Accredited Ranking SINTA 2

Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021 Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Requirement Elicitation Modeling Using Knowledge Acquisition in Automated Specification Method

Aminudin Aminudin¹, Hafizh Salsabila Pradana²*, , Ilyas Nuryasin³ ^{1,2,3}Department of Informatics, Faculty of Engineering, Universitas Muhammadiyah Malang ¹aminudin2008@umm.ac.id, ²hafizhsalsabilap@webmail.umm.ac.id, ³ilyas@umm.ac.id

Abstract

Errors often occur during the requirements elicitation stage, causing failure of the software development process as a whole so that the system built cannot be used optimally, this data is obtained from survey data from several large companies involved in technology development. To overcome this problem, this study tries to apply elicitation requirements using the KAOS method in the case study of the SMM Reseller ordering system to obtain system requirements that are in accordance with the goals and objectives of each existing stakeholder. Based on the elicitation of system requirements, functional requirements are generated which include, automatic orders, automatic payments, manage product sales, manage orders, manage payment methods, manage problem orders, manage customer data, manage company information, automatic email notifications, and sales statistics information. The results of this study are a table of functional requirements that have been declared valid and in accordance with the goals and requirements of each stakeholder after evaluating and validating the results for each stakeholder involved.

Keywords: requirements elicitation; requirements engineering; knowledge acquisition in automated specifications; software engineering; goal tree model; functional requirements

1. Introduction

Based on survey data obtained and carried out by large companies engaged in technology development, it is stated that the failure of a software development process is caused by a lack of maximum data mining process or requirements engineering process for the system to be developed. The European Software Organization states that 40% of projects that have been worked on often experience major problems in the development process because the system requirements to be developed are inconsistent or uncertain. The Standish Report provides survey results that 9,236 IT projects fail because one of the reasons is incomplete requirements or uncertain and changing requirements [1]. The requirements elicitation stage is one of the most difficult stages in the software development process due to several main problems, namely the problem of how large the system will be developed, the problem of understanding between relevant stakeholders, and the problem of changes that occur during the software development process [2].

Requirements elicitation is a stage in the requirements engineering process where all user requirements are searched and collected for documentation so that the software to be developed can meet the requirements and expectations of users later [3]. In the application of requirements elicitation, many companies do not understand how to select the correct requirements elicitation so they simply own or build an information system but do not understand what is actually needed so the effect is that the development project will never be completed or only partially completed and even abandon the existing system. was built because it was deemed not in accordance with the purpose [4]. Therefore, we need an appropriate requirements engineering method so that the basic requirements of the system being developed can be more complete and precise in accordance with the main objectives of the system so that the system created can be of higher quality by using the right and appropriate requirements elicitation and analysis method [5].

Requirements engineering is a process in software development that consists of elicitation, analysis, and identification of a requirement to solve problems that occur from a business process [6]. At this requirements engineering stage, there are several approaches to modeling elicitation results with goal orientation. This elicitation model involves user requirements with the aim of creating a system in software requirements engineering [7]. One method of approach in carrying

Accepted: 31-08-2022 | Received in revised: 12-06-2023 | Published: 12-08-2023

out a requirements engineering is to use the Goal Oriented Requirements Engineering (GORE) method [8]. GORE is a requirements engineering method that is different from other traditional requirements engineering methods. Other traditional requirements engineering models only model their requirements, but GORE also models their goals[9]. In the GORE model, there are several requirements engineering methods, namely: Knowledge Acquisition in Automated Specification (KAOS), I*/Tropos, and Goal-Based Requirements Analysis Method (GBRAM) [7].

The KAOS and I*/TROPOS modeling techniques are the most frequently used methods in requirements engineering[9]. The I*/TROPOS method has the advantage of a more complete requirements mechanism than other GORE methods[10]. This method is one of the methodologies in software development which is more oriented toward the Agent [11]. Because the mechanism requirements are more complete and lengthy, the process in the TROPOS method has the possibility to become more complex and longer. Meanwhile, the strength of KAOS is that it is easy for stakeholders to read or understand the goals that have been made, because the GORE model is equipped with a high-level diagram [8]. The KAOS modeling technique is better when compared to I*/TROPOS, because KAOS is a simpler method and focuses on producing more specific requirements and in accordance with the main goals of the system [9]. KAOS modeling describes a hierarchy of identified requirements into a diagram to make it easier to trace requirements (high traceability) [8]. While the GBRAM method is suitable for determining functional requirements, this method is not sufficient and proven to determine nonfunctional requirements [12].

One of the failures that occur in software development comes from errors in the process of defining and extracting requirements [13]. the success of a software system is measured by the extent to which the system has fulfilled its objectives. Therefore, identifying a goal must be a major and important activity in the development of software systems [10]. Based on the company's general problem where there is a lack of knowledge from requirements engineering so that the system built is not in accordance with the goals and main objectives of the system, an appropriate requirements engineering method is needed so that the functional requirements and non-functional requirements of the online sales system will be developed complete and precise. so as to create a quality and reliable system using elicitation methods and appropriate requirements analysis [5].

To solve the problem of errors in the requirements elicitation process that are not in accordance with the main objectives of the software system, it is necessary to model the results of the requirements elicitation in accordance with the goals and main objectives of the system to be built, namely using the Goal Oriented Requirements Engineering (GORE) method. One of the requirements engineering methods in GORE is Knowledge Acquisition in Automated Specification (KAOS).[13]. The Knowledge Acquisition in Automated Specification (KAOS) method is a goaloriented requirements engineering method and is the first developed and most frequently used in the requirements engineering process [5]. KAOS focuses on realizing and analyzing business processes, then determines the requirements according to business goals[8]. By using KAOS, it is hoped that it can solve problems to map the goals or objectives of a system to become clearer.

Due to the rapid advancement of technology in today's era, buyers can make transactions or orders even remotely, for example using certain platforms or systems, namely ordering systems using internet facilities [14]. This research will apply a goal-oriented method using the Knowledge Acquisition in Automated Specification (KAOS) method in a case study of the SMMReseller ordering system to obtain a model of the requirements of the entire system in accordance with the goals and main objectives of the system to be built so that it can used and developed in subsequent software engineering stages.

2. Research Methods

The methodology used in this research is to use a survey by conducting interviews and interviews aimed at stakeholders or stakeholders in the organizational structure to find out the various requirements and goals in each existing channel as the basis for developing the SMMReseller Ordering System. Figure 1 is a research flowchart that is used as a reference for what steps must be taken in conducting research.

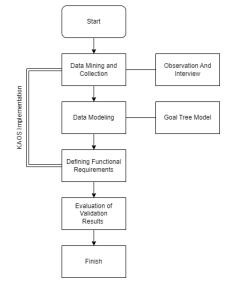


Figure 1. Research Flowchart

Figure 1 explains the research flow starting from Data Collection and Data Collection using interviews with each relevant stakeholder, then the results of the interview will be modeled at a later stage in the form of a Goal Tree Model. Based on the Goal Tree Model diagram that has been obtained, it will be defined in the form of Functional Requirements and in the last stage an evaluation and validation of the results will be carried out for each relevant stakeholder.

2.1. Data Mining and Collection

At this stage, excavation and collection of data requirements from the SMMReseller ordering system begins. Exploration of requirements is carried out using the interview method and providing several questions that lead to system objectives with "why" and "how" to relevant stakeholders [5].

The first process carried out based on the KAOS method is conducting an interview with stakeholders and observing directly the daily operational activities of the company [8]. This initial activity aims to find out in advance the business process or daily workflow and find the requirements of each related actor to find out the main purpose of the system to be built [10].

The sources or actors who will be interviewed to find out the identification of business requirements, goals and problems that exist in SMMReseller in Table 1 below:

Table 1. SMMR Stakeholders

No	Position	Job Desk
A1	Owner	Monitor operational activities and
		find out reports on daily business operations
A2	Administrator/	Responsible for all daily business
	Customer	operations
	Service	
A3	Customers/Us	Place an order in the system as
	ers	needed

Table 1 describes the stakeholders who will be interviewed, these stakeholders get from everyone involved in SMMReseller operations. This table also describes the Job Desk of each stakeholder so that the interview questions posed will be in more detail on each stakeholder's tasks and functions within SMMReseller.

Customer/user requirements are taken from the point of view of the business owner, where the business owner often communicates with clients so they understand what the system requirements are from the customer/user side. Based on the stakeholders who must be interviewed, the question instrument is divided into 3 parts according to position in the SMMReseller business process. The instrument questions were compiled and taken based on the question points in the previous study entitled "Implementation of the Knowledge Acquisition in Automated Specification (KAOS) Method in the Inventory Management Information System at the Engineering Section of TVRI West Java Station" by focusing on questions that aim to find out targets and objectives from each stakeholder. At this stage the application of the KAOS method lies in the questions asked,

The question instruments as interview material for the Business Owner section are in Table 2.

Table 2. Business Owner Interview Question Instrument

No	Question
PO1	How is the operational workflow so far within the scope
	of work of the Business Owner at SMMReseller?
PO2	What are the problems that have often occurred so far in
	daily operational activities as a Business Owner?
PO3	From the point of view of the Business Owner, why
	does SMReseller need to create a centralized system?
PO4	What are the duties and objectives of a Business Owner
	in SMMReseller operational activities?
PO5	Based on the existing assignments, what features and
	what are expected to make the task easier as a Business
	Owner?
PO6	As a Business Owner, who do you usually deal with in
	daily operational activities?
PO7	What kind of system do you want from this
	SMMReseller?

Table 2 lists the question instruments that will be asked of the Business Owner stakeholders during the interview process. This question aims to obtain detailed interview results from the scope of the Business Owner which can later be developed into a system requirement.

The question instruments as interview material for the Administrator section are in Table 3.

Table 3. Administrator Interview Question Instrument

No	Question
PA1	How is the operational workflow so far within the
	Administrator's scope of work at SMMReseller?
PA2	What are the problems that have often occurred so far in
	daily operational activities as an administrator?
PA3	From the Administrator's point of view, why does
	SMMReseller need to create a centralized system?
PA4	What are the duties and objectives of an Administrator
	in SMMReseller operational activities?
PA5	Based on the existing assignments, what features and
	what are expected to make the task easier as an
	Administrator?
PA6	As an administrator, who do you usually deal with in
	daily operational activities?
PA7	What kind of system do you want from this
	SMMReseller?

In Table 3, the instrument questions that will be asked to Administrator stakeholders are written during the interview process. This question aims to obtain detailed interview results from the scope of the Administrator which can later be developed into a system requirement.

The question instruments as interview material for the Customer section are in Table 4. Table 4 lists the question instruments that will be asked of Customer stakeholders from the Business Owner's point of view during the interview process. This question aims to obtain detailed interview results from the scope of the

DOI: https://doi.org/10.29207/resti.v7i4.4464

Creative Commons Attribution 4.0 International License (CC BY 4.0)

customer which can later be developed into a system requirement.

Table 4. Customer Interview Question Instrument

No	Question
PP1	How has the order flow so far been at SMMReseller?
PP2	What are the problems that have often occurred so far in ordering activities at SMMReseller?
PP3	From the customer's point of view, why does SMMReseller need to create a centralized system?
PP4	Do customers usually only make purchases? Are there any other activities? If so, what and how?
PP5	As a customer, who do you usually contact when placing an order or other activities at SMMReseller?
PP6	What kind of system do you want from this SMMReseller?

Based on the results of interviews and observations made at this stage with each stakeholder who represents and is responsible for each part of the organizational structure, the results will be obtained in the form of problems from ordering activities at SMMReseller. These problems are obtained from the conclusions of the answers of each stakeholder which will be written in table form and given a code which will later be used to determine High-Level Goals. In table 5 is an example of the results of the problems based on the answers from stakeholders.

Table 5.	Problem Results
No	Problem
M1	Problem 1
M2	Problem 2
M3	Problem 3
M4	Problem 4

Table 5 is an example of writing a table containing Problem Results. Obtained from the conclusions based on the results of interviews from each *stakeholders* related.

2.2. Data Modeling (Goal Tree Model)

The results of previous stakeholder interviews need to be modeled in a diagram to see more clearly the relationship of each existing entity [5]. Then the data obtained in the previous stage will be defined goals and their derivatives such as soft goals and agents based on the objectives obtained from the results of interviews with related parties [8]. So based on the problems at the previous needs exploration stage, there are several High-Level Goals which will later be developed into modeling using the KAOS method in the form of a Goal Tree Model [8]. The Goal Tree Model is a diagram in the KAOS method that functions to determine the functional and non-functional requirements of the system to be built [15]. Table 6 is an example of the results of High-Level Goals based on the results of interviews with each stakeholder. The High-Level Goals table in Table 6 is a table used in the KAOS method and will contain the objectives of each problem obtained based on the results of interviews with each stakeholder at the previous stage.

Table 6. Results of High-Level Goals

No	Objective	Problem
1	Goals/Goals 1	M1
2	Goals/Goals 1	M2
3	Goals/Goals 1	M3
4	Goals/Goals 1	M3

In the KAOS method, to describe the results of elicitation you can use the KAOS modeling notation in the form of a diagram [8]. The model intended to describe the results of requirements elicitation is the Goal Tree Model (GTM) which is then described using the KAOS modeling notation (Figure 4) [5].

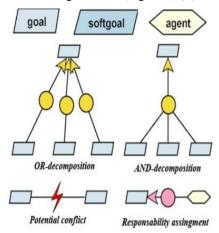


Figure 2. KAOS Modeling Notation[5]

Figure 2 is the notation used to describe and model the system's High Level Goals in the form of a Goal Tree Model diagram. By mapping the softgoals, namely the conditions that must be met to achieve the goal, then the next step is to map the goals and softgoals into a hardgoal [13]. From the modeling results in the form of the Goal Tree Model, at this stage hard goals will be obtained which will serve as the requirements of the system to be developed [8]. Table 7 is an example of hardgoals mapping results.

Table 7. Hardgoals Mapping Results

No	Hardgoals name
G1	Hardgoals name 1
G2	Hardgoals name 2
G3	Hardgoals name 3

These hardgoals are used to simplify the process of determining functional requirements, then the hardgoals that have been obtained will be written in table form and given a code number to later be entered into the functional requirements table.

2.3. Defining Functional Requirements

In the previous stage Goals, Softgoals, Agents, and Hardgoals of the entire system have been defined in the form of diagrams, then from these diagrams it can be derived which eventually becomes hardgoals and can become system functional requirements [5].

Functional requirements are types of requirements that contain services that must be provided, how the system reacts to a user action, and what the system must do in certain situations in a system to be developed [8]. The application of the KAOS method based on the results of the Goal Tree Model obtained in the previous stage is used to determine functional requirements including the goals of each of these requirements. In determining functional requirements, it is also explained which users (users) have a role in using the system in each of its functional requirements.

ruoro or runouonar requirement				
No	User	Description of	Goals	Objective
	Code	Requirement	Goals	Objective
1	A1	Requirement 1	G1	Goal 1
2	A2	Requirement 2	G2	Goal 2
3	A3	Requirement 3	G3	Goal 3

Table 8. Functional Requirement

Table 8 is an example of an instrument resulting from functional requirements which is written in tabular form with several columns explaining each functional requirement such as Number, User Code, Description of Requirements, Goals, and Objectives.

2.4. Evaluation and Validation of Results

The final stage is to evaluate and validate the results of the requirements elicitation model in the form of the Goal Tree Model (GTM) and the results of functional requirements for stakeholders in the SMMReseller organizational structure through the Requirements Validation process. This process can provide a clear picture of predetermined requirements so that they can be implemented into the system. The validation process will be carried out by providing predetermined functional requirements data in the form of diagrams to system stakeholders [13].

In order to validate the results, the results of the research in the form of a Goal Tree Model diagram and Table of Functional Requirements will be conveyed to each stakeholder through online personal discussions such as via Google Meet or Zoom. If in the discussion there is input on the requirements of each stakeholder then it will be discussed right away and if it is approved by each relevant stakeholder then it will be entered into the functional requirements table and will be documented using the Validation Results Table.

Table 9.	Validation	Results
----------	------------	---------

No	Information	Source
1	Addition of Feature A to problem A	Actor1 - Position
2	Addition of Feature B to problem B	Actor2 - Position
3	Addition of Feature C to problem C	Actor3 - Position

Table 9 is an example of a table that will be used to write down input related to the results of the system's Functional Requirements from each stakeholder

3. Results and Discussions

3.1. Data Mining and Collection

Data mining and collection was carried out using interviews and observation methods to each relevant stakeholder who is responsible for the SMRseller organizational structure by providing several questions that are more directed to "why" and "how". In this study the stakeholders involved and who will be interviewed are Business Owners, Administrators/Customer Service, and Customers from the point of view of business owners to get more valid results.

The results obtained in this first stage are in the form of answers from each stakeholder which are then concluded to obtain a Table of Problems, where this table is the problems that often occur in the SMMReseller business process, so that later these problems can be developed to become system requirements at this stage. -the next stage with the aim of eliminating or minimizing the problems that occur at this time.

The first interview was conducted with the Business Owner based on several questions as shown in Table 2 and the results in Table 10 were obtained.

Table 10. Business Owner Interview Answers

No	Question	Answer
JO1	PO1	The workflow is still conventional where if a
		buyer wants to place an order, they have to go through customer service first and go
		through many stages afterward.
JO2	PO2	There are several problems that often arise
302	102	in daily operations: Financial records are
		still mixed up and untidy, the wrong admin
		orders causing losses, too many people are
		involved so that the order process flow takes
		too long, can't monitor directly from each
		admin and customer services involved, the
		target market is too narrow so that buyers
		who place orders do not increase or tend to
		be stagnant
JO3	PO3	It is necessary to create a system to simplify
		the flow of the sales process and minimize
		employee errors and want to improve financial records so that all activities can be
		centralized and can be monitored through
		only one system
JO4	PO4	Check daily financial reports and statistics,
		monitor daily operational activities, carry
		out business development such as
		promotions both offline and online
JO5	PO5	The features needed are clear which can
		reduce existing errors and simplify
		operational activities. Maybe like:
		Automatic ordering system (Start ordering
		until it's finished processing), statistical
		features report all daily data, display information about products and company
		details, other features that make it easier for
		SMMReseller employee job desks
JO6	PO6	Usually associated with the entire team, in a
		day each team in each division is required to
		report activities carried out in a day such as
		the number of incoming orders, the number

No	Question	Answer	No	Question	Answer
JO7	PO7	of error orders, the remaining balance reports at vendors, etc. A system that as much as possible can make every SMRreseller operational activity			errors, perhaps as if the entire process were automated. So that later it can also improve the performance of Admin and Customer Service
		automatic and facilitate every job and can reduce errors from every job. Of course, the system is easy to use and also interesting for everyone.			answers to the question instruments ir e asked to Administrator stakeholders

Table 10 are the answers to the question instruments in Table 2 that were asked to the Business Owner stakeholders. This answer was obtained after going through interviews with the SMMReseller Business Owner.

The second interview was conducted with the head of the Admin/Customer Service division based on a number of questions as shown in Table 3 and the answers obtained can be seen in Table 11.

Table 11. Admin/Customer Service Interview Answers

No	Question	Answer
JA1	PA1	Admin and Customer Service have the
		obligation to handle buyer orders starting
		from filling out the order form until the
		order is processed. Customer Service is in
		charge of direct communication with
		buyers. The admin is in charge of ensuring
		that the buyer's orders are safe and
		appropriate until the order is processed
JA2	PA2	Several problems often occur in this
		division, namely: Incorrect input of orders
		/ incoming orders do not match data from
		buyers, the process flow is too long so that
		quite a lot of buyers do not place orders,
		recording orders that are still often wrong
		and forgotten, checking payments that are
		still manually, buyer data and orders are
		often lost because they are not recorded
142	DA 2	centrally
JA3	PA3	It is necessary to create a centralized
		system to deal with various existing
		problems, so that it can simplify the work
		of Admin and Customer Service
JA4	PA4	The administrator is in charge of handling
		all order processes, starting from inputting
		orders to vendors and reporting on daily
		sales results
		Customer Service in charge of
		communicating with buyers, starting from
		answering buyer questions, receiving
		orders, reporting order processes, and
		reports on the number of daily buyers
JA5	PA5	Maybe more features that can ease the
		work of Admin and Customer Service and
		can reduce errors in this division, such as:
		Automatic ordering, automatic payments,
		automatic recording of all data, automatic
		order reports, and possibly other features
		that support Admin and Customer Service
		work
JA6	PA6	If from the Admin, contact Customer
	1110	Service to receive orders and liaise with
		vendors to input and check orders
		If Customer Service clearly deals directly
		with buyers and conveys orders to the
		Process Admin
JA7	PA7	
JA/	rA/	What is clear is that we need a system that
		can lighten the work and reduce frequent

No	Question	Answer
		errors, perhaps as if the entire process
		were automated. So that later it can also
		improve the performance of Admin and
		Customer Service

n s. This answer was obtained after going through interviews with the SMMReseller Administrator.

The third interview was conducted with the Business Owner but to find out the Buyer's point of view because if you interview only a few buyers, the results obtained will be invalid. Based on several questions as in Table 4 and the results of the answers can be seen in Table 12.

Table 12. Customer/Buyer Interview Answers from a Business **Owner's** Perspective

No	Question	Answer
JP1	PP1	As a buyer, if you want to order, you have
		to chat to Customer Service first, then you
		will be given an order form to fill in the
		order data. Then, payment confirmation is
		done manually by the SMMReseller
		Admin and order status information is
		also done manually by the SMMReseller
		Customer Service. So everything is still
		done manually by employees.
JP2	PP2	Usually, the SMMReseller Admin often
		forgets to send the nominal and the
		purpose of payment so that the buyer does
		not place an order because the response is
		too long, the payment system is still with
		manual confirmation so it takes too long,
		the latest order status report is usually forgotten, it is not given to the buyer, if
		the order has a problem, the buyer often
		confused about what to do and who to
		contact
JP3	PP3	To simplify the process flow in placing an
010		order, such as automating payments,
		filling out the order form yourself, and so
		on so that you don't have to wait too long
		for Admin or Customer Service
JP4	PP4	Apart from placing orders, customers or
		buyers often ask about the latest promos
		or upcoming promotions, and customers
		will also make complaints if the order
		they ordered has problems or is not
		appropriate.
JP5	PP5	As a customer, who do you usually
		contact when placing an order or other
		activities at SMMReseller?
		Customers will only get in touch with
		Customer Service to place orders, check
		order status, or complain about problematic orders
JP6	PP6	A system that can simplify and speed up
JLO	110	customers in placing orders, checking
		order status, and making payments. If
		possible all activities that must be carried
		out from the customer side can be
		automated
		untoimateu

Table 12 are the answers to the question instruments in Table 4 that were asked to the Business Owner stakeholders. This answer was obtained after going

DOI: https://doi.org/10.29207/resti.v7i4.4464

Creative Commons Attribution 4.0 International License (CC BY 4.0)

through interviews with customers but from the perspective of the SMMReseller Business Owner.

Based on interviews with 3 SMMReseller stakeholders and obtained answers from each stakeholder, it can be concluded to find any problems that occur at SMMReseller based on the answers from each stakeholder.

Table 13. Problem Results

No	Problem
M1	Errors often occur when recording daily sales because
	the entire recording is still done manually by the
	Admin.
M2	There are no centralized reports or other statistical
	information about sales because there are only daily
	sales records and they are not processed further due to a
	lack of time and manpower to process the data.
M3	There is no exact record of the details of orders that
	have been processed so far.
M4	There are no detailed records of customers who have
	already made an order.
M5	The flow of the ordering process is too long and long so
	that many customers do not place orders.
M6	There is no centralized information about the company,
	service details, and how to place an order, so many
	potential customers are confused.
M7	Marketing techniques that are still traditional by way of
	Word of Mouth (Word of mouth) so that they are less
1.10	effective in reaching a wider market.
M8	Every time a customer makes a transfer, the admin has
	to check mutations manually, which is a waste of time and ineffective.
M9	Often customer transfers do not match the order
1019	nominal, making it difficult for the admin to check and
	return the excess funds that have been received.
M10	The admin in the Process Operations section often
WITO	makes mistakes in inputting order data to vendors,
	which often causes quite high losses for the company.
M11	Often the admin forgets to process orders so that the
14111	processing time of an order increases longer and causes
	the customer to be dissatisfied.
	the customer to be dissuisited.

- M12 Order information is processed until the order has been processed, it is still done manually by chat with the customer, so it requires quite a lot of effort and time.
- M13 When a problem occurs with an order, the customer must contact the relevant Admin via Whatsapp chat so

No Problem

that there is no centralized report data about the details of the problematic order in a certain period.

Table 13 describes the results of the problems obtained from each answer to the question stakeholders obtained from the interview results. This table records every problem that exists in SMMReseller's operational activities so that a total of 13 problems are obtained.

3.2. Data Modeling (Goal Tree Model)

By applying the KAOS model in this study, the operational problems of SMMReseller from the results of excavation and data collection will be modeled using the Goal Tree Model diagram. Data modeling can later be used to determine the functional requirements of the right system according to the purpose of developing the SMMReseller ordering system.

Table 14. Results of High-Level Goals

	-	
No	Objective	Problem
1	Improving the quality of management and	M1
	sales orders	
2	Improve records and management of	M2, M3,
	important data	M4
3	Build a simple and automated ordering	M5
	system	
4	Improving marketing quality	M6, M7
5	Simplify and automate the payment system	M8, M9
6	Increase the accuracy and speed of the	M10,
	order process	M11
7	Know the status and current order process	M12
8	Knowing the problematic order data recap	M13

The first result at this stage is the High-Level Goals table which is written in Table 14. Table 14 or the High-Level Goals table contains a mapping of goals or goals from each data problem that has been collected from the results of stakeholder interviews. Based on the problems faced, several High-Level Goals are obtained as in Table 14 which will later be developed into a diagram of the Goal Tree Model using the KAOS method to obtain Goals, Softgoals, Hardgoals, and Agents.

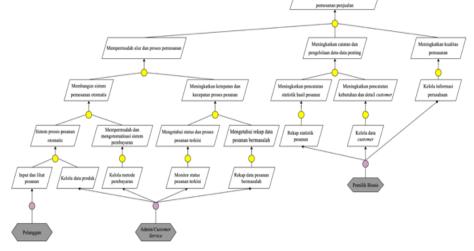


Figure 3. KAOS Modeling Results (Goal Tree Model)

Furthermore, at this stage, the results of the Goal Tree Model diagram are obtained as shown in Figure 5 based on the High-Level Goal Table with several branching notations that describe Goal, Softgoal, Hardgoal, and Agent. Figure 3 shows the main goals or system goals which are derived from subgoals to become hardgoals as system requirements.

In the case study of the SMMReseller Ordering System, it was found that the main purpose of creating this centralized system was "Improving the Quality of Management and Sales Ordering", which means that this system can make it easier in terms of sales and in terms of recording to increase sales efficiency both from the admin side and from the buyer's side. Furthermore, from the diagram that has been described, 3 softgoals are obtained to support and achieve the main objectives, namely "Simplifying the flow and process of ordering", "Improving records and management of important data", and "Improving the quality of marketing". This is in accordance with the divisions in SMMReseller, namely the Operations division which handles the requirements of buyer orders, Admin which handles operational records, and Marketing which handles product marketing requirements.

From the first softgoal that was obtained, it continued to be lowered, such as to achieve the softgoal "Facilitate the flow and order process" then required other softgoals, namely "Build an automatic ordering system" and "Increase the accuracy and speed of the order process", this softgoal was lowered until it got Hardgoal and Agent involved in the system, where later these Hardgoals and Agents can be used for developing Tables of Functional Requirements at a later stage.

To make it easier to read diagrams and to make it easier to write down functional requirements in the next stage, the diagram is mapped into tabular form to get the Hardgoal of each problem.

Table 15. Hardgoal results

No	Hardgoal
G1	Input and view orders
G2	Manage product data
G3	Manage payment methods
G4	Monitor the status of the latest orders
G5	Problem order data recap
G6	Order statistics recap
G7	Manage customer data
G8	Manage company information

Table 15 is the hardgoal results obtained from the Goal Tree Model diagram. There were 8 hard goals such as order input, product data management, payment method management, and so on. Where this Hardgoal Table can later be used to determine the functional requirements of the system.

In addition to the hardgoal table obtained, Table 16 also lists the agents or stakeholders involved in each hardgoal. The agent results are used to determine who is involved in each functional system requirement. The agent results table is also obtained from the Goal Tree Model diagram.

Table 16. Agent results							
No	Agents						
AG1	Customer						
AG2	Admin/Customer Service						
AG3	Business Owner						

3.3. Defining Functional Requirements

At this stage, functional requirements are determined based on the results of the Goal Tree Model diagram in the previous stage. The functional requirements that can be concluded based on the results of modeling using the KAOS method are shown in Table 17.

Table 17. Functional Requirements

No	Agents	Requirement	Goals	Target	Objective
1	AG1	Users can view information about the products being sold	G1	Users	Users can independen tly view product details before placing an order
2	AG1	Users can fill in or input all order details	G1	Users	Customers can place orders independen tly quickly and precisely
3	AG1	Users can see the status of the latest orders	G1	Users	Customers can see the status of the latest orders quickly and precisely
4	AG2	Users can manage product data	G2	Users	Admin can manage product data that you want to display to customers
5	AG2	Users can manage payment methods	G3	Users	Admin can manage the payment method that you want to use for customer order transactions
6	AG2	Users can see the status of the latest orders from vendors	G4	Users	Admin can quickly see the status of the latest orders from vendors
7	AG1	Users can complain through the system for problematic orders	G5	Users	Customers can directly complain through related orders if the

DOI: https://doi.org/10.29207/resti.v7i4.4464

Creative Commons Attribution 4.0 International License (CC BY 4.0)

No	Agents	Requirement	Goals	Target	Objective	No	Agents	Requirement	Goals	Target	Objective
8	AG2	Users can see orders that are in trouble	G5	Users	order has a problem Admin can see which orders are			SMMReseller product details			details to customers before placing an order
					having problems to be completed as soon as possible	18	-	The system can display a choice of payment methods	G3	Syste m	The system displays the choice of payment method information
9	AG3	Users can view sales statistics	G6	Users	Business Owners can view reports on all sales data	19	_	The system	G4	Syste	to customers when placing an order The system
10	AG3	Users can manage customer data	G7	Users	Business owners can see customer data that makes orders	17		can provide email notifications of the latest order status	0+	m	can provide notification s via email to customers about the status of the
11	AG3	Users can manage company	G8	Users	Business Owners can manage						latest orders instantly
		information			company information for online promotion needs	20	-	The system can accept problematic order input	G5	Syste m	The system can accept problematic order input from
12	-	The system can store order details from customers	G1, G6	Syste m	The system can store all order data so it will not be lost	21	-	The system displays order statistics based on a	G6	Syste m	customers The system can display various sales
13	-	The system can create orders automatically	G1	Syste m	The system can automatical ly generate	22		certain time period	67	Grante	statistics based on certain periods
					orders and totals for customers	22	-	The system can store customer	G7	Syste m	The system stores information
14	-	The system can detect automatic payments	G1, G3	Syste m	The system can detect payments automatical			information that makes an order		_	from customers who place orders
15	-	The system	G1	Syste	ly from customer orders After the	23	-	The system can display company information	G8	Syste m	The system displays company information
		can forward orders automatically to vendors		m	payment is detected, the system automatical						for online promotion purposes
					ly forwards the order to the vendor according to the order details	Requ Func infor the a	irements tional mation c ctors are	ult at this stage s as shown ir Requirements on each existin involved in, w	a Table also g requin hat the	17. The present rement s purpose	e Table of s detailed uch as who of the need
16	-	The system can update order status automatically from vendors	G1, G4	Syste m	The system automatical ly updates order status to inform customers	requi to th valid	rement. ne relev ated whe	at problems Furthermore, t ant stakehold ether it is in acc of the SMM	his tabl ers to cordanc	e will be be eva e with th	confirmed luated and e goals and
17	-	The system can display all	G2	Syste m	The system can display product	-		keholder.			ing System

3.4. Evaluation and Validation of Results

The last stage in system requirements elicitation using the KAOS method is to evaluate and validate the results that have been obtained, namely the table of functional requirements. Evaluation and validation is carried out by presenting the results to each relevant stakeholder to convey the results of system requirements in the form of a table of functional requirements, where in SMMR Reseller the interested stakeholders are Business Owners, Admin/Customer Service, and Customers from the point of view of business owners.

Based on the results of the presentation of the system requirements, each relevant stakeholder agrees and states that the table of functional requirements that has been produced in table 17 using the KAOS method is valid and is considered in accordance with the goals and wishes of each relevant stakeholder. Therefore there is no evaluation or correction of the results of the table of functional requirements generated using the KAOS method in table 17.

3.5. Results Analysis

By applying the KAOS method, a Goal Tree Model diagram can be produced which is used to determine functional requirements. The Goal Tree Model diagram image is very helpful in determining the final results of this study, namely the functional requirements of the system that can match the goals of each relevant stakeholder.

From the research conducted, the final result is in the form of a table of functional requirements which contains various descriptions of system requirements along with other details such as goals or objectives to be achieved from each system requirement that has been defined, as well as agents or stakeholders who will be involved in each requirement. This result contains all system requirements based on each goal or goal of each stakeholder in SMMReseller, this is indicated by writing down what goals will be achieved from each of these functional requirements. The agents or stakeholders involved in each requirement are also written in the results of this elicitation which serve as a parameter that the features built will be intended for whom.

As an example, one of the results of the functional requirements obtained in number 1 explains that the description of the requirement is 'Users can see information about the product being sold'. The goal to be achieved in this requirement is the goal with code G1 where the description of this code can be seen in Table Hardgoal or in Table 15, the Agent or Stakeholder involved is an Agent with code AG1 where a description of this code can be seen in the Agent Table or in Table 16, and the types of requirements that describe related requirements are included in the functional requirements for Users or requirements for

the System. This also applies to all system requirements that are obtained with differences in Goal, Agent, and Requirement Type.

4. Conclusion

Based on the research that has been done, the results obtained are functional requirements that are goaloriented. The results of the functional requirements of this system are obtained by requirements elicitation using the KAOS method so that it can match the requirements, objective and goals of each stakeholder involved in the SMMReseller business process.

Several other features generated from the Table of Functional Requirements are such as Automatic Ordering System, Automatic Payment System, Manage Sales Products, Manage Orders, Manage Payment Methods, Manage Problem Orders, Manage Customer Data, Manage Company Information, Automatic Email Notifications, and Sales Statistics Information.

The results of functional requirements that are in accordance with the goals and goals of each stakeholder can be seen by obtaining several functional requirements description results that are relevant to the duties and functions of each stakeholder in the SMMReseller business process, such as one of the descriptions of functional requirements 'Users can manage product data' which is in accordance with the duties or work of the Admin/Customer Service, namely to manage all SMMReseller product data.

This was also then reaffirmed by evaluating and validating the results for each stakeholder and each stakeholder stated that the results of the functional requirements in this study were in accordance with their respective requirements, goals and goals. With this the conclusion that can be drawn from this research is that the results of system requirements elicitation using the KAOS method can be in accordance with the goals and goals of each stakeholder who will be involved in a business process.

Based on the results and discussion that have been obtained in this study, suggestions for further research or other researchers who wish to discuss or develop on the same topic are: Using the results of this requirements elicitation to proceed to the next stage of software development so that it becomes a complete system and can be implemented according to existing requirements, 2. Applying the KAOS method to other systems with case studies and different conditions such as stakeholders or different types of systems from research to find out how effective the KAOS method is in a requirements elicitation, combines this KAOS method with other elicitation methods to improve the results and accuracy of system requirements, compares the KAOS method with other elicitation methods in the same system to get the best system requirements results

from a requirements elicitation.

References

- S. ARUN KUMAR and T. ARUN KUMAR, "Study the impact of Requirements management Characteristics in global software development projects: An Ontology based approach," Int. J. Softw. Eng. Appl., vol. 2, no. 4, pp. 107–125, 2011, doi: 10.5121/ijsea.2011.2410.
- [2] K. P. Lunak, "Kakas Bantu Sistem Rekomendasi Kebutuhan Perangkat Lunak," vol. 1, no. 1, 2018.
- [3] W. A. Kusuma, "Elisitasi Kebutuhan Menggunakan User Persona Untuk Memenuhi Ekspektasi Pengguna iLab," in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2021, no. 6, pp. 85–93.
- [4] A. C. Puspitaningrum and E. S. Sintiya, "Teknik Elisitasi Kebutuhan Perangkat Lunak : Literatur Review," vol. 8, no. 1, 2022.
- [5] F. Adikara, H. Gunawan, and S. Sandfreni, "Pemodelan Hasil Elisitasi Kebutuhan Sistem Penjualan Online Menggunakan Metode Knowledge Acquisition in Automated Specification," J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 108, 2018, doi: 10.26418/jp.v4i2.28016.
- [6] M. F. Takwa, D. S. Rusdianto, E. Muhammad, and A. Jonemaro, "Pembangunan Kakas Bantu Pembangkitan Kebutuhan Pengguna berdasarkan Model Proses Bisnis," vol. 3, no. 10, pp. 10191–10198, 2019.
- [7] H. Arief Raharjo, Widodo, and H. Ajie, "Perancangan Model Gore Menggunakan Metode Kaos untuk Proses Reverse Engineering Sistem Informasi," PINTER J. Pendidik. Tek. Inform. dan Komput., vol. 3, no. 1, pp. 18–26, 2019, doi: 10.21009/pinter.3.1.4.
- [8] M. Difa, I. Djajus, S. Widowati, and J. H. Husen, "Implementasi Metode Knowledge Acquisition in Automated

Specification (KAOS) pada Sistem Informasi Pengelola Inventori di Bagian Teknik TVRI Stasiun Jawa Barat," vol. 6, no. 2, pp. 8954–8965, 2019.

- [9] N. Falih, "Analisa Kebutuhan E-commerce untuk UKM Menggunakan Goal-Oriented Requirement Engineering (GORE)," Inform. J. Ilmu Komput., vol. 15, no. 1, p. 11, 2019, doi: 10.52958/iftk.v15i1.1064.
- [10] F. A. Maulana, S. Widowati, and J. H. Husen, "Penerapan Metode Tropos pada Sistem Informasi Penugasan di Bidang Program TVRI Stasiun Jawa Barat," vol. 6, no. 2, pp. 9299– 9312, 2019.
- [11] F. A. Syahman, S. Widowati, and ..., "Penerapan Metode TROPOS Untuk Rekayasa Kebutuhan Pada Pembangunan Sistem Informasi Pengelola Gudang Mobil di PT. Istana Bandung Raya Motor," eProceedings ..., vol. 6, no. 2, pp. 9313–9324, 2019.
- [12] A. Khair, Implementasi Dan Analisis Goal-Based Requirement Analysis Method (Gbram) Dengan Studi Kasus: Sistem Informasi Apotek Ananda Implementation and Analysis Goal-Based Requirement Analysis Method (Gbram) on Case Study: Ananda Pharmacy Information System. 2017.
- [13] Y. Kamalia, "Implementasi Goal Oriented Requirement Engineering Menggunakan Knowledge Acquisition in autOmated Spesification Untuk Pengelolaan Administrasi Kepolisian Sindangkerta," vol. 6, no. 2, pp. 8943–8953, 2019.
 [14] R. Janah and Y. Syafitri, "Membangun Aplikasi Pemesanan
- [14] R. Janah and Y. Syafitri, "Membangun Aplikasi Pemesanan Barang Berbasis Web Dengan Menggunakan Framework Ajax Pada Penamart Bandar Lampung," J. JUSINTA, vol. 3, no. 2, pp. 11–15, 2019.
- [15] F. Adikara, S. Sandfreni, and R. Prastya, "Penerapan Metode Organization Goal-Oriented Requirements Engineering (OGORE) untuk Pembangunan Sistem Pendaftaran Klinik Fisioterapi," J. Edukasi dan Penelit. Inform., vol. 6, no. 3, p. 308, 2020, doi: 10.26418/jp.v6i3.41082.