
 Accepted: 20-05-2023 | Received in revised: 20-05-2023 | Published: 22-08-2023

758

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 4 (2023) 758 - 766 ISSN Media Electronic: 2580-0760

Folk Games Image Captioning using Object Attention

 Saiful Akbar1, Benhard Sitohang2, Jasman Pardede3,

Irfan I. Amal4, Kurniandha S. Yunastrian5, Marsa T. Ahmada6, Anindya Prameswari7
1,2,,4,5,6,7School of Electrical Engineering and Informatics, Institut Teknologi Bandung

3Informatics Department, Institut Teknologi Nasional
1saiful@itb.ac.id, 2benhard@informatika.org, 3jasmanpardede78@gmail.com,

4irfan.ihsanulamal@gmail.com, 523520018@std.stei.itb.ac.id, 6marsathoriq@gmail.com , 723522012@std.stei.itb.ac.id

Abstract

The result of deep-learning based image captioning system with encoder-decoder framework relies heavily on image feature

extraction technique and caption-based model. The model accuracy is heavily influenced by the proposed attention mechanism.

Unsuitability between the output of the attention model and the input expectation of the decoder can cause the decoder to give

incorrect results. In this paper, we proposed an object attention mechanism using object detection. Object detection outputs a

bounding box and object category label, which is then used as an image input into VGG16 for feature extraction and into a

caption-based LSTM model. Experiment results showed that the system with object attention gave better performances than

the system without object attention. BLEU-1, BLEU-2, BLEU-3, BLEU-4, and CIDER scores for image captioning system with

object attention improved 12.48%, 17.39%, 24.06%, 36.37%, and 43.50% respectively compared to the system without object

attention.

Keywords: image captioning; folk games; object attention; object detection

1. Introduction

Indonesia has many folk games which are often played

during Independence Day or other historical days.

Those games are usually passed down generation to

generation and are played to create a festive

atmosphere. Tarik tambang (tug-of-war) and panjat

pinang (climbing a slippery pole in order to get gifts

from the top of the pole) are two folk game examples.

Those games are usually documented as images

(photographs) with the purpose to preserve cultural

wealth, for future research, and to provide historical

evidence about what happened during certain times.

One way of getting information from images is reading

the image description. Images without descriptions can

lead to misperceptions and loss in historical meaning.

Therefore, each historical image document needs to be

preserved along with the information inside it. To

automatically create descriptions or information

directly from the image, we can use image captioning.

Image captioning is a process of automatically giving

text descriptions to images using computer vision and

natural language processing[1], [2]. Computer vision

detects objects on an image along with its location,

property, and interaction between other objects in the

image. Natural language processing (NLP) produces

well-ordered sentences according to semantic and

syntactic rules in a certain language. Image captioning

does not only need to be able to detect outstanding

objects and understand the interaction between objects

in the image, it also needs to be able to describe the

meaning of the image using natural language.

Image captioning models usually follow encoder-

decoder architecture which uses the image’s abstract

feature vector as an input to the encoder. The

performance of image captioning is also heavily

influenced by feature extraction technique. Image

captioning also needs an engine to automatically

generate text description for a given image. This paper

proposes encoder-decoder object attention for image

captioning. In this paper we proposed an architecture

combining the information about spatial relationship

between input objects and geometric relationship

between detected objects. Performance of image

captioning heavily depends on the used extraction

technique. In order to improve it, we proposed an

abstract and high-level extraction technique, which is

object feature, instead of low-level features that is

commonly used in other papers. We implemented the

architecture for captioning folk game images we have

collected from the internet and annotated them.

mailto:1saifulakbar@itb.ac.id
mailto:benhard@informatika.org
mailto:jasmanpardede78@gmail.com
mailto:irfan.ihsanulamal@gmail.com
mailto:23520018@std.stei.itb.ac.id
mailto:marsathoriq@gmail.com
mailto:23522012@std.stei.itb.ac.id

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

759

Captioning folk game images also provides new

challenge compared to previous studies, namely

identifying objects and the background/environment

surrounding the objects. This paper aims to observe

how far the proposed method can handle the challenge.

In this paper, the performance of an image captioning

system with encoder-decoder object attention is

compared to performance of image captioning system

without encoder-decoder object attention. Generated

image captioning models produced well-structured

sentences according to semantic and syntactic rules in

Indonesian language. Performances were compared

using BLEU-1, BLEU-2, BLEU-3, BLEU-4, and

CIDER scores.

Image captioning used to be rule-based or template-

based[3],[4]. Template-based image captioning builds a

template which then will filled with information that is

inferred from images. The blank spaces in the template

are completed based on attribute prediction, scene

recognition, or object detection in the image [5],[6].

After 2014, image captioning is commonly done using

neural-network with encoder-decoder framework with

specific and deep architecture [7], [8]. Encoder is a

network model to read image input and encode the

content into a fixed-length vector using internal

representation. Decoder is another network model

which read the encoded image in order to produce

textual description.

The important aspect of image captioning is the model

accuracy to produce captions as close as possible to

user-defined ground truths. Neural network accuracy

for image captioning is heavily influenced by the

attention mechanism of proposed architecture.

Attention can model dependency between elements

without making exaggerated assumptions about the

location and feature distribution or characteristics[9].

For computer vision, attention-based models have been

used to automatically describe and model object

relationships [10]. Currently, there are many proposed

attention mechanisms: spatial and channel-wise [11],

adaptive [12], stacked [4], multi-level [2], [13], multi-

head and self-attention [14].

If the attention model is unsuitable with the decoder, the

decoder can be misled into giving wrong results[14].

Thus, the attention module did not give meaningful

information. Error at attention module can result in

incorrect description. Attention models using self-

attention mechanisms have been proved to give

excellent results for machine translation [15]. Self-

attention also has been proved to improve the accuracy

for computer vision [16], [17].

Deep-learning based image captioning has two

important things: feature extraction method and caption

generating method. In image captioning, the results of

image’s feature extraction are given to a caption-based

model, which is then translated into a text/sentence

generator. Some examples of feature extraction

methods used by image captioning are VGG16,

VGG19, ResNet50, Xception, etc. Some examples of

caption-based model methods include RNN, LSTM,

GRU, etc. LSTM has an input gate and forget gate to

solve the vanishing gradient and exploding gradient

problem. LSTM has high performance in long

sequential data compared to RNN and GRU. LSTM

also used gate structure that handled short-term memory

problems and is more robust to overcome loss [18].

Encoder-decoder architecture, which maps input into

real-valued fixed-dimension vectors, contains an

encoder module that slowly decreases feature maps and

catches higher semantic information and a decoder

module that gradually returns the spatial

information[3]. The main advantage of this architecture

is its ability to be trained end-to-end, which means all

network parameters are learned together. Thus, it avoids

the problems of independent components ordering and

variable-length text output.

A good attention model can decode in accordance with

the meaning contained in the image. Self-attention [14]

has been proven to be able to improve the accuracy of

object detection. We believe that self-attention ability

to detect objects could improve decoder performance.

The contribution in this paper consists of two things: (1)

integrating self-attention in object detention to support

the performance of image captioning based on encoder-

decoder architecture, and (2) application of image

captioning in a specific domain, which is folk game

images that provide new challenges compared to

previous researches, namely identifying objects and

background/environment around the objects. This paper

aims to observe how far the proposed method can

handle the challenge.

2. Research Methods

The construction of the proposed image captioning

system was divided into several steps: building the

dataset of folk games, training the model with object

detection, and training the model without object

detection. Then the system performance: BLEU-1,

BLEU-2, BLEU-3, BLEU-4, and CIDER scores

between models with object attention and models

without object attention were compared.

2.1 Collecting the Dataset

We constructed our dataset both automatically and

manually. We used Google Colaboratory and SerpStack

API. SerpStack API retrieves the images by

automatically downloading the best 100 images from

Google search engine. We also searched for a folk game

related keyword in Google, then opened the web pages

containing the images and downloaded them manually.

https://doi.org/10.29207/resti.v7i4.4708

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

760

The constructed dataset contains 1417 images consisted

of 13 types of folk games as shown in Table 1.

Table 1. The dataset

Folk Game Images#

1. Lompat tali (jump ropes) 91

2. Engklek (hopscotch) 110

3. Egrang (stilts) 100

4. Ular naga (catch the tail) 41

5. Layangan (flying kites) 109

6. Bakiak (walking with wooden clogs) 103

7. Balap karung (sack race) 123

8. Gebuk bantal (pillow fight) 138

9. Makan kerupuk (fastest to eat hung cracker) 124

10. Panjat pinang (climbing a greasy pole) 141

11. Tarik tambang (tug-of-war) 125

12. Balap kelereng (marble race) 100

13. Gundu (aiming marble into holes) 112

Table 2. Image properties

Property Description

Id Image identification number

id_artifact
Image game category
(e.g. 1: lompat tali, 2: engklek, etc)

id_object Image object number

filename Image file name

article
The article that accompanies the image

(from image source)

url Link to image

id_related_image Identification number of similar image

caption Image content description

Each image has properties as follows: id, id_artifact,

id_object, filename, article, url, id_related_image, and

caption. Description for each attribute is shown on Table

2. In the collected dataset, every image contains

person(s) who are doing certain activities. Figure 1

shows an example of the game balap karung.

Figure 1. Image of balap karung

We used LabelImg to annotate object location and

category (github.com/tzutalin/labelImg). LabelImg is a

tool developed by Tzutalin to give labels to objects in

an image. We determine object location by its bounding

box coordinate, while object category is determined

from a given label. Figure 2 shows an example of

labeling results. The color of the box corresponds to the

color of the label on the right.

Figure 2. Labeling for balap karung image

We used three types of labels: game name, label person

to mark people who were playing the game, and label

spectator for people who were watching the game. The

label for game name would be one of lompat tali,

engklek, egrang, ular naga, layangan, bakiak, balap

karung, gebuk bantal, makan kerupuk, panjat pinang,

tarik tambang, balap kelereng, or gundu. In total, there

are 13 game name labels. With the addition of person

and spectator as labels, there are 15 labels in total.

Descriptions were created for each image. Each

description is a sentence which contains the subject and

the game name. Every image was given five sentences

to describe the image. For example, the description for

Figure 2 could be “two children are playing balap karung

(sack race) in the yard while their friends are watching”.

2.2 Image Captioning System Architecture

The proposed architecture of image captioning model

with object detection is shown on Figure 3. This model

receives a preprocessed image as an input and outputs a

caption/description based on the given image. The

image was forwarded to encoder CNN (pretrained CNN

model) to obtain an embedding-sized vector. On the

other hand, the same image was also forwarded into the

object recognition model to obtain top-k objects. Top-k

were selected based on each object’s score. Object

detection produces bounding boxes to denote objects in

the image, which then will be used as a feature. If the

model detected less than k objects, black images would

be added as paddings (each pixel is 0) to make the

image count = k. Images of the object were then

preprocessed (mainly resizing the image to the same

size) and then forwarded to a simple CNN to obtain

an1D vector representing each object. The attention

module received hidden state input from the previous

step along with object-representing vectors. It then

https://doi.org/10.29207/resti.v7i4.4708

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

761

produced an attention vector which is concatenated with

word embedding from the previous step (for step 1, we

concatenated with encoded image). Concatenation

result would be an input to the LSTM layer.

Figure 3. Proposed image captioning model

Output of the LSTM layer was then forwarded into the

FC layer and a softmax function to obtain word

prediction.

First, the model received an image as input. The image

was forwarded into VGG16 where its top layer had the

hidden size. The output from VGG16 became hidden

state 0 for LSTM. On the other side, objects in the same

image were extracted using an object detection model

to denote them with bounding boxes. We then selected

top-k objects based on the object’s confidence score.

Selected objects became inputs into a different VGG16.

In this VGG16, the top layer was removed, then a

Global Max Pooling 2D layer was added into the last

feature map. We then obtained object proposals in the

form of 1D vectors for each object. Meanwhile, the

LSTM layer accepted the hidden state and the

concatenation result between word embedding and

region feedback as inputs to produce another hidden

state. The object proposals we obtained before were

forwarded into a linear layer with target size of hidden

size and into a linear layer with target size 1, hereinafter

referred to as rh and r respectively. The weights from

word embedding, which were the results of value

mapping from word vocabulary, were forwarded into

three linear layers with different target sizes: hidden

size, 1, and feature size from objects, hereinafter

referred to as wh, w, and wr respectively.

To obtain word prediction, first we performed matrix

multiplication (MatMul) between wh and hidden state,

then we summed it up with w. On the other side, we also

performed MatMul between wr and transposed object

proposal vectors, then the matrix was added up along

the r axis (object count). Another MatMul was

performed between rh and h, then added up with r

before summing up all the elements to obtain a value.

https://doi.org/10.29207/resti.v7i4.4708

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

762

The three obtained values were then summed up and

plugged into a softmax function to get word probability

in the vocabulary. The word with highest probability

would be used for the next step.

We performed similar calculations as explained in [10]

to obtain attention regions, but with several differences.

First, we did not add up every element from the sum

results of MatMul(rh, h) with r. For the sum results

between MatMul(wh, h) with w, we needed to add up

every element to obtain one value. Lastly, we added up

the matrix result for MatMul between wr and transposed

object proposal vectors along the w axis (vocabulary

count). The three values were then summed up and

plugged into a softmax function to obtain object

probability, also known as attention score. We

performed another MatMul between attention score and

object proposals to obtain region feedback, which then

would be used for the next step.

2.3 Attention Model

Attention model produced attention vector from objects

defined by object recognition model, also from hidden

state from the previous step. The architecture of the

proposed attention model is shown in Figure 4.

Figure 4. Proposed attention model

The idea of this attention model is adapted from soft-

attention in visual attention [10]. The computation for

attention score in this paper is similar to the

computation proposed by Xu et.al. [10]. Encoded image

features were transformed into k-dimensional vectors

by forwarding them into an FC layer. The same thing

was done in the previous step’s LSTM hidden state

using a k-dimensioned FC layer. Note that LSTM’s FC

layer is different from image’s FC layer. The vector for

each image feature was then forwarded into another FC

layer to obtain a scalar value, thus we obtained n scalar

values where n is the number of image features. The

scalar values were then concatenated to obtain attention

score using softmax function. We then multiplied the

attention scores to each feature vector. The resulting

vectors were then added up together to obtain one

vector representing all other vectors. The difference

between the attention method in this paper and the

attention method used by Xu et.al.[10] lies in the image

features on the input. Xu et.al [10] used every pixel in a

certain convolution layer as a feature, while in this

paper, the features were obtained from encoding region

objects on the image.

2.4 Training

We split the dataset into train:val:test with the

proportion of 8:1:1. The preprocessing steps for caption

text consisted of lowercasing and tokenizing, while

preprocessing steps for image input consisted of

resizing to size 224 while maintaining aspect ratio,

random cropping to size 224x224, random horizontal

flip, and normalizing using mean and std from

ImageNet. Data in train set and validation set (to

measure validation loss) were duplicated for each

caption, thus one instance of data became five instances

with the same image but different captions. Each model

conducted training to get the best hyperparameter

(hyperparameter tuning). We determined the best

hyperparameter by its CIDER score in validation data.

We used one factor at a time as the experiment strategy.

Table 3. System performances with object detection

Exp
Object

size
Hidden

size
Embedding

size
CIDER

Score
1 128 512 512 2.4565

2 64 512 512 2.1598

3 32 512 512 2.2377
4 128 256 512 2.8934

5 128 128 512 2.4836
6 128 64 512 2.4334

7 128 1024 512 2.6335

8 128 256 256 2.4267
9 128 256 128 2.6974

10 128 256 1024 2.3291
11 128 256 2048 2.6407

For models with bounding boxes, we tuned several

hyperparameters: object size, hidden size, and

embedding size. The system performance for tested

combinations is shown on Table 3. We varied the object

size between 128, 64, and 32; hidden size between 64,

128, 256, 512, and 1024; embedding size between 128,

https://doi.org/10.29207/resti.v7i4.4708

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

763

256, 512, 1024, and 2048. Based on the tuning process,

we determined that the best performing system was

constructed with object size of 128, hidden size 256,

and embedding size 512, with CIDER score of 2.8934.

Table 4. Hyperparameter without object detection

Exp
Hidden

size

Embedding

size
Optimizer CIDER

1 256 256 Adam 1.6992

2 512 256 Adam 1.6692
3 256 512 Adam 2.0017

4 256 512 SGD 1.4112

For the model without bounding box, the tuned

hyperparameters were hidden size, embedding size, and

optimizer. We varied the hidden size to either 256 or

512; embedding size to either 256 or 512; and optimizer

to be either Adam or SGD. The system performance for

tested combinations is shown on Table 4. Based on the

tuning process, we determined that the best performing

model was constructed with the hidden size of 256 and

embedding size of 512 with Adam optimizer.

3. Results and Discussions

As shown on Figure 5, the step-by-step process for

testing is as follows. First, we obtain test data from test

set and preprocess pre-process images from test data.

For model with bounding boxes, in addition to full

image, the image was also cropped according to object

bounding boxes defined in test data before

preprocessed. We preprocess the five captions for

ground truth (lowercasing). Then, we input images into

trained model. Model with bounding boxes also

received cropped object images as an input. Finally, the

trained model generates caption text as the result.

Figure 5. System performance testing

We used the same metrics to evaluate hyperparameter

tuning in validation data and to evaluate performance in

testing data: both evaluated with BLEU [19] and

CIDER [20]. BLEU is used to measure how model-

generated text and the ground truth matched in general.

In this paper, we measured BLEU based on 4 different

n-gram levels, from unigram up to 4-gram. BLEU for

certain n-gram measures the match at said n-gram level

and is notated as BLEU-n, e.g., BLEU score for

unigram is notated as BLEU-1. CIDER is used to

measure the specificity of generated text by giving

weights to informative/specific keywords. In this

context, folk games related keywords will be given

heavier weights. Calculation for those metrics utilized

the source code provided by pycocoevalcap from

COCO API. Text score measurements were obtained

from comparing the generated text with five ground

truth captions, one BLEU score and one CIDER score

for each caption, then we calculated its average for

image score. We also calculated the average score for

each game category.

Calculation for BLEU using pycocoevalcap was done

by using two dictionaries: one for generated text and

one for ground truth, each consisted of id and the

generated text/ground truth. Calculations were carried

out for generated text and ground truth with the same

id. In general, we used the calculation method as

explained in Papineni et.al. [21]. First, we calculated the

modified n-gram precision by counting how many n-

grams in generated text appeared in ground truth, with

clips based on maximum number of appearances in

ground truth. Secondly, we gave a brevity penalty to

generated text that is shorter than ground truth. In the

implementation, we used two constants: tiny which has

a very small value and small which is also very small

but larger than tiny. Both constants are used to prevent

division by zero when calculating modified n-gram

precision and brevity penalty.

https://doi.org/10.29207/resti.v7i4.4708

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

764

Similar to BLEU, CIDER utilizes the same input.

Calculations were carried out using TF-IDF scores. IDF

scores were gained from the test set’s ground truth. We

calculated the TF-IDF vector for every n-gram (we used

4 n-grams, from unigram to 4-gram) in both generated

text and each ground truth. To handle missing words

(word exists in generated text but not in ground truth

corpus), we used a default value of 1 for IDF

calculation. The default value would be changed if the

word actually exists in ground truth corpus. Then, we

calculated cosine similarity between the TF-IDF vector

for clipped generated text and the TF-IDF vector for

ground truth. Gaussian penalty was also applied for text

length. The calculation was performed for every n-gram

and every ground truth of the same data. The scores

were then added up for each data, so we obtained a

vector with size n (number of grams used). Finally, we

averaged the value of the four n-grams, then divided the

result with the number of ground truths to obtain the

average against the number of ground truths. A

multiplier of 10 was also given at the end of calculation.

In order to measure the performance, BLEU and

CIDER metrics were calculated using tools from

pycocoevalcap with model-generated text and the five

ground truths as input. BLEU and CIDER scores

(average and individual data test scores) were obtained.

For model’s overall score, we used average BLEU and

CIDER scores from all test data. For model’s score per

category, we calculated average BLEU and CIDER

scores for a category using individual data test scores.

Experiment results are shown on Table 5.

Table 5. System performance for each image category

No Category
With Bounding Box Without Bounding Box

BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDER

1 Makan Kerupuk 0.7467 0.6018 0.5367 0.4652 3.1877 0.6782 0.5574 0.4845 0.3929 2.1575

2 Egrang 0.7735 0.6371 0.5314 0.3775 1.6291 0.7210 0.5977 0.4977 0.3374 1.4132

3 Engklek 0.7966 0.6838 0.6008 0.4843 2.0920 0.6230 0.4290 0.3361 0.2672 0.9588
4 Layangan 0.7859 0.6459 0.5750 0.5352 1.9250 0.7727 0.6409 0.5441 0.4314 1.7953

5 Ular Naga *0.7000 0.5000 0.5000 0.5000 2.0466 *0.4684 *0.3112 0.2800 0.2521 1.6265

6 Balap Kelereng 0.7756 0.6236 0.5549 0.5050 3.4965 0.7005 0.6035 0.5535 0.4920 2.5975
7 Tarik Tambang 0.8298 0.7282 0.6709 0.6239 4.0357 0.7462 0.6094 0.5495 0.5026 2.6221

8 Balap Karung 0.7785 0.6593 0.5807 0.5264 2.6795 0.7690 0.6520 0.5561 0.4590 2.1876

9 Gebuk Bantal 0.8743 0.8157 0.7527 0.7167 4.5772 0.7923 0.7005 0.6059 0.5269 2.5370

10 Panjat Pinang 0.8567 0.7793 0.7276 0.6613 4.2681 0.7963 0.6607 0.5893 0.5599 3.4303

11 Lompat Tali 0.7077 *0.4877 *0.3733 *0.3120 1.4518 0.6198 0.4185 *0.2704 0.1809 *0.2647

12 Bakiak 0.7093 0.5698 0.4787 0.3645 *1.3993 0.6048 0.4254 0.3035 *0.1162 1.2303
13 Gundu 0.7934 0.6621 0.5593 0.4810 2.6646 0.7122 0.5444 0.4279 0.2867 1.8844

The average BLEU-1, BLEU-2, BLEU-3, BLEU-4, and

CIDER scores for system with object detection are

0.7884, 0.6798, 0.6165, 0.5652, and 2.8866

respectively, while the average scores for system

without object detection are 0.7226, 0.6022, 0.5294,

0.4671, and 2.0018 respectively.

Image captioning system with object detection gave

better performances compared with the system without

object detection, seeing how BLEU-1, BLEU-2, BLEU-

3, BLEU-4, and CIDER scores for system with object

detection were better than the system without. The

system showed best performance at describing images

with category gebuk bantal.

Model without bounding box mostly misclassifies

lompat tali (jump ropes) images as egrang (stilts) or

engklek (hopscotch). This likely happened because in

most lompat tali images, the ropes are not very visible

so the jumping person looks like they are playing

egrang or engklek instead. An example can be seen on

Figure 6 where there are two girls holding a rope with a

boy jumping the rope in between the two of them. The

rope is barely seen because it is thin and blends with the

background, so the model captioned the image with

“two people playing egrang at the same time”.

On the other side, the model is best at classifying panjat

pinang (climbing a greasy pole) images. This is because

the pinang (pole) has unique shape and has no similarity

to other folk games.

Figure 6. Image of lompat tali.

Predicted caption: Two people playing egrang at the same time

We can see the correctly captioned image in Figure 7

where there are many pinang poles. The poles are easily

identified because it is straight and tall with prizes at the

top of the pole, and there no object that is similar to the

pinang pole.

https://doi.org/10.29207/resti.v7i4.4708

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

765

Figure 7. Image of panjat pinang

Predicted caption: People playing panjat pinang enthusiastically

Model with bounding box has the worst performance in

classifying bakiak (walking with wooden clogs)

images. This happens because the clogs are usually

covered with legs and also most bakiak pictures has

crowd in it, so the model misclassifies it as other folk

games that involves many people such as tarik tambang

(tug of war). In addition, the shape of the clogs also

sometimes detected as egrang (stilts). As an example,

in Figure 8 there are nine people playing bakiak. The

image is quite crowded and the clogs are not too clear

because they are worn and covered with legs, so the

model misclassified it as tarik tambang and captioned

the image “Kids are playing tug of war on grass”.

Figure 8. Image of bakiak

Predicted caption: Kids are playing tug of war on grass

Figure 9. Image of gebuk bantal

Predicted caption: Two men playing pillow fight on top of a pool

The category with best results from model with

bounding box is gebuk bantal (pillow fight). This is

because the location (pillow fights are usually played

above a water pool) and the pillows become distinct

features which differentiate the game from other folk

games that is usually played in a field. Figure 9 shows

an image of a pillow fight. The pool under them clearly

shows distinction in comparation to grass or fields from

other images, and the pillow held by the men also has

distinct shapes and color that helps differentiate them

from other objects in the images.

4. Conclusion

In this paper, we proposed an object attention

mechanism using object detection as part of image

captioning model. We employed the model for

captioning folk games image dataset. The object

detection outputs a bounding box and object category

label, which is then used as an image input into VGG16

for feature extraction and into a caption-based LSTM

model. Experiment results showed that the system with

object attention gave better performances than the

system without object attention. BLEU-1, BLEU-2,

BLEU-3, BLEU-4, and CIDER scores for image

captioning system with object attention improved

12.48%, 17.39%, 24.06%, 36.37%, and 43.50%

respectively compared to the system without object

attention. This result has shown that object detection

has the contribution into the object attention mechanism

such that the object attention used for image captioning

produced better performance. On the other hand, the

performance also depends on the quality of the images.

Images with clearer main objects and images with

proportional objects tend to produce better object

attention that, in the end, improves the system’s

performance in generating image descriptions.

References

[1] L. Huang, W. Wang, J. Chen, and X.-Y. Wei, “Attention on
Attention for Image Captioning,” in 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), 2019,

pp. 4633–4642. doi: 10.1109/ICCV.2019.00473.
[2] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting Image

Captioning with Attributes,” in 2017 IEEE International

Conference on Computer Vision (ICCV), 2017, pp. 4904–4912.
doi: 10.1109/ICCV.2017.524.

[3] R. Socher and L. Fei-Fei, “Connecting modalities: Semi-

supervised segmentation and annotation of images using
unaligned text corpora,” in 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition,

2010, pp. 966–973. doi: 10.1109/CVPR.2010.5540112.
[4] B. Z. Yao, X. Yang, L. Lin, M. W. Lee, and S.-C. Zhu, “I2T:

Image Parsing to Text Description,” Proc. IEEE, vol. 98, no.

8, pp. 1485–1508, 2010, doi: 10.1109/JPROC.2010.2050411.
[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks,” in Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R.

Garnett, Eds., Curran Associates, Inc., 2015.

[6] F. Wan, C. Liu, W. Ke, X. Ji, J. Jiao, and Q. Ye, “C-MIL:

https://doi.org/10.29207/resti.v7i4.4708

Saiful Akbar, Benhard Sitohang, Jasman Pardede,

Irfan I. Amal, Kurniandha S. Yunastrian, Marsa T. Ahmada, Anindya Prameswari

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 4 (2023)

DOI: https://doi.org/10.29207/resti.v7i4.4708

Creative Commons Attribution 4.0 International License (CC BY 4.0)

766

Continuation Multiple Instance Learning for Weakly

Supervised Object Detection,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019,

pp. 2194–2203. doi: 10.1109/CVPR.2019.00230.

[7] K. Cho et al., “Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation,” in

Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2014, pp. 1724–
1734. doi: https://doi.org/10.3115/v1/d14-1179.

[8] X. Yang, K. Tang, H. Zhang, and J. Cai, “Auto-Encoding

Scene Graphs for Image Captioning,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition

(CVPR), 2019, pp. 10677–10686. doi:

10.1109/CVPR.2019.01094.
[9] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation Networks

for Object Detection,” in 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2018, pp. 3588–
3597. doi: 10.1109/CVPR.2018.00378.

[10] K. Xu et al., “Show, Attend and Tell: Neural Image Caption

Generation with Visual Attention,” CoRR, vol.
abs/1502.03044, 2015.

[11] L. Chen et al., “SCA-CNN: Spatial and Channel-Wise
Attention in Convolutional Networks for Image Captioning,”

in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 6298–6306. doi:
10.1109/CVPR.2017.667.

[12] J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing When to

Look: Adaptive Attention via a Visual Sentinel for Image
Captioning,” in 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 3242–3250. doi:

10.1109/CVPR.2017.345.
[13] D. Yu, J. Fu, X. Tian, and T. Mei, “Multi-Source Multi-Level

Attention Networks for Visual Question Answering,” ACM

Trans. Multimed. Comput. Commun. Appl., vol. 15, no. 2s, Jul.
2019, doi: 10.1145/3316767.

[14] A. Vaswani et al., “Attention is All you Need,” in Advances in

Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, Eds., Curran Associates, Inc., 2017.

[15] G. Tang, M. Müller, A. Rios, and R. Sennrich, “Why Self-
Attention? {A} Targeted Evaluation of Neural Machine

Translation Architectures,” CoRR, vol. abs/1808.08946, 2018.

[16] X. Yang, “An Overview of the Attention Mechanisms in
Computer Vision,” J. Phys. Conf. Ser., vol. 1693, no. 1, p.

12173, 2020, doi: 10.1088/1742-6596/1693/1/012173.

[17] H. Zhao, J. Jia, and V. Koltun, “Exploring Self-Attention for
Image Recognition,” in 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2020, pp.

10073–10082. doi: 10.1109/CVPR42600.2020.01009.
[18] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU Neural

Network Performance Comparison Study: Taking Yelp

Review Dataset as an Example,” in 2020 International
Workshop on Electronic Communication and Artificial

Intelligence (IWECAI), 2020, pp. 98–101. doi:

10.1109/IWECAI50956.2020.00027.
[19] G. Wentzel, “Funkenlinien im Röntgenspektrum,” Ann. Phys.,

vol. 371, no. 23, pp. 437–461, Jan. 1922, doi:
https://doi.org/10.1002/andp.19223712302.

[20] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr:

Consensus-based image description evaluation,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition

(CVPR), 2015, pp. 4566–4575. doi:

10.1109/CVPR.2015.7299087.
[21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A

Method for Automatic Evaluation of Machine Translation,” in

Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, in ACL ’02. USA: Association for

Computational Linguistics, 2002, pp. 311–318. doi:

10.3115/1073083.1073135.

https://doi.org/10.29207/resti.v7i4.4708

