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Abstract  

Based on the WHO Report related to malaria, it is estimated that there will be 241 million malaria cases and 627,000 deaths 
from this disease globally in 2020 with the number of deaths increasing yearly. Preventing malaria disease conditions is 
through early detection. A more quick and precise malaria diagnosis method was required to simplify and reduce the detection 
process. Medical image classification could be carried out rapidly and precisely using machine learning or deep learning 
techniques. This research aims to diagnose malaria by classifying images of malaria blood cells using Deep Learning with a 

Transfer Learning approach. By utilizing various fine-tuning procedures and implementing data augmentation proposed 
method develops the method from previous studies. Two types of models Frozen ResNet50 and Fine-Tune ResNet50 are being 
tested. The dataset utilized will be augmented to improve model performance. This study makes use of the "NIH Malaria Cell 
Images Dataset" a dataset that contains a total of 27,660 image data. It is divided into two classes: parasitized and uninfected. 
The results are improved from previous research using the fine-tuned VGG16 model with an accuracy of 96% compared to 
this study using the fine-tuned ResNet50 model which achieved an accuracy score of 98%. 
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1. Introduction  

Plasmodium parasites infect female Anopheles 

mosquitoes and then cause an acute febrile illness that 

can be transmitted to humans and is known as malaria. 

P. falciparum and P. vivax are the two parasite species 

that cause malaria in humans out of five parasite species 

[1]. According to predictions from the WHO report on 

malaria, there will be 241 million cases of the disease 

worldwide in 2020 and 627,000 fatalities from it, with 

the number of deaths continuing to rise yearly [2]. 
Meanwhile, in Indonesia, according to the Indonesian 

Ministry of Health, the province with the most malaria 

cases in Indonesia is Papua, where there were 86,022 

cases reported in 2021 [3]. 

The best method to prevent malaria disease conditions 

is early detection and treatment. The most reliable and 

widely used method for the diagnosis of malaria 

continues to be the thick or thin blood smear 

examination [4]. A blood smear examination is used to 

diagnose malaria disease and produces reliable results. 

Parasites in blood samples will be more easily 

recognized and detected during the Giemsa staining 
procedure. Red blood cells (RBCs) and Plasmodium 

parasites are stained with Giemsa. A staining object is 

required to detect Plasmodium parasites [5]. 

As the development of computer vision progresses by 

implementing machine learning or deep learning 

methods, they can be used to classify medical images 

quickly and accurately [6]. Canonically, image 

classification with machine learning approaches such as 

Naive Bayes, Decision Tree, Linear Discriminant, 

Support Vector Machine (SVM), and K-Nearest 

Neighbor (K-NN) has been widely used in general for 
malaria classification [7][8][9][10][11]. However, the 

challenge of using machine learning is the suitability of 

selecting the type of feature extraction. Color, shape, 

and texture, along with all their derived aspects, are 

among the selected features. Therefore, the success of 

recognition will be determined by the appropriate 

choice of features [12][13]. 

Currently, deep learning is an alternative method to 

perform automatic feature extraction at the initial layer 

of the network and capture various primitive features 

well [14]. Deep learning has been used in research on 

image classification, specifically blood smears 
containing malaria-infected cells. Previous research 

used a Convolutional Neural Network (CNN) VGG16 
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to classify images of malaria disease with an accuracy 

of 92% for Frozen VGG16 and 96% for fine-tuned 

VGG16 [15]. There are also similar classification 

problems using the same dataset, with several deep 

learning methods and different results [16][17][18][19]. 

The use of deep learning for classification also struggles 

to give the best results. This depends on the dataset 

used. The learning process in deep learning algorithms 

is significantly affected by the amount of data in each 

class. In addition, the choice of hidden layers, 
convolutional layer models, and other CNN parameters 

have a huge impact on the accuracy of results [20]. 

A. S. B. Reddy and D. S. Juliet published the first article 

utilizing Transfer Learning ResNet50 for diagnosing 

malaria [21]. Transfer Learning-based classification has 

demonstrated relatively high performance for medical 

image classification over the past few years. This 

research contributes to developing previous research 

[15] [21]. Utilizing an identical dataset with the addition 

of data augmentation techniques to help optimize the 

proposed method, which is a shortcoming in this study. 
A ResNet50 model to classify malaria blood cell images 

with accuracy and evaluation metrics values in 

comparison to previous research methods. 

2. Research Methods 

The research begins with the collection of Giemsa blood 

smear sample image datasets, which are then separated 

into three folders called train data, validation data, and 

test data. Details of the research stages are shown in 

Figure 1. 

 

Figure 1. Research Stages 

Next, change the resolution of each image in the dataset. 

The last stage in data preprocessing is performing data 

augmentation. After the data preprocessing stage, the 

processing of data grouping results will continue. The 

train data and validation data will be used to train the 

model, and the test data will be used to validate the test 

results with the specified model and parameters.  

Evaluating the Fine-Tuned Resnet50 model architecture 

which involves going into the modification flow by 

implementing various training parameters and model 

architecture between the two types of models if there is 

still no appreciable improvement in model performance 

from Frozen Resnet50.  

2.1 Dataset 

The dataset being used is a dataset originating from 

kaggle.com [22] entitled "Malaria Cell Images Dataset" 

which is a dataset sourced from the National Institute of 

Health (NIH) [23]. 

Within this dataset, there are two class categories, 

namely Parasitized and Uninfected, where each PNG 

format image data has a resolution that varies between 

150 x 150 pixels, and the total amount of data is 27,558 

malaria blood smear image datasets. Based on Figure 2, 
the top 5 images are blood smear images that have been 

infected with malaria, while the bottom 5 images are 

blood smear images that are not infected with malaria. 

 

Figure 2. Images of Giemsa Malaria Blood Smears 

At the Chittagong Medical College Hospital in 
Bangladesh, thin blood smear slides stained with 

Giemsa were taken from 150 P. falciparum-infected 

patients and 50 healthy patients. A slide was 

photographed for each minuscule field of view using the 

smartphone's built-in camera. The Giemsa blood smear 

slides image dataset has a balanced distribution of data 

between Parasitized and Uninfected classes. The 

percentage of data distribution used in this study is 

training by 70%, validation by 10%, and testing by 20% 

which is described in Table 1. 

Table 1. Dataset Table 

Data Class Total 

Train Parasitized 

Uninfected 

9645 

9645 

Validation Parasitized 

Uninfected 

1378 

1378 

Test Parasitized 

Uninfected 

2756 

2756 



 Aris Muhandisin, Yufis Azhar 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 5 (2022)  

DOI: https://doi.org/10.29207/resti.v6i5.4322 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

893 

 

 

2.2 Data Augmentation 

The data augmentation is performed by manipulating 

each existing image into a different form instead of 

adding new image variations, so the number of datasets 

before and after the augmentation process does not 

change [24][25]. The Image Data Generator is used 

during the augmentation process to change the shape of 

each image in the dataset by activating several 

parameters as shown in Table 2. 

Table 2. Parameter Type enabled in the Data Augmentation 

Parameter Value 

featurewise_std_normalization 

samplewise_std_normalization 

rotation_range 

False 

False 

30° 

zoom_range 

horizontal_flip 

0,3 

True 

vertical_flip False 

Ensuring that the system can still distinguish between 

different types of images as data for Parasitized and 

Uninfected classes when the classification process is 

performed, each image in the dataset will be partially 
randomly enhanced according to the activated 

parameters.  

2.3. Fine-tuning 

Fine-tuning refers to a technique that involves 

unfreezing the top few layers of the frozen base model 

and jointly training the newly added classifier layer and 

the final layer of the base model. This provides an 

opportunity to "fine-tune" the high-level feature 

representation of the base model to make it more 

applicable to a particular task [26]. 

2.4 Model Architecture 

The Model Architecture uses a CNN model by applying 

the transfer learning method ResNet50, which has been 

fine-tuned by researchers with the addition of several 

layers in the top layer of ResNet50 which does not use 

the default top layer  [27]. The proposed architecture of 

Fine-Tune ResNet50 can be found in Figure 3. 

 

Figure 3. Fine-Tune ResNet50 model Architecture 

In the fine-tuned model the weights of the initial 26 

convolution blocks are frozen. The block 27 

convolution and pooling block 27 convolution layers all 

have trainable states. Together with the added classifier 

itself, all 27 block convolution layers were trained. For 

this model, the classifier uses 3 dense layers with 256, 

512, and 768 filters with Mish activation function, for 

every after the first three dense layers added a Batch 

Normalization layer and a Dropout layer of 0.5 and an 

additional 1 last sigmoid dense layer.  

2.5 Mish Activation Function 

ReLU is a well-known activation function that is 

commonly used. In this study, the Fine-tune ResNet50 
model is proposed to apply a more powerful activation 

function, namely Mish. The following is the 

mathematical definition of the Mish activation function 

in Equation 1 and ReLU in Equation 2 [28]. 

𝑓(𝑥) = 𝑥𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥))             (1) 

𝑓(𝑥) = max (0, 𝑥)                                     (2) 

While tanh() returns the hyperbolic tangent of a 

number, softplus() is a smooth approximation to ReLU 

and max() determines the highest value. The self-

selecting gate in the Mish activation function is 

considered more advantageous compared to other 

activation mechanisms such as ReLU with a point-to-

point function. Any CNN framework can be used to 

implement Mish, which ensures a non-monotonic 

output and produces a smooth output for each point. 

2.6 Adamax Optimizer 

Adaptive Max Pooling, also known as Adamax, is an 
extension of the Adaptive Movement Estimation 

(Adam) Optimization algorithm. The Adamax 

optimization approach is used to improve model 

performance and reduce model network errors. The 

following are the equations of Adamax at Equation 3, 

Equation 4, Equation 5, Equation 6, Equation 7 

[29][30]. 

𝑚0 = 0                (3) 

𝑢0 = 0                (4) 

𝑔𝑡 = 𝑓′(𝑥(𝑡 − 1))               (5) 

𝑚𝑡 =  𝛽1𝑚(𝑡 − 1) + (1 − 𝛽1)𝑔𝑡             (6) 

𝑢𝑡 = max (𝛽2𝑢(𝑡−1), 𝑎𝑏𝑠(𝑔𝑡))             (7) 

Where 𝑚0 is the first momentum; 𝑢0  is the infinity 

norm; 𝑔𝑡 is the gradient. The abs() function determines 

the absolute value and max() selects the parameter with 

the highest value. The alpha value for the adamax 

optimizer hyperparameter or initial step size starts with 

2e-4 [31]. 

2.7 Test Scenario 

In this study, two classes will be classified, which are 

Parasitized and Uninfected Giemsa blood smear 

samples, then the dataset will be divided into three types 
starting from train data, validation data, and test data 

will be used for training and testing models. the 
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following are 3 main test scenarios performed with data 

augmentation as shown in Table 3. 

Table 3. Main Test Scenario 

Model Optimizer Activation 

Function 

Learning 

Rate 

Frozen ResNet50 

Fine-Tune ResNet50(1) 

Adam 

Adamax 

ReLU 

Mish 

1e-4 

2e-4 

Fine-Tune ResNet50(2) Adamax Mish 3e-4 

3. Results and Discussions 

The accomplished steps based on the method 

arrangement given in the research method constitute the 

findings of this study. The "Malaria Cell Images 
Dataset" is a dataset that includes two classes: 

Uninfected and Parasitized. The data is further divided 

into training, validation, and test data with a ratio of 

70%, 10%, and 20% after being extracted from zip 

format. Each training, validation, and a test set of data 

were scaled to 224 by 224 pixels. To achieve the highest 

intensity for each image, the dataset is divided by 255 

during the normalization procedure. Also, every 

image's size has been modified to a single size, and the 

image data is included in a single layer.  

Several data augmentation techniques will be put into 
practice in the steps that follow randomly rotating the 

image by 30° due to was already sufficient for this case 

and rotating the image at 30° does not rotate the image 

at 30°, but the image is rotated randomly between 0° 

and 30° at each epoch. this is useful for augmentation. 

where each epoch, the model will be trained using a 

different image.  

A fundamental weakness of the VGG architecture, 

which is the vanishing gradient problem, was one of the 

reasons ResNet50 was implemented. By examining the 

accuracy validation graph from the previous study [15], 

there is a less stable upward and downward trend. The 
vanishing gradient problem is addressed by the ResNet 

design. Also, VGG is slower than the more modern 

ResNet architecture, which incorporates the concept of 

residual learning and is a considerable improvement. 

To find out the effect of data augmentation, an attempt 

we also made to test using the best method, Fine-Tune 

ResNet50(2) model without data augmentation, which 

will be explained thoroughly in the next chapter. 

3.1 Model Performance Comparison 

Furthermore, the Resnet50 model that has been made 

will be run with the loss_binary cross-entropy 
parameter because it only has two classes, with a batch 

size of 20, and 100 epochs. After the training process, 

the Frozen and Fine-Tune Resnet50 models with 

different parameters produce differences in model 

accuracy and the results are in Table 4. 

 

Table  4. Accuracy Score of Each Scenario 

Model Accuracy 

Frozen ResNet50 96%  

Fine-Tune ResNet50(1) 97%  

Fine-Tune ResNet50(2) 98% 

From the experiments conducted, all models with 
higher learning rates have better accuracy values, but 

there are different parameter usages. The use of the 

Adamax optimizer with the Mish activation function 

and an increase in the learning rate in the fine-tuned 

model led to an increase in the accuracy value of the 

Frozen Resnet50 by 2%. 

Based on the results of the classification report, each 

experiment has different precision and recall values 

between classes. In Table 5, the precision value of Fine-

Tuned Resnet50 with a higher learning rate has an 

average increase in precision and recall value of 1% 

compared to the Frozen Resnet50 model with a lower 
learning rate when correctly predicting the Parasitized 

class among the Uninfected class. 

Table 5.  Table of Precision and Recall Values for Each Scenario 

Model Class Precision Recall 

Frozen ResNet50 

 

Fine-Tune ResNet50(1) 

Parasitized 

Uninfected 

Parasitized 

Uninfected 

97% 

95% 

98% 

96% 

95% 

97% 

96% 

98% 

Fine-Tune ResNet50(2) Parasitized 

Uninfected 

99% 

97% 

97% 

99% 

Since the results of some of the metrics to be presented 

from Fine-Tuned ResNet50(1) are not appreciably 

different from Fine-Tuned ResNet50(2), it is considered 

not to be discussed further. Frozen Resnet50 model 

training process shows the loss and accuracy plot results 

listed in Figure 4 and Figure 5. Following the training 

process of Frozen ResNet50 showing results obtained 
by loss plot show the continuous linear increase in each 

epoch with a val_accuracy value of 96.09% and a 

val_loss that is already quite low. 

 
Figure 4. Loss plot for Frozen ResNet50. 
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         Figure 5. Accuracy plot for Frozen ResNet50. 

Table 6 below is the result of the test model without and 

with Data Augmentation from method Fine-Tune 

ResNet50(2). A model with Augmented data can 

gaining more 2% higher results in precision and recall 

values compared to the without augmentation. 

Table 6.  Table of Precision and Recall Values for Effect of Data 

Augmentation in model performance Fine-Tune ResNet50(2) 

Data Augmentation Class Precision Recall 

Disabled Parasitized 

Uninfected 

99% 

95% 

95% 

99% 

Enabled Parasitized 

Uninfected 

99% 

97% 

97% 

99% 

The following figures 6 and 7 show the training result 

plots of Fine-Tune ResNet50(2) without the data 

augmentation process. The loss and accuracy plots 

demonstrate severe overfitting conditions, particularly 

in the loss plot where the val_loss and train loss values 

have a gap that is quite visibly present between epochs 

30 to 100. The result of val_accuracy is 96.95%, while 
train_accuracy is higher at 99.75% at the 100th epoch 

which is probably the highest among all methods that 

use data augmentation, and val_loss is also higher than 

train loss. 

  

Figure 6. Loss plot Fine-Tune ResNet50(2) Without Data 

Augmentation. 

Figure 7. Accuracy plot Fine-Tune ResNet50(2) Without Data 

Augmentation. 

Figures 8 and 9 show the loss value and accuracy results 

of Fine-Tune ResNet50(2) with the Data Augmentation 
in best fit condition than the same model or method 

without Data Augmentation shown before, also the 

accuracy plot is more stable than the Frozen ResNet50 

model. The resulting val_accuracy value is 97.60% with 

a relatively low val_loss value. 

 
         Figure 8. Loss plot for Fine-Tune ResNet50(2). 

 
Figure 9. Accuracy plot for Fine-Tune ResNet50(2). 

Finally, Figure 10 shows that the ROC curve generated 

by the Fine-Tuned ResNet50(2) model is better than the 

Frozen ResNet50. This is evidenced by the fine-tuned 

ResNet50(2) ROC curve is closer to a sensitivity value 

of 1 and a higher specificity value. 
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Figure 10. ROC curve for Frozen ResNet50 and Fine-Tune 

ResNet50(2). 

After carrying out the above 3 experiments, the use of a 

higher learning rate with activation function Mish in the 

Fine-Tuned ResNet50 model performed better than the 

Frozen ResNet50 model. This can be proven by the 

decrease in val_loss value in the Fine-Tune 

ResNet50(2) model and val_accuracy, which always 

increases in both fine-tuned models. 

3.2 Confusion Matrix 

To evaluate the effectiveness of the developed 

classification method, the confusion matrix is used as 

the classification evaluation. The confusion table shown 

in Figure 11 is generated by Frozen ResNet50. From the 
figure, it is obvious that there are 2628 correctly 

predicted image data and 128 incorrectly predicted 

image data in the Parasitized class. In addition, 2669 

image data points from the Uninfected class were 

correctly predicted by the model, while 87 image data 

points from this class were incorrectly predicted. 

 
Figure 11. Confusion matrix of Frozen ResNet50 

 
Figure 12. Confusion matrix of Fine-tune ResNet50(2) 

The confusion matrix results of Fine-Tune ResNet50(2) 

are then shown in Figure 12. The confusion matrix 

below shows that the Parasitized class correctly predicts 

2661 image data points, while 95 image data points are 

wrongly predicted. For the Uninfected class, there are 

2718 correctly predicted image data and 38 incorrectly 

predicted image data. 

3.3 Performance Comparison of the Best Model with 

previous research 

After performing several sets of test scenarios, the next 

step is to compare the performance of the best model 

with the results of the accuracy values obtained in 
previous studies. Based on Figure 13, the classification 

report on the Fine-Tuned ResNet50(2) model uses a 

learning rate of 3e-4 where it obtains an accuracy value 

of 98% and 99% precision in the Parasitized at class 0 

and 97% for the Uninfected at class 1. 

 
Figure 13. Classification report for the Fine-Tune ResNet50(2) 

Table 7 below describes the results of research that 

produced the Fine-Tune ResNet50(2) model as the best 

model, where this model can exceed the accuracy of the 

Fine-Tune VGG19 [15] model in previous studies by 

2%, Frozen VGG16 [15] by 6% and for ResNet50[21] 

by 3% with the different fine-tuning procedure. 

Table 7. Accuracy Score of Each Scenario 

Model Dataset Accuracy 

Frozen VGG16[15] 

ResNet50[21] 

NIH Malaria 

NIH Malaria 

92% 

95% 

Our Frozen ResNet50 NIH Malaria 96% 

Fine-Tune VGG19[15] 

Our Fine-Tune ResNet50(2) 

NIH Malaria 

NIH Malaria 

96% 

98% 

4.  Conclusion 

After conducting all stages of the research, it can be 

concluded that in the case of malaria disease image 

classification by utilizing data augmentation techniques 

described above to optimize ResNet50 in the Frozen 

model shows a good accuracy value of 96%. However, 

by performing a fine-tuning procedure using the Mish 

activation function with the Adamax optimizer and 

adjusting the learning rate, the accuracy increased by 
2% also the data augmentation is proven to reduce 

overfitting conditions. For more comprehensive testing, 

different gradient descent optimization, such as Nadam 

or SGD, can be utilized to improve model performance, 

allowing for the possibility of additional study. 

Although several variables, such as the epochs, 

frequency validation, and batch size, are configurable. 

Some suggestions above are aimed to achieve better 

accuracy results. 
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