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Abstract  

The result of deep-learning based image captioning system with encoder-decoder framework relies heavily on image feature 

extraction technique and caption-based model. The model accuracy is heavily influenced by the proposed attention mechanism. 

Unsuitability between the output of the attention model and the input expectation of the decoder can cause the decoder to give 

incorrect results. In this paper, we proposed an object attention mechanism using object detection. Object detection outputs a 

bounding box and object category label, which is then used as an image input into VGG16 for feature extraction and into a 

caption-based LSTM model. Experiment results showed that the system with object attention gave better performances than 

the system without object attention. BLEU-1, BLEU-2, BLEU-3, BLEU-4, and CIDER scores for image captioning system with 

object attention improved 12.48%, 17.39%, 24.06%, 36.37%, and 43.50% respectively compared to the system without object 

attention. 
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1. Introduction  

Indonesia has many folk games which are often played 

during Independence Day or other historical days. 

Those games are usually passed down generation to 

generation and are played to create a festive 

atmosphere. Tarik tambang (tug-of-war) and panjat 

pinang (climbing a slippery pole in order to get gifts 

from the top of the pole) are two folk game examples. 

Those games are usually documented as images 

(photographs) with the purpose to preserve cultural 

wealth, for future research, and to provide historical 

evidence about what happened during certain times. 

One way of getting information from images is reading 

the image description. Images without descriptions can 

lead to misperceptions and loss in historical meaning. 

Therefore, each historical image document needs to be 

preserved along with the information inside it. To 

automatically create descriptions or information 

directly from the image, we can use image captioning. 

Image captioning is a process of automatically giving 

text descriptions to images using computer vision and 

natural language processing[1], [2]. Computer vision 

detects objects on an image along with its location, 

property, and interaction between other objects in the 

image. Natural language processing (NLP) produces 

well-ordered sentences according to semantic and 

syntactic rules in a certain language. Image captioning 

does not only need to be able to detect outstanding 

objects and understand the interaction between objects 

in the image, it also needs to be able to describe the 

meaning of the image using natural language. 

Image captioning models usually follow encoder-

decoder architecture which uses the image’s abstract 

feature vector as an input to the encoder. The 

performance of image captioning is also heavily 

influenced by feature extraction technique. Image 

captioning also needs an engine to automatically 

generate text description for a given image. This paper 

proposes encoder-decoder object attention for image 

captioning. In this paper we proposed an architecture 

combining the information about spatial relationship 

between input objects and geometric relationship 

between detected objects. Performance of image 

captioning heavily depends on the used extraction 

technique. In order to improve it, we proposed an 

abstract and high-level extraction technique, which is 

object feature, instead of low-level features that is 

commonly used in other papers. We implemented the 

architecture for captioning folk game images we have 

collected from the internet and annotated them. 
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Captioning folk game images also provides new 

challenge compared to previous studies, namely 

identifying objects and the background/environment 

surrounding the objects. This paper aims to observe 

how far the proposed method can handle the challenge. 

In this paper, the performance of an image captioning 

system with encoder-decoder object attention is 

compared to performance of image captioning system 

without encoder-decoder object attention. Generated 

image captioning models produced well-structured 

sentences according to semantic and syntactic rules in 

Indonesian language. Performances were compared 

using BLEU-1, BLEU-2, BLEU-3, BLEU-4, and 

CIDER scores. 

Image captioning used to be rule-based or template-

based[3],[4]. Template-based image captioning builds a 

template which then will filled with information that is 

inferred from images. The blank spaces in the template 

are completed based on attribute prediction, scene 

recognition, or object detection in the image [5],[6]. 

After 2014, image captioning is commonly done using 

neural-network with encoder-decoder framework with 

specific and deep architecture [7], [8]. Encoder is a 

network model to read image input and encode the 

content into a fixed-length vector using internal 

representation. Decoder is another network model 

which read the encoded image in order to produce 

textual description. 

The important aspect of image captioning is the model 

accuracy to produce captions as close as possible to 

user-defined ground truths. Neural network accuracy 

for image captioning is heavily influenced by the 

attention mechanism of proposed architecture. 

Attention can model dependency between elements 

without making exaggerated assumptions about the 

location and feature distribution or characteristics[9]. 

For computer vision, attention-based models have been 

used to automatically describe and model object 

relationships [10]. Currently, there are many proposed 

attention mechanisms: spatial and channel-wise [11], 

adaptive [12], stacked [4], multi-level [2], [13], multi-

head and self-attention [14]. 

If the attention model is unsuitable with the decoder, the 

decoder can be misled into giving wrong results[14]. 

Thus, the attention module did not give meaningful 

information. Error at attention module can result in 

incorrect description. Attention models using self-

attention mechanisms have been proved to give 

excellent results for machine translation [15]. Self-

attention also has been proved to improve the accuracy 

for computer vision [16], [17]. 

Deep-learning based image captioning has two 

important things: feature extraction method and caption 

generating method. In image captioning, the results of 

image’s feature extraction are given to a caption-based 

model, which is then translated into a text/sentence 

generator. Some examples of feature extraction 

methods used by image captioning are VGG16, 

VGG19, ResNet50, Xception, etc. Some examples of 

caption-based model methods include RNN, LSTM, 

GRU, etc. LSTM has an input gate and forget gate to 

solve the vanishing gradient and exploding gradient 

problem. LSTM has high performance in long 

sequential data compared to RNN and GRU. LSTM 

also used gate structure that handled short-term memory 

problems and is more robust to overcome loss [18]. 

Encoder-decoder architecture, which maps input into 

real-valued fixed-dimension vectors, contains an 

encoder module that slowly decreases feature maps and 

catches higher semantic information and a decoder 

module that gradually returns the spatial 

information[3]. The main advantage of this architecture 

is its ability to be trained end-to-end, which means all 

network parameters are learned together. Thus, it avoids 

the problems of independent components ordering and 

variable-length text output.  

A good attention model can decode in accordance with 

the meaning contained in the image. Self-attention [14] 

has been proven to be able to improve the accuracy of 

object detection. We believe that self-attention ability 

to detect objects could improve decoder performance. 

The contribution in this paper consists of two things: (1) 

integrating self-attention in object detention to support 

the performance of image captioning based on encoder-

decoder architecture, and (2) application of image 

captioning in a specific domain, which is folk game 

images that provide new challenges compared to 

previous researches, namely identifying objects and 

background/environment around the objects. This paper 

aims to observe how far the proposed method can 

handle the challenge. 

2. Research Methods 

The construction of the proposed image captioning 

system was divided into several steps: building the 

dataset of folk games, training the model with object 

detection, and training the model without object 

detection. Then the system performance: BLEU-1, 

BLEU-2, BLEU-3, BLEU-4, and CIDER scores 

between models with object attention and models 

without object attention were compared.  

2.1 Collecting the Dataset 

We constructed our dataset both automatically and 

manually. We used Google Colaboratory and SerpStack 

API. SerpStack API retrieves the images by 

automatically downloading the best 100 images from 

Google search engine. We also searched for a folk game 

related keyword in Google, then opened the web pages 

containing the images and downloaded them manually. 
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The constructed dataset contains 1417 images consisted 

of 13 types of folk games as shown in Table 1. 

Table 1. The dataset 

Folk Game Images# 

1. Lompat tali (jump ropes)   91 

2. Engklek (hopscotch) 110 

3. Egrang (stilts) 100 

4. Ular naga (catch the tail)   41 

5. Layangan (flying kites) 109 

6. Bakiak (walking with wooden clogs) 103 

7. Balap karung (sack race) 123 

8. Gebuk bantal (pillow fight) 138 

9. Makan kerupuk (fastest to eat hung cracker) 124 

10. Panjat pinang (climbing a greasy pole) 141 

11. Tarik tambang (tug-of-war)  125 

12. Balap kelereng (marble race) 100 

13. Gundu (aiming marble into holes) 112 

Table 2. Image properties 

Property Description 

Id Image identification number 

id_artifact 
Image game category  
(e.g. 1: lompat tali, 2: engklek, etc) 

id_object Image object number 

filename Image file name 

article 
The article that accompanies the image  

(from image source) 

url Link to image 

id_related_image Identification number of similar image 

caption Image content description 

Each image has properties as follows: id, id_artifact, 

id_object, filename, article, url, id_related_image, and 

caption. Description for each attribute is shown on Table 

2. In the collected dataset, every image contains 

person(s) who are doing certain activities. Figure 1 

shows an example of the game balap karung. 

 

Figure 1. Image of balap karung 

We used LabelImg to annotate object location and 

category (github.com/tzutalin/labelImg). LabelImg is a 

tool developed by Tzutalin to give labels to objects in 

an image. We determine object location by its bounding 

box coordinate, while object category is determined 

from a given label. Figure 2 shows an example of 

labeling results. The color of the box corresponds to the 

color of the label on the right. 

 

 
Figure 2. Labeling for balap karung image 

We used three types of labels: game name, label person 

to mark people who were playing the game, and label 

spectator for people who were watching the game. The 

label for game name would be one of lompat tali, 

engklek, egrang, ular naga, layangan, bakiak, balap 

karung, gebuk bantal, makan kerupuk, panjat pinang, 

tarik tambang, balap kelereng, or gundu. In total, there 

are 13 game name labels. With the addition of person 

and spectator as labels, there are 15 labels in total. 

Descriptions were created for each image. Each 

description is a sentence which contains the subject and 

the game name. Every image was given five sentences 

to describe the image. For example, the description for 

Figure 2 could be “two children are playing balap karung 

(sack race) in the yard while their friends are watching”. 

2.2 Image Captioning System Architecture 

The proposed architecture of image captioning model 

with object detection is shown on Figure 3. This model 

receives a preprocessed image as an input and outputs a 

caption/description based on the given image. The 

image was forwarded to encoder CNN (pretrained CNN 

model) to obtain an embedding-sized vector. On the 

other hand, the same image was also forwarded into the 

object recognition model to obtain top-k objects. Top-k 

were selected based on each object’s score. Object 

detection produces bounding boxes to denote objects in 

the image, which then will be used as a feature. If the 

model detected less than k objects, black images would 

be added as paddings (each pixel is 0) to make the 

image count = k. Images of the object were then 

preprocessed (mainly resizing the image to the same 

size) and then forwarded to a simple CNN to obtain 

an1D vector representing each object.  The attention 

module received hidden state input from the previous 

step along with object-representing vectors. It then 

https://doi.org/10.29207/resti.v7i4.4708
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produced an attention vector which is concatenated with 

word embedding from the previous step (for step 1, we 

concatenated with encoded image). Concatenation 

result would be an input to the LSTM layer.          

 
Figure 3. Proposed image captioning model

Output of the LSTM layer was then forwarded into the 

FC layer and a softmax function to obtain word 

prediction. 

First, the model received an image as input. The image 

was forwarded into VGG16 where its top layer had the 

hidden size. The output from VGG16 became hidden 

state 0 for LSTM. On the other side, objects in the same 

image were extracted using an object detection model 

to denote them with bounding boxes. We then selected 

top-k objects based on the object’s confidence score. 

Selected objects became inputs into a different VGG16. 

In this VGG16, the top layer was removed, then a 

Global Max Pooling 2D layer was added into the last 

feature map. We then obtained object proposals in the 

form of 1D vectors for each object. Meanwhile, the 

LSTM layer accepted the hidden state and the 

concatenation result between word embedding and 

region feedback as inputs to produce another hidden 

state. The object proposals we obtained before were 

forwarded into a linear layer with target size of hidden 

size and into a linear layer with target size 1, hereinafter 

referred to as rh and r respectively. The weights from 

word embedding, which were the results of value 

mapping from word vocabulary, were forwarded into 

three linear layers with different target sizes: hidden 

size, 1, and feature size from objects, hereinafter 

referred to as wh, w, and wr respectively. 

To obtain word prediction, first we performed matrix 

multiplication (MatMul) between wh and hidden state, 

then we summed it up with w. On the other side, we also 

performed MatMul between wr and transposed object 

proposal vectors, then the matrix was added up along  

the r axis (object count). Another MatMul was 

performed between rh and h, then added up with r 

before summing up all the elements to obtain a value. 

https://doi.org/10.29207/resti.v7i4.4708
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The three obtained values were then summed up and 

plugged into a softmax function to get word probability 

in the vocabulary. The word with highest probability 

would be used for the next step. 

We performed similar calculations as explained in [10] 

to obtain attention regions, but with several differences. 

First, we did not add up every element from the sum 

results of MatMul(rh, h) with r. For the sum results 

between MatMul(wh, h) with w, we needed to add up 

every element to obtain one value. Lastly, we added up 

the matrix result for MatMul between wr and transposed 

object proposal vectors along the w axis (vocabulary 

count). The three values were then summed up and 

plugged into a softmax function to obtain object 

probability, also known as attention score. We 

performed another MatMul between attention score and 

object proposals to obtain region feedback, which then 

would be used for the next step. 

2.3 Attention Model 

Attention model produced attention vector from objects 

defined by object recognition model, also from hidden 

state from the previous step. The architecture of the 

proposed attention model is shown in Figure 4. 

 

Figure 4. Proposed attention model 

The idea of this attention model is adapted from soft-

attention in visual attention [10]. The computation for 

attention score in this paper is similar to the 

computation proposed by Xu et.al. [10]. Encoded image 

features were transformed into k-dimensional vectors 

by forwarding them into an FC layer. The same thing 

was done in the previous step’s LSTM hidden state 

using a k-dimensioned FC layer. Note that LSTM’s FC 

layer is different from image’s FC layer. The vector for 

each image feature was then forwarded into another FC 

layer to obtain a scalar value, thus we obtained n scalar 

values where n is the number of image features. The 

scalar values were then concatenated to obtain attention 

score using softmax function. We then multiplied the 

attention scores to each feature vector. The resulting 

vectors were then added up together to obtain one 

vector representing all other vectors. The difference 

between the attention method in this paper and the 

attention method used by  Xu et.al.[10] lies in the image 

features on the input. Xu et.al [10] used every pixel in a 

certain convolution layer as a feature, while in this 

paper, the features were obtained from encoding region 

objects on the image.  

2.4 Training 

We split the dataset into train:val:test with the 

proportion of 8:1:1. The preprocessing steps for caption 

text consisted of lowercasing and tokenizing, while 

preprocessing steps for image input consisted of 

resizing to size 224 while maintaining aspect ratio, 

random cropping to size 224x224, random horizontal 

flip, and normalizing using mean and std from 

ImageNet. Data in train set and validation set (to 

measure validation loss) were duplicated for each 

caption, thus one instance of data became five instances 

with the same image but different captions. Each model 

conducted training to get the best hyperparameter 

(hyperparameter tuning). We determined the best 

hyperparameter by its CIDER score in validation data. 

We used one factor at a time as the experiment strategy.  

Table 3. System performances with object detection 

Exp 
Object  

size 
Hidden  

size 
Embedding 

size 
CIDER 

Score 
1 128 512 512 2.4565 

2 64 512 512 2.1598 

3 32 512 512 2.2377 
4 128 256 512 2.8934 

5 128 128 512 2.4836 
6 128 64 512 2.4334 

7 128 1024 512 2.6335 

8 128 256 256 2.4267 
9 128 256 128 2.6974 

10 128 256 1024 2.3291 
11 128 256 2048 2.6407 

For models with bounding boxes, we tuned several 

hyperparameters: object size, hidden size, and 

embedding size. The system performance for tested 

combinations is shown on Table 3. We varied the object 

size between 128, 64, and 32; hidden size between 64, 

128, 256, 512, and 1024; embedding size between 128, 
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256, 512, 1024, and 2048. Based on the tuning process, 

we determined that the best performing system was 

constructed with object size of 128, hidden size 256, 

and embedding size 512, with CIDER score of 2.8934. 

Table 4. Hyperparameter without object detection 

Exp 
Hidden 

size 

Embedding 

size 
Optimizer  CIDER 

1 256 256 Adam 1.6992 

2 512 256 Adam 1.6692 
3 256 512 Adam 2.0017 

4 256 512 SGD 1.4112 

For the model without bounding box, the tuned 

hyperparameters were hidden size, embedding size, and 

optimizer. We varied the hidden size to either 256 or 

512; embedding size to either 256 or 512; and optimizer 

to be either Adam or SGD. The system performance for 

tested combinations is shown on Table 4. Based on the 

tuning process, we determined that the best performing 

model was constructed with the hidden size of 256 and 

embedding size of 512 with Adam optimizer. 

3.  Results and Discussions 

As shown on Figure 5, the step-by-step process for 

testing is as follows. First, we obtain test data from test 

set and preprocess pre-process images from test data. 

For model with bounding boxes, in addition to full 

image, the image was also cropped according to object 

bounding boxes defined in test data before 

preprocessed. We preprocess the five captions for 

ground truth (lowercasing). Then, we input images into 

trained model. Model with bounding boxes also 

received cropped object images as an input. Finally, the 

trained model generates caption text as the result. 

 
Figure 5. System performance testing

We used the same metrics to evaluate hyperparameter 

tuning in validation data and to evaluate performance in 

testing data: both evaluated with BLEU [19] and 

CIDER [20]. BLEU is used to measure how model-

generated text and the ground truth matched in general. 

In this paper, we measured BLEU based on 4 different 

n-gram levels, from unigram up to 4-gram. BLEU for 

certain n-gram measures the match at said n-gram level 

and is notated as BLEU-n, e.g., BLEU score for 

unigram is notated as BLEU-1. CIDER is used to 

measure the specificity of generated text by giving 

weights to informative/specific keywords. In this 

context, folk games related keywords will be given 

heavier weights. Calculation for those metrics utilized 

the source code provided by pycocoevalcap from 

COCO API. Text score measurements were obtained 

from comparing the generated text with five ground 

truth captions, one BLEU score and one CIDER score 

for each caption, then we calculated its average for 

image score. We also calculated the average score for 

each game category. 

Calculation for BLEU using pycocoevalcap was done 

by using two dictionaries: one for generated text and 

one for ground truth, each consisted of id and the 

generated text/ground truth. Calculations were carried 

out for generated text and ground truth with the same 

id. In general, we used the calculation method as 

explained in Papineni et.al. [21]. First, we calculated the 

modified n-gram precision by counting how many n-

grams in generated text appeared in ground truth, with 

clips based on maximum number of appearances in 

ground truth. Secondly, we gave a brevity penalty to 

generated text that is shorter than ground truth. In the 

implementation, we used two constants: tiny which has 

a very small value and small which is also very small 

but larger than tiny. Both constants are used to prevent 

division by zero when calculating modified n-gram 

precision and brevity penalty. 
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Similar to BLEU, CIDER utilizes the same input. 

Calculations were carried out using TF-IDF scores. IDF 

scores were gained from the test set’s ground truth. We 

calculated the TF-IDF vector for every n-gram (we used 

4 n-grams, from unigram to 4-gram) in both generated 

text and each ground truth. To handle missing words 

(word exists in generated text but not in ground truth 

corpus), we used a default value of 1 for IDF 

calculation. The default value would be changed if the 

word actually exists in ground truth corpus. Then, we 

calculated cosine similarity between the TF-IDF vector 

for clipped generated text and the TF-IDF vector for 

ground truth. Gaussian penalty was also applied for text 

length. The calculation was performed for every n-gram 

and every ground truth of the same data. The scores 

were then added up for each data, so we obtained a 

vector with size n (number of grams used). Finally, we 

averaged the value of the four n-grams, then divided the 

result with the number of ground truths to obtain the 

average against the number of ground truths. A 

multiplier of 10 was also given at the end of calculation.  

In order to measure the performance, BLEU and 

CIDER metrics were calculated using tools from 

pycocoevalcap with model-generated text and the five 

ground truths as input. BLEU and CIDER scores 

(average and individual data test scores) were obtained. 

For model’s overall score, we used average BLEU and 

CIDER scores from all test data. For model’s score per 

category, we calculated average BLEU and CIDER 

scores for a category using individual data test scores. 

Experiment results are shown on Table 5.  

Table 5. System performance for each image category 

No Category 
With Bounding Box Without Bounding Box 

BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDER BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDER 

1 Makan Kerupuk 0.7467 0.6018 0.5367 0.4652 3.1877 0.6782 0.5574 0.4845 0.3929 2.1575 

2 Egrang 0.7735 0.6371 0.5314 0.3775 1.6291 0.7210 0.5977 0.4977 0.3374 1.4132 

3 Engklek 0.7966 0.6838 0.6008 0.4843 2.0920 0.6230 0.4290 0.3361 0.2672 0.9588 
4 Layangan 0.7859 0.6459 0.5750 0.5352 1.9250 0.7727 0.6409 0.5441 0.4314 1.7953 

5 Ular Naga *0.7000 0.5000 0.5000 0.5000 2.0466 *0.4684 *0.3112 0.2800 0.2521 1.6265 

6 Balap Kelereng 0.7756 0.6236 0.5549 0.5050 3.4965 0.7005 0.6035 0.5535 0.4920 2.5975 
7 Tarik Tambang 0.8298 0.7282 0.6709 0.6239 4.0357 0.7462 0.6094 0.5495 0.5026 2.6221 

8 Balap Karung 0.7785 0.6593 0.5807 0.5264 2.6795 0.7690 0.6520 0.5561 0.4590 2.1876 

9 Gebuk Bantal 0.8743 0.8157 0.7527 0.7167 4.5772 0.7923 0.7005 0.6059 0.5269 2.5370 

10 Panjat Pinang 0.8567 0.7793 0.7276 0.6613 4.2681 0.7963 0.6607 0.5893 0.5599 3.4303 

11 Lompat Tali 0.7077 *0.4877 *0.3733 *0.3120 1.4518 0.6198 0.4185 *0.2704 0.1809 *0.2647 

12 Bakiak 0.7093 0.5698 0.4787 0.3645 *1.3993 0.6048 0.4254 0.3035 *0.1162 1.2303 
13 Gundu 0.7934 0.6621 0.5593 0.4810 2.6646 0.7122 0.5444 0.4279 0.2867 1.8844 

 

The average BLEU-1, BLEU-2, BLEU-3, BLEU-4, and 

CIDER scores for system with object detection are 

0.7884, 0.6798, 0.6165, 0.5652, and 2.8866 

respectively, while the average scores for system 

without object detection are 0.7226, 0.6022, 0.5294, 

0.4671, and 2.0018 respectively. 

Image captioning system with object detection gave 

better performances compared with the system without 

object detection, seeing how BLEU-1, BLEU-2, BLEU-

3, BLEU-4, and CIDER scores for system with object 

detection were better than the system without. The 

system showed best performance at describing images 

with category gebuk bantal. 

Model without bounding box mostly misclassifies 

lompat tali (jump ropes) images as egrang (stilts) or 

engklek (hopscotch). This likely happened because in 

most lompat tali images, the ropes are not very visible 

so the jumping person looks like they are playing 

egrang or engklek instead. An example can be seen on 

Figure 6 where there are two girls holding a rope with a 

boy jumping the rope in between the two of them. The 

rope is barely seen because it is thin and blends with the 

background, so the model captioned the image with 

“two people playing egrang at the same time”.  

On the other side, the model is best at classifying panjat 

pinang (climbing a greasy pole) images. This is because 

the pinang (pole) has unique shape and has no similarity 

to other folk games. 

 

Figure 6. Image of lompat tali.  

Predicted caption: Two people playing egrang at the same time 

We can see the correctly captioned image in Figure 7 

where there are many pinang poles. The poles are easily 

identified because it is straight and tall with prizes at the 

top of the pole, and there no object that is similar to the 

pinang pole.  
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Figure 7. Image of panjat pinang 

Predicted caption: People playing panjat pinang enthusiastically 

Model with bounding box has the worst performance in 

classifying bakiak (walking with wooden clogs) 

images. This happens because the clogs are usually 

covered with legs and also most bakiak pictures has 

crowd in it, so the model misclassifies it as other folk 

games that involves many people such as tarik tambang 

(tug of war). In addition, the shape of the clogs also 

sometimes detected as egrang (stilts). As an example, 

in Figure 8 there are nine people playing bakiak. The 

image is quite crowded and the clogs are not too clear 

because they are worn and covered with legs, so the 

model misclassified it as tarik tambang and captioned 

the image “Kids are playing tug of war on grass”. 

 

Figure 8. Image of bakiak 

Predicted caption: Kids are playing tug of war on grass 

 

Figure 9. Image of gebuk bantal 

Predicted caption: Two men playing pillow fight on top of a pool 

The category with best results from model with 

bounding box is gebuk bantal (pillow fight). This is 

because the location (pillow fights are usually played 

above a water pool) and the pillows become distinct 

features which differentiate the game from other folk 

games that is usually played in a field. Figure 9 shows 

an image of a pillow fight. The pool under them clearly 

shows distinction in comparation to grass or fields from 

other images, and the pillow held by the men also has 

distinct shapes and color that helps differentiate them 

from other objects in the images. 

4.  Conclusion 

In this paper, we proposed an object attention 

mechanism using object detection as part of image 

captioning model. We employed the model for 

captioning folk games image dataset. The object 

detection outputs a bounding box and object category 

label, which is then used as an image input into VGG16 

for feature extraction and into a caption-based LSTM 

model. Experiment results showed that the system with 

object attention gave better performances than the 

system without object attention. BLEU-1, BLEU-2, 

BLEU-3, BLEU-4, and CIDER scores for image 

captioning system with object attention improved 

12.48%, 17.39%, 24.06%, 36.37%, and 43.50% 

respectively compared to the system without object 

attention. This result has shown that object detection 

has the contribution into the object attention mechanism 

such that the object attention used for image captioning 

produced better performance. On the other hand, the 

performance also depends on the quality of the images. 

Images with clearer main objects and images with 

proportional objects tend to produce better object 

attention that, in the end, improves the system’s 

performance in generating image descriptions. 
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