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Abstract  

The general population is concerned with traffic accidents. Driver fatigue is one of the leading causes of car accidents. Several 

factors, including nighttime driving, sleep deprivation, alcohol consumption, driving on monotonous roads, and drowsy and 

fatigue-inducing drugs, can contribute to fatigue. This study proposes a facial appearance-based driver fatigue detection 

system. This is based on the assumption that facial features can be used to identify driver fatigue. We categorize driver 

conditions into three groups: normal, talking, and yawning. In this study, we used Adaboost to propose Boosting Local Binary 

Patterns (LBP) to improve the image features of fatigue drivers in the Support Vector Machine (SVM) model. The experimental 

results indicate that the system's optimal performance achieves an accuracy value of 93.68%, a recall value of 94%, and a 

precision value of 94%. 

Keywords: fatigue detection; adaboost; boosting local binary patterns (boosting LBP); support vector machine (SVM)

1. Introduction  

At present, the incidence of traffic accidents is a 

worrying issue among the people of Indonesia. 

According to Indonesian police statistics, on average, 

three people die in traffic accidents every hour [1]. The 

causes of traffic accidents are caused by several factors, 

namely environmental factors, vehicle factors, and 

human factors. Human error is the most common cause 

of traffic accidents. Police data shows that 61% are 

caused by these factors. This factor is caused by the 

physical condition of the driver, who experiences 

decreased focus or fatigue while driving [1]–[6]. 

Today many physiologists and transport experts have 

studied the effects of fatigue. It has been established that 

fatigue is a leading cause of road accidents. This 

motivates automotive companies to implement in-

vehicle intelligent safety systems that assess the driver's 

state of attention in real-time [7]. This fatigue can be 

caused by several factors, including nighttime driving, 

sleep deprivation, alcohol consumption, driving on 

monotonous roads, and taking drugs that cause fatigue 

[8]. 

The driver fatigue detection system must detect whether 

the driver is tired or sleepy. Measuring driver fatigue is 

an essential issue because it has several processes [9]. 

Fatigue detection in previous studies has been 

developed using techniques for measuring brain waves, 

heart rate, and pulse [10], [11]. However, these 

techniques are considered disturbing because the driver 

must attach the worn device while driving. Several 

projects that use this technique are carried out by large 

companies such as Toyota and Nissan; the project is 

called the Advanced Safety Vehicle (ASV) [12], and the 

MIT Smart Car project is conducted by the 

Massachusetts Institute of Technology [13]. Other 

methods that monitor eye movement and vision using a 

helmet or special contact lenses have yet to be accepted 

in clinical settings [14].  

One technique that can show fatigue is facial 

expressions. Facial expression detection can offer more 

precise detection with minimal effect on the driver [15], 

[16]. The facial expressions taken are closing the eyes 

and opening the mouth, which is widely used as a basis 

for detecting driver fatigue [17], [18]. Facial 

expressions can be captured using a camera placed in 

front of the driver. Based on the video image, the system 

can process the incoming video to conclude the level of 

driver fatigue [19]. In their yawning detection system, 

Abtahi et al. [20]  utilized the Viola-Jones algorithm for 

face detection, which represents a better approach than 

the previous method that relied on alterations in the 

geometrical characteristics of the mouth [21]. 
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Pauly and Sankar [22] offer fatigue detection using a 

Histogram of Oriented Gradient (HOG) feature 

extraction and Support Vector Machine (SVM) as 

classification. The paper discusses fatigue detection 

systems using video images obtained from low-

resolution cameras with standard lighting. The system 

mechanism offered in this paper first inputs the image 

from the camera, and then the eye detects the image 

using the Viola-Jones method. Then the image features 

were extracted using HOG and classified with SVM to 

determine whether the eye was blinking or open. The 

results of the system in their paper show that the system 

with the proposed method has succeeded in detecting 

human sleepiness. The paper shows that the features in 

the eye can provide 91.6% accuracy [22]. The 

researcher concludes that the accuracy value remains 

high if the lighting is in normal conditions and the video 

resolution is normal. 

Li et al. offer multi-feature fusion and semi-supervised 

active learning methods [23] in detecting drivers’ 

fatigue. In their paper, the authors combine two 

features: the driver's facial features and the vehicle's 

steering features. In their case, the author aims to 

improve the model's stability and accuracy for detecting 

driver fatigue. The author conducted several 

experiments to validate the model. The results show that 

the accuracy of the model is 86.25% which proves the 

effectiveness of the driver fatigue detection model. The 

author concludes their method can run stably when 

applied and incur low experimental costs. 

Yin et al. offer driver fatigue detection based on 

multiscale dynamic features [24]. At first, the authors 

used a Gabor filter to get a multiscale representation of 

the image sequence. Then LBP is used to extract each 

image. Then LBP is divided into several dynamic units, 

and the histogram of each dynamic unit is calculated 

and combined as a dynamic feature. The test results 

show that the proposed validation approach has an 

accuracy of 98%. In addition, LBP is very efficient in 

the feature extraction of an image and has good results 

in facial expression recognition. LBP can select several 

parts of the face that contribute to facial expression 

recognition. LBP also has the most important feature of 

tolerance to changes in lighting [25], [26].  

Recently, Yang et al. [27] utilized a 3D deep learning 

model for their driver yawning detection system based 

on recognizing subtle facial movements. They 

employed 3D convolutional and bidirectional long 

short-term memory networks to extract spatiotemporal 

features and used SoftMax to classify data in the 

YawDD benchmark dataset. Their proposed technique 

yielded impressive results, achieving an accuracy of 

83.4%.  

On the other hand, using Multitask Cascaded 

Convolutional Networks (MTCNN) has been proven to 

help the system achieve the highest accuracy in the 

experiments conducted by Deng et al. [31] in the driver 

drowsiness detection system. They used MTCNN to 

compensate for the inability of the kernelized 

correlation filter (KCF) algorithm to mark the face 

target in the video frame. Their driver-drowsiness 

detection system extracts the 68 facial features to detect 

facial regions.  

In the meantime, several researchers have demonstrated 

the advantages of Adaboost [28]–[30]. Wang et al. [28] 

used Adaboost to learn the base classifiers, which were 

then used as features and included in the SVM 

classifier. Xiao et al. [29] also take Adaboost's 

advantages in dealing with overfitting by combining it 

with LSTM in a temperature prediction system. 

Mehmood and Asghar [30] used Adaboost to deal with 

multiclass classification problems where the features of 

objects from different classes often overlap. SVM is 

used as base learners in the proposed ensemble model. 

Based on the work of Yang et al. [27], even though the 

CNN-based approach achieved a pretty good accuracy, 

it requires a high computational cost in terms of time, 

resulting in longer training times. It has been 

demonstrated that hand-crafted feature-based 

approaches, such as LBP and Adaboost, have relatively 

short training times and can achieve a competitive level 

of accuracy. In this paper, we propose the incorporation 

of MTCNN and Adaboost into a fatigue detection 

system for in-car drivers based on facial images. 

MTCNN is applied before the LBP feature extraction 

procedure to obtain exact face features. Adaboost is 

used as a boosting technique to improve the model 

learned from the LBP feature extraction procedure.  

This article is structured as follows. In Section 2, we 

describe the system proposed in this research. In 

Section 3, we present the results and analysis of the 

experiment. Finally, we conclude our findings in 

Section 4. 

2. Research Methods 

This study's driver fatigue classification system is 

divided into two stages, namely the training and testing 

stages, as seen in Figure 1. The video image is entered 

into the system at the training stage for further 

preprocessing. Further, LBP is used to extract features 

from the preprocessing results. The resulting feature 

vector is then used to develop a classification model 

using Adaboost with SVM as the base learner. The 

resulting model is then used in the testing phase to 

identify driver fatigue. 

2.1 Preprocessing 

At the pre-processing stage, the video is converted into 

frames as RGB images. Then the image is converted 

into a grayscale image. This stage aims to make the data 

more ideal and as a condition so that images can be 

processed using the LBP method. Further, face 
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detection is performed using MTCNN Face Detection 

to obtain the face part on the image [32]. The face 

detection produces an image of 160 x 160 pixels. At this 

preprocessing stage, data cleaning removes images that 

do not match the class label. An illustration of the pre-

processing step can be seen in Figure 2. 

 

Figure 1. Fatigue detection using Boosting LBP 

 

 
Figure 2. Pre-processing: (a) RGB image (b) Grayscale image (c) 

Face detection result 

2.2 Feature extraction: LBP 

LBP is a non-parametric method that summarizes the 

image structure by comparing each neighboring pixel. 

The first thing LBP does is calculate the binary value of 

each neighboring pixel of the grayscale image. Then the 

binary values of each neighbor are combined and 

become the feature values of the LBP. The operator 

compares each neighboring pixel value as shown in 

Formula 1.  

𝐿𝐵𝑃𝑃,𝑅(𝑥𝑐,𝑦𝑐) = ∑ 𝑆(𝑖𝑝 − 𝑖𝑐)2𝑃𝑃−1

𝑃 =0
                 (1) 

𝑠(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

              (2) 

Where P is several sampling points on a circle of radius 

𝑅,  𝑅 is a measure of the neighborhood in which a 

comparative pixel sample is taken for each central pixel 

in the image,  𝑥𝑐 and 𝑦𝑐  are the coordinates of the center 

pixel,  𝑖𝑝 is the intensity of the neighboring pixel with 

index 𝑝,  𝑖𝑐  is the intensity value of the central pixel 𝑐,  

2𝑃  is the length of the feature vector. 𝑠(𝑥) is a function 

that converts pixel value into binary [8], as defined in 

Formula 2. The illustration of the LBP feature 

extraction process is depicted in Figure 3. Table 1 

shows a sample of feature vector histograms in the three 

classes used in this study. 

 
Figure 3. LBP feature extraction: (a) face area (b) windows block 

division (c) histogram of each block (d) feature vector 

Table 1. An example of the difference in the histogram of the LBP 

feature vector in each class 

Image Class Histogram 

 

Normal 

 

 

Talking 

 

 

Yawning 

 

2.3. Adaboost 

Boosting is an algorithm used to build an accurate, 

robust classifier by combining several classifiers 

because a combination of strong classifiers can achieve 

very high accuracy [33]. The following is the 

mechanism that occurs in Adaboost. AdaBoost 

generates a series of weak classifiers iteratively, with 

each weak classifier being chosen based on its 

performance in the training set. Then, in each iterative 

step, the distribution of weights over the training sample 

is updated in a manner that forces the weak classifier to 

prioritize training data that is difficult to classify. This 

results in a classification with few training errors and 

excellent generalization performance [34]–[36]. A 

more detailed process of AdaBoost can be seen in 

Algorithm 1. 

2.4 Support Vector Machine (SVM) 

SVM is a data classification method based on statistical 

learning that can handle regression and pattern 

 

 

 

 

 

(a)  (b)  (c) 

 

 

 

 

 

 

 

 

(a)  (b)  (c)  (d) 
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problems. In classifying, SVM produces good accuracy, 

even better than other machine learning algorithms. The 

purpose of using the SVM algorithm is to find a 

hyperplane that can separate two classes with the 

maximum margin distance. 

Adaboost 

1. Given image samples (𝑥1, 𝑦1), . . . .,(𝑥𝑛 , 𝑦𝑛) where 𝑦𝑖 =
{0, 1} is negative and positive label, respectively. 

2. Initialize weight 𝜔𝑖,𝑗 =  
1

2𝑚
 ,

1

2𝐿
  for 𝑦𝑖 = {0, 1} where m and l 

are the number of negative and positive samples, respectively. 

3. Repeat 𝑡 = 1 , … , 𝑇: 

4. Normalize the weight with 𝜔𝑖,𝑗 ←  
𝜔𝑡,𝑖

∑ 𝜔𝑡,𝑖
𝑛
𝑗=1

 where 𝜔𝑖 is 

probability distribution. 

5. For each feature 𝑗, train classifier where ℎ𝑗 is limited to one 

feature. Error is evaluated using 𝜖𝑗  =  ∑ 𝜔𝑖  | ℎ𝑗 (𝑥𝑖) −𝑖

 𝑦𝑖| 
6.        Choose classifier ℎ𝑡 with smallest error 𝜖𝑡 

7.        Do weight update 𝜔𝑡+1,𝑖 = 𝜔𝑡,𝑖𝛽𝑡
1−𝑒 with 𝜖𝑖 = 0  

8.             if 𝑥𝑖 correctly classified, 𝜖𝑖 = 1 

9.             else 𝛽𝑡 =  
𝜖𝑡

1−𝜖𝑡
 

10. Finally, classify 𝐻(𝑥) = {1, 𝑗𝑖𝑘𝑎 ∑  𝑎𝑡, ℎ𝑡
𝑡=1
𝑇 (𝑥) ≥ 0.5

0
 

Algorithm 1. Adaboost 

SVM performs implicit data mapping into high feature 

space and then identifies linear separator hyperplanes 

with margins to separate data in high dimensional 

space. The SVM hyperplane maximizes the class 

imbalance and ensures classification accuracy [25], 

[34].  A hyperplane can be formed by Formula 3. 

𝑊. 𝑋 + 𝑏 =  0               (3) 

Where 𝑊 is the vector weight {𝑊1, 𝑊2, … , 𝑊𝑛}, 𝑛 is the 

number of attributes, 𝑏 is the scalar or bias, 𝑋 is the 

training tuples. 

2.5 Evaluation Metric 

Measuring system performance that has been built uses 

accuracy, precision, and recall values originating from 

the confusion matrix. The confusion matrix for 

measuring the performance of the proposed fatigue 

detection system can be seen in Table 2.  

Table 2. Confusion Matrix 

Actual 

label 

Normal TN FNT FNY 

Talking FTN TT FTY 

Yawning FYN FYT TY 

 Normal Talking Yawning 

Predicted Label  

True Normal (TN) is the number of Normal class 

images predicted as Normal class, True Talking (TT) is 

the number of images of the Talking class predicted as 

the Talking class, True Yawning (TY) is the number of 

Yawning class images predicted as Yawning class, 

False Normal Talking (FNT) is the number of Normal 

class images predicted as Talking class, False Normal 

Yawning (FNY) is the number of Normal class images 

predicted as Yawning class, False Talking Normal 

(FTN) is the number of images of the Talking class 

predicted as the Normal class, False Talking Yawning 

(FTY) is the number of images of the Talking class 

predicted as the Yawning class, False Yawning Normal 

(FYN) is the number of Yawning class images 

predicted as Normal class, False Yawning Talking 

(FYT) is the number of Yawning class images predicted 

as Talking class. 

In addition, Euclidian distance was also used in this 

study to provide information on the distance between 

feature vectors on feature local discrimination. 

Euclidean distance is a method used to calculate the 

similarity of two vectors. The formula for Euclidean 

distance can be seen in Formula 4. 

𝐸𝑑𝑖𝑠𝑡 = √∑ (𝑝𝑖 − 𝑞𝑖)
2𝑛

𝑖=1               (4) 

Where 𝑝 dan 𝑞 are the feature vectors whose distances 

will be compared.  

In this study, Euclidean distance is used to prove 

prediction errors from images by comparing the average 

feature vectors of the actual class and then compared 

with the feature vectors of the predicted class. 

3.  Results and Discussions 

This section describes the description of the dataset 

used along with the preprocessing performed on the 

data in Subsection 3.1. In addition, three experimental 

scenarios are also explained in Subsection 3.2, 3.3, and 

3.4, along with the analysis results. 

3.1 Dataset and Preprocessing 

The dataset used in this study is taken from 

"YawDDataset: A Yawning Detection Dataset" [20], a 

video image measuring 640x480 pixels with a frame 

rate of 30 fps. The data comprises 307 videos with facial 

images facing obliquely to the right. An example of an 

image from the dataset can be seen in Figure 4. 

 

 

Figure 4. Sample images from the dataset: (a) Normal (b) Talking 
(c) Yawning 

In the preprocessing step, video data is converted into 

image frames, producing 5,510 images consisting of 

1,937 normal images, 1,875 talking images, and 1,698 

yawning images. From the image obtained, several 

unique characteristics are found in each class. In the 

normal class, the dominant driver's behavior is silent; 

there is no change in the mouth. In the talking class, the 

dominant behavior seen from the driver is a change in 

the shape of the mouth, and the driver's teeth are visible. 

Meanwhile, in the yawning class, the driver seemed to 

yawn, opening his mouth, and his teeth were not visible. 

   
(a) (b) (c) 
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Table 3. Example of images where the face cannot be detected. 

Class Samples 

Normal 

 

Talking 

 

Yawning 

 

In this experiment, we only use facial imagery to 

recognize driver fatigue. Therefore, face detection is 

performed on the image obtained from the video using 

MTCNN Face Detection [32]. Several face detection 

errors were obtained from this process, i.e., the image 

containing the correct face needed to be obtained. A 

total of 45 images from the normal class, 14 from the 

talking class, and 17 from the yawning class did not 

contain the correct faces. Examples of some incorrectly 

detected images can be seen in Table 3. Data cleaning 

was performed manually to detect incorrect face 

images. 

Data cleaning was also carried out on images with 

inappropriate class labels, as shown in Figure 5. There 

were 17.9% of the data that was cleaned in this dataset. 

After preprocessing at this stage, the amount of data is 

4,519 images, consisting of 1,877 Normal images, 

1,407 Talking images, and 1,311 Yawning images. The 

experimental data is separated into training and test data 

by 80% and 20%. 

 

Figure 5. An example of an image from the talking class that does 

not match the class label. 

Meanwhile, the model development in this experiment 

was carried out in three scenarios to get the best model. 

Scenario 1 aims to get the best LBP parameters. 

Scenario 2 seeks to determine the effect of image block 

size on model performance. Scenario 3 aims to 

determine the best classifier parameters. The 

explanation of the experimental results for each 

scenario is explained in the next section. 

3.2 Scenario 1: LBP Feature Parameter Tuning  

In the first scenario, the thing to do is to select the LBP 

feature parameters, namely the P and R parameters (see 

Formula 1). K-fold cross-validation with k=10 and 

SVM was applied to the training data. K-fold cross-

validation divides the training data into k parts, with k-

1 parts used as training data and one part validation 

data. The results of the best validation accuracy values 

for each LBP parameter can be seen in Table 4. 

Table 4. The effect of LBP parameters on the model performance. 
Accuracy (Acc), Precision (Pr), and Recall (Re) values are shown in 

%. L=vector length. Time=running time in minutes 

(P, R) Acc Pr Re L Time (m) 

(4,1) 44.33 36.10 44.33 16 0.23 

(8,1) 43.38 39.16 43.38 256 2.24 

(4,2) 43.14 35.58 43.14 16 0.23 

(8,2) 43.66 58.92 43.66 256 2.24 

(12,2) 41.53 42.12 41.53 4096 33.35 

Table 4 shows that the best validation accuracy value 

for each feature extraction parameter is LBP with a 

value of P=4. Based on the performance results of the 

model built in Table 4, it can be seen that the best 

accuracy is obtained with parameters P=4 and R=1 

with a vector length of 16. This happens because, with 
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these parameters, texture information can already 

provide good information. Furthermore, feature 

selection using Adaboost is applied to this combination 

of parameters, with the results shown in Table 5. 

Table 5. The effect of boosting on the model performance. Accuracy 
(Acc), Precision (Pr), and Recall (Re) values are shown in %. L= 

vector length. Ls= vector length after boosting. Time=running time 

in minutes 

(P, R) Acc Pr Re      L Ls 
Time 

(m) 

(4,1) 73.09 73.37 73.09 400 44 0.8 

(8,1) 70.62 71.02 70.62 6400 49 1.4 

(4,2) 75.84 76.49 75.84 400 49 0.75 
(8,2) 68.85 70.28 68.85 6400 49 1.38 

(12,2) 68.28 69.04 68.28 102400 49 12.7 

It can be seen in Table 5 that the parameters for the 

model with the best performance are obtained at P=4 

and R=2. This differs from the performance results in 

Table 4, where the best model performance is obtained 

using P=4 and R=1. In Table 5, it can also be seen that 

the length of the feature vector as a result of feature 

selection produced on the use of P=4 and R=1 contains 

less feature information when compared to the use of 

P=4 and R=2 so that the performance of using LBP with 

P=4 and R=2 can give better results. 

Table 6. The effect of image block size on model performance. 

Accuracy (Acc), Precision (Pr), and Recall (Re) values are shown in 
%. L=vector length. Ls= vector length after boosting. Time=running 

time in minutes 

Block size Acc Pr Re L Ls Time (m) 

160x160 43.19 42.81 43.19 16 - 0.39 

80x80 59.27 60.25 59.27 64 36 0.40 
40x40 73.12 73.37 73.12 256 42 0.60 

32x32 75.84 76.49 75.84 400 49 0.75 

20x20 79.51 79.69 79.51 1024 48 1.39 

10x10 74.48 74.69 74.48 4096 50 4.8 

3.3 Scenario 2: Experiment with Image Block Size 

After selecting the best LBP feature parameters in 

scenario 1, the image block size is chosen to determine 

the effect on model performance. The image block size 

parameters tested were 160x160, 80x80, 40x40, 32x32, 

20x20, and 10x10. Using SVM as a classifier, the 

model performance results of various image block sizes 

can be seen in Table 6. 

It can be seen from Table 6 that the best accuracy value 

of the model is obtained at an image block size of 20x20 

with a vector length of 1024. The time required to run 

the program at this block size is 1.39 minutes. Applying 

LBP boosting to the image block size can improve 

model accuracy better than other image block sizes. 

This happens because the appropriate image block size 

and the number of image blocks produced, the better the 

information generated from LBP feature extraction. 

3.4 Scenario 3: Experiment on SVM classifiers 

After obtaining the best parameter values and image 

block sizes from the LBP Boosting feature extraction, 

hyperparameter settings for Adaboost are performed. 

The parameters obtained were n_estimator of 10000 

and learning_rate of 1. Meanwhile, three kernels were 

tested using the SVM classifier, with the best results 

obtained on polynomial kernels. The results of the 

accuracy comparison using the SVM kernel can be seen 

in Table 7. The best parameters of the SVM are 

gamma=1 and C=0.1.  

Table 7. The effect of SVM kernel(s) on model performance 

 Linear Polynomial RBF 

Acc 81.33% 89.63% 89.47% 

The performance results of the best AdaBoost and SVM 

hyperparameters obtained can be seen in Table 8. Based 

on the model performance results in Table 8, the 

AdaBoost hyperparameter can increase the model's 

accuracy performance by 10% from the initial accuracy 

of 79.51% (see Table 6) to 89.63%. Likewise, the 

precision and recall values have increased by 10% (see 

Table 6). 

Table 8. Model performance after Adaboost and SVM 
hyperparameter tuning. LBP parameters (P=4, R=2); image block 

size=20x20; SVM kernel= polynomial. Accuracy (Acc), Precision 

(Pr), and Recall (Re) values are shown in %. L=vector length. 

Parameter  Acc Pr Re L 

LBP (4, 2) Blok 20x20 
+ SVM Polynomial 

89.63 89.75 89.63 1024 

3.5 Testing 

The test was carried out on 919 test data images. After 

getting the model with the best performance from the 

training data, testing is done. Figure 6 shows the 

confusion matrix from the test results. The test results 

obtained an accuracy performance of 93.68%, with a 

precision and recall value of 94%, as shown in Table 9. 

 

Figure 6. Confusion Matrix 

Table 9. System Performance Evaluation 

Class Pr Re #images 

Normal 0.92 0.96 396 

Talking 0.91 0.92 266 
Yawning 1.0 0.91 257 

Weighted Avg 0.94 0.94 919 

In Figure 6, 15 Normal class images are predicted as 

Talking, 20 images of the Talking class are predicted as 
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Normal, 14 images of the Yawning class are predicted 

as Normal, and nine images of the Yawning class are 

predicted as Talking. Meanwhile, there is no 

mispredicted image in the Yawning class. This shows 

that the system can detect drivers with Yawning 

conditions. 

Figure 7 and Figure 8 show an example of an incorrectly 

predicted image. The Yawning class image in Figure 7 

is incorrectly predicted as a Normal class. Meanwhile, 

the image of the Yawning class in Figure 8 is incorrectly 

predicted as a Talking class. The Euclidean distance to 

the predicted class is proven to be close using Formula 

4, which compares the average feature vector distances 

of correctly and incorrectly predicted images. This 

makes the image unpredictable because the resulting 

image vector is close to the average vector of the 

predicted class.  

In this study, comparisons were also made with other 

methods that also used YawDDataset [20]. The results 

of this comparison can be seen in Table 10. The LBP 

boosting accuracy value in Table 10 is obtained from 

the results of the k-fold cross-validation with k=4. The 

LBP with the boosting technique gets the best accuracy 

value compared to the other methods.  

Table 10. Comparison of model accuracy values 

Method Acc 

MTCNN + Boost LBP + SVM (this work) 89% 

Variational Descriptor [37] 83% 

Yang [27] 83.4% 

 

        

Figure 7. An example of an incorrectly predicted yawning class 
image as a normal class. The Euclidean distance of the feature 

vector to the actual class (yawning) is 1.68, while the Euclidean 

distance to the predicted class (normal) is 1.66. 

      

Figure 8. An example of an image of a yawning class that is 

incorrectly predicted as a talking class. The Euclidean distance of 

the feature vector to the actual class (yawning) is 1.33, while the 

Euclidean distance to the predicted class (talking) is 1.32. 

4.  Conclusion 

Based on our findings in this study, fatigue detection in 

car drivers based on facial images can be well 

recognized using the Boosting Local Binary Patterns. 

The proposed system can achieve the best performance 

with an accuracy value of 93.68% and a precision and 

recall value of 94%. The best results were achieved on 

the LBP parameter with R = 2 and P = 4 with an image 

block size of 20x20. The proposed fatigue detection 

system outperformed the existing method regarding 

recognition rate and overall performance. Future 

research should improve the selection of keyframes to 

reduce the number of inappropriate class labels 

included in the training process. Additionally, the use of 

more data variations will have a significant impact on 

the system's enhanced ability to detect driver fatigue. 
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