Ω contains all solutions that satisfy 

some given constraints, including the bounds of 

variables and inequality constraints [3] [14]: 

𝑥𝑖
𝑙𝑜𝑤𝑒𝑟 ≤  𝑥𝑖 ≤  𝑥𝑖

𝑢𝑝𝑝𝑒𝑟
          𝑖 = {1, … , 𝑛}                (2) 

𝑔𝑖(𝑥) ≤ 𝑐𝑖   ∨   𝑔𝑖(𝑥) ≥ 𝑐𝑖      𝑖 = {1, … , 𝑚}               (3) 

The bounds of variables define the minimum and 

maximum values for each 𝑥 in the decision variables 𝑥. 

As for inequality constraints, 𝑔𝑖 represents one of the 𝑚 
constraints, which is a generally non-linear, real-valued 

function of the decision variables 𝑥 and a constant value  
𝑐𝑖.  

2.1.1 Decision Variables 

The decision variables of a ship design problem are the 

numerical quantities whose values can be varied in the 

optimization process [3]. These quantities are denoted 

as 𝑥j , where j = 1, ..., n, and 𝑥j represents one decision 

variable. The vector 𝑥 consists of n variables are then 

represented by 𝑥 = [𝑥1, … , 𝑥𝑛 ]. In this study, there are 

five continuous variables of the ship's main dimension: 

length perpendicular (L), Breadth (B), Height (H), 

Draught (T), and Speed (V).  

2.1.2 Objective Functions 

The problem in this study is the minimization problem, 

where the best solution is the solution with the lowest 

possible objective function value. This ship design case 

has two objectives: minimizing power requirements as 

𝑓1 , and steel weights as 𝑓2. While the two objectives 

may appear to be a minimization problem, they are a 

classic example of conflicting goals. When the solution 

obtains the lowest possible value for the objective 

function 𝑓i, the value of another objective function, 𝑓j, 

would be higher and vice versa [14] [15]. In ship design 

problems, longer and leaner ships will lead to lower hull 

resistance, resulting in more efficient powering 

requirements. However, they will have higher steel 

weight, resulting in higher shipbuilding costs. On the 

other hand, shorter ship widths will have higher hull 

resistance but lower steel weight, resulting in less 
efficient powering requirements but lower shipbuilding 

costs [3]. Therefore, the solution for a multi-objective 

problem is a set of solutions and not a single point [14]. 

The solutions, called Pareto-optimal set P, are decision 

variable vectors in the feasible set non-dominated by 

other vectors. We define the non-dominated relation ≺ 

for the two design variable vectors �⃗⃗� and �⃗�, as �⃗⃗� ≺  �⃗�  
(�⃗⃗� dominates �⃗�) if 𝑓k(�⃗⃗�) ≤   𝑓k(�⃗�) for all 𝑘 = {1, … , 𝑚} 

and 𝑓k(�⃗⃗�)  <  𝑓k(�⃗�)  for at least one 𝑘 [3] [16]. In other 

words, a solution �⃗⃗� dominates another solution �⃗�, if and 

only if �⃗⃗� is better or equal in all objectives and strictly 

better in at least one objective. When each solution in 

the Pareto-optimal set is mapped into the objective 

functions 𝑓 (𝑥), they will create the Pareto-front PF. 

With the Pareto-front, the engineer can visualize the 

consequences of the decision on each objective to be 

achieved. 

2.1.3 Constraints 

Generally, the constraints of a ship design optimization 

problem can be divided into two categories, domain 

constraints given by the regulating authorities and 

physical constraints provided by the client. In this 

study, the constraints used are domain constraints: the 

bounds of variable and inequality constraints related to 

decision variables, as stated in Equations 2 and 3. These 
variables' bounds are obtained based on a real dataset of 

tanker ships with a deadweight tonnage (DWT) of 4500 

– 5500 tonnes. The inequality constraints are suggested 

values of coefficients connected to the ship's principal 

dimensions to assure the strength of a hull and stability 

standards. Such as the recommendations limiting the 

Froude Number (Fn) for tanker ships, L to B, B to T, L 

to T, and D to T [17]. of the Froude Number (Fn) for 

tanker ships, L to B, B to T, L to T, and D to T [17]. 

Moreover, constraints are used to verify the initial 

dataset and each individual in the population generated 
by the evolutionary algorithm. Therefore, the optimum 

values of objectives design can either occur at the 

boundaries of the constraints or between them. The 

ranges for variables bound and inequality constraints 

used in this study can be seen in Table 1.   

Table  1. Constraints ranges used in this study 

Constraints Ranges 

Variables bound 80 ≤ 𝐿 ≤ 130 

 10 ≤ 𝐵 ≤ 25 

 5 ≤ 𝐷 ≤ 15 

 3 ≤ 𝑇 ≤ 10 

 14 ≤ 𝑉 ≤ 18 

Froude Number (Fn) 𝐹𝑛 ≤ 0.32 

L/B 3.5 ≤ 𝐿/ 𝐵 ≤ 10 

B/T 1.8 ≤ 𝐵/𝑇 ≤ 5 

L/T 10 ≤ 𝐿/𝑇 ≤ 30 

L/D 𝐿/𝐷 ≤ 15 
 

2.2 Research Stages 

As shown in Figure 2, the research consists of several 

stages: generating the initial dataset, validating the 

dataset and getting the response set, constructing 
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surrogate models, and optimizing the population by 

optimization algorithms. 

2.2.1. Generate Initial Dataset 

The first stage begins by creating a dataset in a design 

space rather than using actual data of the ship's main 

dimension. The dataset consists of decision variables 

obtained by generating design space using Latin 

Hypercube Sampling (LHS) [3] [10] to ensure that 

generated samples are as uncorrelated as possible. This 

way, LHS can maximize the average amount of 

information gained by computing the objectives and 

constraints. The recommended minimum size of the 

LHS is 11. 𝑛 − 1, where 𝑛 is the number of decision 
variables [3]. In this study, the size of the initial dataset 

is 150, divided into 80:20 for training and testing data, 

respectively. As mentioned previously, the dataset from 

the design space is limited by the variable bounds in 

Table 1. 

2.2.2. Validate Dataset and Get Response Set Y 

Next, we acquire response set Y for each data point 

using manual simulations. A manual simulation is a 

step-by-step calculation performed manually by naval 

engineers. As explained in the spiral design concept 

above, this manual simulation is usually time-

consuming. A naval architect takes days to collect data 
and perform manual simulations for initial calculations. 

Later, the obtained data (decision variables with their 

corresponding response set) are trained by using three 

different surrogate models separately: BPNN-PSO, 

Kriging, and MLP. 

2.2.3. BPNN-PSO 

In this surrogate model, PSO is used to optimize the 

network parameters of BPNN. The BPNN topology is 

shown in Figure 3 [10]. Particles from PSO represent 

each connection weight and bias of BPNN, so the 

dimension of particles are calculated using: 

𝑑 = 𝑛𝑖𝑛𝑝 × 𝑛ℎ + 𝑛ℎ × 𝑛𝑜𝑢𝑡 + 𝑛ℎ +  𝑛𝑜𝑢𝑡                (4) 

where 𝑛𝑖𝑛𝑝 is the number of inputs (the number of 

design variables), 𝑛ℎ is the number of the hidden nodes, 

and 𝑛𝑜𝑢𝑡 is the number of outputs. Later, the particles 

are optimized using the formula: 

𝑓𝑖𝑛𝑑 𝒵𝑜𝑝  = arg min
𝑧

𝑓(𝑧) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑧 ∈ (0,1)𝑑  

where 𝑧 = [𝑧0, … , 𝑧𝑑  ] is a PSO particle, 𝒵𝑜𝑝 is optimal 

positions of particles, and 𝑓(𝑧) is the scalar fitness 

function for the neural network to minimize the mean 

square error (MSE). 

2.2.4. Kriging 

Kriging, or the Gaussian Process Regression model, is 
a generic supervised learning method that calculates the 

probability distribution over all admissible functions 

that fit the data. This Gaussian Process is defined by a 

mean function 𝑚(𝑥) and positive definite covariance 

function 𝑘(𝑥, 𝑥′) [18]: 

Figure 2. Research Stages Flowchart 

Figure 3. The topology of a three-layer BPNN 

(5) 
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𝑓(𝑥) ~ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′))                                      (6)                                    

jointly Gaussian with zero mean and covariance given 

by: 

𝑘(𝑥, 𝑥′) = exp (−
1

2
|𝑥 − 𝑥′|2) 

where 𝑥 and 𝑥′ represent values in the input space. In 

this case, the mean is 0, as it is assumed that there is no 

noise in the data. 

2.2.5. MLP 

MLP is a fully connected multi-layer perceptron 

commonly used for regression and classification tasks. 

The topology of MLP is similar to that of Figure 3, 

except that it may be constituted by more than one 
hidden layer. Each node connects inputs x to outputs y; 

each node sums the inputs and applies the weighting 

factor𝑤𝑖,𝑗 and transforms to the data. Then the 

backpropagation algorithm is used to update the 

weights of the network [11]. After the training, the final 

weights are defined as an approximating output. In this 

study, we use five hidden layers for MLP, with 60 

hidden nodes for each hidden layer and two output 

layers. 

2.2.6. Construct Surrogate Models 

K-fold cross-validation with K=5 is used in the training 

process to evaluate the models. The best model is 

obtained by calculating the mean absolute error (MAE) 

for each fold of the validation set.  

2.2.7. Optimize Population 

 Finally, we populate and evolve data using MOEA/D 

with each Surrogate Model. NSGA-II is also used to 

compare the results. MOEA/D is an evolutionary 

algorithm (EA) by Zhang (2007) that decomposes a 

multi-objective optimization problem into several 

scalar optimization subproblems and optimizes them 
simultaneously [12]. On the other hand, NSGA-II [13] 

uses a non-dominated sorting-based selection operator 

to create a mating pool by combining the parent and 

child population to select the best N solutions for the 

next generation. 

 Every individual generated in the population is also 

verified using the given constraint. Experiments were 

carried out for each surrogate model, with different 

numbers of population: 100 and 200. Each population 

evolves into three generations: 50, 100, and 200. 

Hypervolume (HV) is used to evaluate the optimization 

results. A hypervolume is an area between a fixed 
reference point and the Pareto front, used as an indicator 

of the quality of a set of solutions that are not dominated 

by other solutions (Pareto fronts) in a multi-objective 

problem, as illustrated in Figure 4 [3]. A Reference 

Point can be obtained from a fixed point dominated by 

all points in the set of effectiveness [14]. From that 

definition, the higher HV can indicate that the algorithm 

performs better for the problem. The reference point in 

this study is fixed and set to [2000, 1200]. This 

reference point means we do not allow the algorithm to 

find solutions with a power requirement exceeding 

2000 kW or a steel weight higher than 1200 tonnes. 

Besides HV, the spread of the Pareto front is also 

considered. This spread is the distribution of the points 

along Pareto front approximations. A smaller distance 

between points in Pareto front approximations indicates 

better-distributed solutions [15]. 

Figure 4. Illustration of hypervolume indicator  

3.  Results and Discussions 

This section discusses the experiment results, from 

surrogate model accuracy to optimization results.  

3.1 Surrogate Model Accuracy 

As previously explained, the size of the initial dataset is 

150, divided into 80:20 for the training and test data. 

The loss function used in this experiment is the MAE. 

As shown in Table 2, the validation score is the mean 

score obtained from each fold in cross-validation, and 

the test score is obtained from the prediction score of 

test data. MLP gets the best performance, represented 

by the most petite MAE for the validation and test data, 

respectively 4.09 and 6.03. BPNN PSO has a slightly 
lower performance than MLP, with the MAE for 

validation data being 7.9 and the test data being 7.2. 

Kriging performs inadequately more than the other two 

models, with MAE 22.2 for validation data and 22.9 for 

test data. 

Table 2. Mean Absolute Error (MAE) for Validation and Test Data 

Model Validation 

MAE 

Test MAE 

Kriging 22.2 22.9 

BPNN-PSO 7.9 7.2 

MLP  4.09 6.03 
 

3.2 Optimization Results 

 Table 3 shows the optimization results comparing three 

surrogate models using MOEA/D and NSGA-II, 

respectively. These results indicate that Kriging 

provides the highest value for hypervolume and the 

fastest computational time. Kriging produces a 
hypervolume value almost twice greater than BPNN-

(7) 
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PSO and MLP, both when using MOEA/D and NSGA-

II. In optimization with MOEA/D, BPNN-PSO has 

higher hypervolume than MLP in a small population. 

Meanwhile, in NSGA-II, MLP produces higher 

hypervolume than BPNN-PSO for all populations and 

generations. 

Table 3. Hypervolume of the non-dominated solution and 

computational time (in Second) using MOEA/D and NSGA-II 
 

Pop/ 

Gen 

Surrogate Model 

Kriging BPNN-PSO MLP 

HV Tim

e 

HV Tim

e 

HV Time 

MOEA/D 

100/50 800.7 26.7 432.1 33.3 429.3 182 

100/100 800.9 53.1 433.3 65.8 430.2 424 

100/200 800.9 133 433.4 165 430.5 1056 

200/50 790.6 67 434.2 89 434.4 533 

200/100 790.6 134 434.8 177 435.1 1012 

200/200 790.6 340 434.9 400 435.1 2158 

NSGA-II 

100/50 800.8 28 409.6 38 412.3 266 

100/100 800.8 54.6 409.6 75 417.8 673 

100/200 800.8 132 409.6 165 417.8 1458 

200/50 800.8 54 409.6 89 417.8 342 

200/100 800.8 107 409.6 177 430.9 692 

200/200 800.8 265 409.6 400 430.9 1384 
 

However, Kriging and BPNN-PSO surrogate models on 

both MOEA/D and NSGA-II did not provide a larger 

hypervolume when increasing the population and 

generation. Meanwhile, MLP still increases 

hypervolume, even though the computational time is 

about an order of magnitude larger than Kriging and 

BPNN-PSO, both using MOEA/D and NSGA-II. For 

optimization algorithm comparison, MOEA/D gives 
better hypervolume results than NSGA-II for BPNN-

PSO and MLP. Meanwhile, Kriging has different 

outcomes. It gets higher hypervolume when optimized 

by NSGA-II. 

Figure 5 shows the distribution of the initial population 

evaluation, and the Pareto front for each surrogate 

model and optimization algorithm are visualized. In 

Figures 5b and 5c, the combination of MOEA/D with 

BPNN-PSO and MLP results in smaller distances 

between points in Pareto front approximations. In 

Figures 5e and 5f, the combination of NSGA-II with 
BPNN-PSO and MLP results in a more significant 

distance between the facts, but the distribution still 

looks uniform when MOEA/D is used. 

For the objective values, we can see from these figures 

that 𝑓1 , and 𝑓2 have contradictory values. When the 

solution obtains the lowest possible value for the 

objective function 𝑓1, the value of the objective function 

𝑓2  would be higher, and vice versa. In Figures 5b and 

5c, BPNN-PSO and MLP combined with MOEA/D 

have these contradictory values for 𝑓1  and 𝑓2  in the 

Pareto front, as well as BPNN-PSO and MLP, 

combined with NSGA-II in Figures 5e and 5f. The 

original design has a power requirement of 1290 kW for 

𝑓1  value and steel weight of 992 tonnes for 𝑓2  value, 

marked in red in Figure 5. Meanwhile, the MLP Pareto 

front with MOEA/D and NSGA-II in Figures 5c and 5f 

are contradictory when their 𝑓1 values are 1340 and 

1385, respectively, and 𝑓2  reached their minimum, 819 

and 831, respectively. These 𝑓1  values are slightly 

higher than the 𝑓1 deal with the original design. At the 

same time, BPNN-PSO Pareto front with MOEA/D and 

NSGA-II in Figures 5b and 5e have 𝑓1 values of 1703 

and 1614, respectively, when 𝑓2  went to its minimum, 

namely 753 and 761.  

Moreover, when we compare objective values to the 

expert's original design, each optimization result has the 

most interesting minimized objectives in their Pareto 

front design variation, marked in blue in Figure 5. 

MOEA/D with BPNN-PSO has a marked 𝑓1 value of 

533 kW and an 𝑓2  weight of 956 tonnes. At the same 

time, MOEA/D with MLP has a close marked 𝑓1 value 

of 519 kW and an f2 value of 926 tonnes. NSGA-II with 

BPNN-PSO and MLP give the same pattern. NSGA-II 

with BPNN-PSO has a marked 𝑓1  value of 532 kW and 

an 𝑓2   value of 945 tonnes, while NSGA-II with MLP 

has 519 kW for 𝑓1 value and 926 tonnes for 𝑓2 value. 
Therefore, the marked objective values of BPNN-PSO 

and MLP for both optimization, MOEA/D, and NSGA-

II, improve the design with around 58% smaller 

adequate power and 6% less steel weight than the 

original design.  Afterward, even though BPNN-PSO 

and MLP have equally lower hypervolume for 

optimization, they have adequate model accuracy 

performance (MAE).  

On the other hand, Kriging has the lowest model 

accuracy performance but has the highest hypervolume. 

MOEA/D with Kriging has marked 𝑓1  value in Pareto 

Front of 484 kW and the 𝑓2 value of 813 tonnes. 

Meanwhile, NSGA-II with Kriging has 366 kW for 𝑓1  

value and 796 tonnes for 𝑓2 value. Compared to the 

original design, the marked objective values of Kriging 

with MOEA/D and NSGA have around 62% smaller 

effective power and 18% less steel weight. However, 

these values are far lower than BPNN-PSO and MLP, 

as well as the original design. The data spread in figures 

5a and 5d also look different compared to BPNN-PSO 
and MLP for both MOEA/D and NSGA-II. They also 

have a more considerable distance between points in 

Pareto front approximations. It could happen because 

the model error affects the lowest objective value, thus 

affecting the hypervolume value. Therefore, 

hypervolume cannot be the only performance metric for 

optimization with the surrogate model approach. 
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Nevertheless, hypervolume can still measure 

performance between optimization algorithms with the 

same surrogate model.  

4.  Conclusion 

In this study, three surrogate models: Kriging, BPNN-

PSO, and MLP, have been employed for multi-
objective optimization in the early stages of the ship 

design problem. MLP surrogate models get the best 

performance with MAE 6.03, while BPNN-PSO gets 

the second position with MAE 7,2. These two MAE 

results have around three times lower than Kriging. 

Kriging has the most down computational time, 28 

seconds. In comparison, MLP has the longest 

computational time, namely 23 minutes. Therefore, that 

indicates that the surrogate model can replace manual 

simulations that are usually carried out manually by the 

naval expert, which takes days.  

For optimal results, each combination of surrogate 
model and optimization algorithm has the most 

interesting minimized objectives in their Pareto front 

design variation compared to the expert's original 

design. The significant objective values of BPNN-PSO 

and MLP for both optimizations, MOEA/D and NSGA-

II, improve the design with around 58% smaller 

adequate power and 6% less steel weight than the 

original design. BPNN-PSO and MLP also have a better 

spread on the approximation of the Pareto front than 

Kriging for both optimization algorithms, MOEA/D 

and NSGA-II. Meanwhile, Kriging, which has the 
lowest model accuracy performance, produces the 

highest hypervolume and far lower objective values 

than BPNN-PSO and MLP for both optimization 

algorithms, MOEA/D and NSGA-II. It could happen 

because the model error affects the lowest objective 

value, thus affecting the hypervolume value. Therefore, 

hypervolume cannot be the only performance metric for 

optimization with the surrogate model approach. 

Nevertheless, hypervolume can still measure 

performance between optimization algorithms as long 

as they have the same surrogate model. 

For future work, it is interesting to study how to 
increase neural network-based surrogate model 

accuracy with lower computational time. At the same 

time, explore other evaluation metrics for surrogate 

model-based multi-objective algorithms to apply them 

in this problem domain. 

f. NSGA-II with MLP surrogate model c. MOEA/D with MLP surrogate model 

b. MOEA/D with BPNN-PSO surrogate model e. NSGA-II with BPNN-PSO surrogate model 

d. NSGA-II with Kriging surrogate model a. MOEA/D with Kriging surrogate model 

Figure 5. Pareto frontier obtained by Kriging, BPNN-PSO, and MLP Surrogate model on MOEA/D and NSGA-II 



 Nanda Yustina, Ari Saptawijaya 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 5 (2022)  

DOI: https://doi.org/10.29207/resti.v6i5.4248 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

789 

 

 

Acknowledgments 

This work is supported by BRIN (Indonesian National 

Research and Innovation Agency) Education and 

Training Center under SAINTEK Scholarship. We also 

thank Dr. Ir. Iskendar, MS., and Noor Mohammad 

Ridha Fuadi, S.T., for their help in problem 

identification as naval experts and their assistance in 

data acquisition.  

Reference 

[1] N. D. Charisi et al., “Parametric Modelling Method based on 

Knowledge Based Engineering: The LNG Bunkering Vessel 

Case,” 2020, p. 17. 

[2] S. Chakraborty, “How The Power Requirement Of A Ship Is 

Estimated?” Accessed: Feb. 05, 2021. [Online]. Available: 

https://www.marineinsight.com/naval-architecture/power-

requirement-ship-estimated/ 

[3] R. de Winter, B. van Stein, M. Dijkman, and T. Bäck, 

“Designing Ships Using Constrained Multi-objective Efficient 

Global Optimization,” Springer International Publishing, 

Cham, 2019. doi: 10.1007/978-3-030-13709-0_16. 

[4] R. de Winter, J. Furustam, T. Bäck, and T. Muller, “Optimizing 

Ships Using the Holistic Accelerated Concept Design 

Methodology,” in Practical Design of Ships and Other Floating 

Structures, Singapore, 2021, vol. 65, pp. 38–50. doi: 

10.1007/978-981-15-4680-8_3. 

[5] A. Charchalis, “Determination Of Main Dimensions And 

Estimation Of Propulsion Power Of A Ship,” J. KONES 

Powertrain Transp., vol. 21, no. 2, 2014, doi: 

10.5604/12314005.1133863. 

[6] S. H. Kim and F. Boukouvala, “Machine learning-based 

surrogate modeling for data-driven optimization: a comparison 

of subset selection for regression techniques,” Optim. Lett., vol. 

14, no. 4, pp. 989–1010, Jun. 2020, doi: 10.1007/s11590-019-

01428-7. 

[7] D. Li, P. A. Wilson, Y. Guan, and X. Zhao, “An Effective 

Approximation Modeling Method for Ship Resistance in 

Multidisciplinary Ship Design Optimization,” in Volume 2: 

CFD and VIV, San Francisco, California, USA, Jun. 2014, p. 

V002T08A023. doi: 10.1115/OMAE2014-23407. 

[8] H. Jafaryeganeh, M. Ventura, and C. Guedes Soares, 

“Application of multi-criteria decision making methods for 

selection of ship internal layout design from a Pareto optimal 

set,” Ocean Eng., vol. 202, p. 107151, Apr. 2020, doi: 

10.1016/j.oceaneng.2020.107151. 

[9] T. Abramowski, “Application of Artificial Intelligence 

Methods to Preliminary Design of Ships and Ship Performance 

Optimization,” Nav. Eng. J., p. 13, 2013. 

[10] W. Qin, J. Dong, M. Wang, Y. Li, and S. Wang, “Fast Antenna 

Design Using Multi-Objective Evolutionary Algorithms and 

Artificial Neural Networks,” in 2018 12th International 

Symposium on Antennas, Propagation and EM Theory 

(ISAPE), Hangzhou, China, Dec. 2018, pp. 1–3. doi: 

10.1109/ISAPE.2018.8634075. 

[11] A. Whyte and G. Parks, “Surrogate Model Optimization Of A 

‘Micro Core’ Pwr Fuel Assembly Arrangement Using Deep 

Learning Models,” p. 8, 2020. 

[12] Qingfu Zhang and Hui Li, “MOEA/D: A Multiobjective 

Evolutionary Algorithm Based on Decomposition,” IEEE 

Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007, 

doi: 10.1109/TEVC.2007.892759. 

[13] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Fast 

Elitist Non-dominated Sorting Genetic Algorithm for Multi-

objective Optimization: NSGA-II,” in International 

Conference on Parallel Problem Solving From Nature, Berlin, 

Heidelberg, 2000, pp. 849–858. doi: 10.1007/3-540-45356-

3_83. 

[14] T. Peter, “Using Deep Learning as a surrogate model in Multi-

objective Evolutionary Algorithms,” Otto-von-Guericke-

Universität, Magdeburg, 2018. 

[15] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon, 

“Performance indicators in multiobjective optimization,” Eur. 

J. Oper. Res., vol. 292, no. 2, pp. 397–422, Jul. 2021, doi: 

10.1016/j.ejor.2020.11.016. 

[16] K. Deb, “Multi-Objective Optimization Using Evolutionary 

Algorithms: An Introduction,” p. 24, 2011. 

[17] A. Charchalis, “Estimating The Main Dimensions Of The 

Ship’s HuLL,” J. KONES Powertrain Transp., vol. 25, no. 2, 

2018. 

[18] C. E. Rasmussen and K. I. Williams, Gaussian Processes for 

Machine Learning. MIT Press, 2006. [Online]. Available: 

www.gaussianprocess.org/gpml 

 

 

 


