
 Accepted: 15-01-2023 | Received in revised: 13-02-2023 | Published: 15-03-2023

263

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI
(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 2 (2023) 263 - 270 ISSN Media Electronic: 2580-0760

Decomposing Monolithic to Microservices: Keyword Extraction and BFS

Combination Method to Cluster Monolithic’s Classes

Bintang Nuralamsyah1, Siti Rochimah2*
1,2Informatics, Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember

16025211031@mhs.its.ac.id, 2siti@if.its.ac.id

Abstract

Microservices architecture is widely used because of the ease of maintaining its microservices, as opposed to encapsulating
functionality in a monolithic, which may negatively impact the development process when the application continues to grow.
The migration process from a monolithic architecture to microservices became necessary, but it often relies on the architect's
intuition only, which may cost many resources. A method to assist developers in decomposing monolithic into microservices is
proposed to address that problem. Unlike the existing methods that often rely on non-source code artifacts which may lead into

inaccurate decomposition if the artifacts do not reflect the latest condition of the monolith, the proposed method relies on
analyzing the application source code to produce a grouping recommendation for building microservices. By using specific
keyword extraction followed by Breadth First Search traversal with certain rules, the proposed method decomposed the
monolith's component into several cluster whose majority of cluster’s members have uniform business domain. Based on the
experiment, the proposed method got an 0.81 accuracy mean in grouping monolithic's components with similar business
domain, higher than the existing decomposition method's score. Further research is recommended to be done to increase the
availability of the proposed method.

Keywords: monolith decomposition; microservices; monolithic architecture; source code extraction; clustering

1. Introduction

Organizations must have robust business solutions that

rely on technology in today's era. The need for

technology-based solutions encourages software

developers to design and build software products with

various architectures to build effective and efficient

software [1]. Monolithic Architecture is one type of

software architecture that is widely used. Several well-

known companies, such as Netflix, Amazon, and eBay,

have implemented onolithic Architecture in their

software. Monolithic Architecture encapsulates all

functions into a single application unit. This
architecture makes building applications easier to

launch, test, and develop [2]. However, behind the

advantages of monolithic architecture, some

weaknesses make this architecture a double-edged

sword. As it develops over time, the application will

continue to grow both in terms of functionality and

source code. Using monolithic architecture in these

conditions will increase the burden on application

developers. The characteristic of monolithic

architecture, which encapsulates all things in one unit

when applied in large-scale applications, will make the
application very complex. Performing bug-fixing and

feature additions to the software will become harder.

The application becomes difficult to be maintained or

developed [3]. Microservices architecture is becoming

a choice of software architecture to overcome the

weaknesses of monolithic architecture [2]. This

architecture breaks up a monolith application into a

collection of small services that interact with each other

through a communication scheme between services. In

addition to the convenience in the service maintenance

process, microservices architecture also drives the

adoption of DevOps and Cloud Computing in the

development cycle [4], [5]. Microservices architecture
is not a silver bullet[6]. It also occupies it’s problems

[7]. One of them is how to decompose applications with

monolithic architecture into a microservices

architecture. Utilizing microservices architecture on a

small project is wasting resources [8]. Therefore, the

average application projects are initially built using

monolithic architecture. The need for decomposition

exists when the application becomes quite large and

hard to handle by a monolithic architecture. Migrating

an application built with a monolithic architecture to a

microservices architecture is not easy [9]. So far, the
process of decomposition of applications with

 Bintang Nuralamsyah, Siti Rochimah

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 2 (2023)

DOI: https://doi.org/10.29207/resti.v7i2.4866

Creative Commons Attribution 4.0 International License (CC BY 4.0)

264

monolithic architecture is carried out by relying on the

software architect's intuition and experience [10].

Decomposing without a certain approach or process can

cost many resources.

Some methods to decompose monolithic have been

proposed before. Vresk et al. explained that a

combination of verb-based and noun-based word in

source code could be a criterion for decomposing an

application [11]. Unfortunately, This method is a

decomposition principle without implementation
examples. Another attempt to decompose an application

was done by Li et al. by proposing decomposing

technique based on the dataflow model of the

application. It transforms the dataflow diagram of the

application into a modified dataflow, then splits it into

some microservices candidates. In other words, it

depends on the software dataflow artifact, which

sometimes needs to be updated [2]. Mazlami et al.

proposed another formal model to extract microservices

from monolith [12]. It can decompose applications by

analyzing their source code semantic similarity. It could
perform better on an application with many business

domains but has many similar source files. Another

methodology that Mazlami proposed is based on

contributors' commits histories. It splits the monolith

application based on the contributor's commits pattern.

The limitation of this method is the number of commits

in VCS. Baresi et al. proposed a method to identify

microservice using OpenAPI specification [13]. The

method matched terms in the API specifications against

a reference vocabulary. It relies much on well-defined

interfaces with meaningful names. Selmadji et .al.

proposed a decomposition method by combining the
architect's suggestion and decomposition approach

based on some quality function [14]. The

decomposition quality depends on the software

architect's comprehension of the software. application

can be clustered by specific rules to create candidate

recommendations for microservices.

In summary, many existing works rely on software

architects' experience or software artifacts besides

source codes. These dependencies lead to the possibility

of using outdated software artifacts or inaccurate

suggestions from the architect, which produce a less-
accurate decomposition result. To address this problem,

this paper proposed a decomposition method that relies

only on software source codes to assist software

decomposition.

The method analyzes the usage of some reserved

keywords in the source code and uses them in the

clustering process to generate microservices

recommendations with minimal intervention from the

architect to generate a microservices candidate

recommendation. It comprises two main step and one

optional step. The first and second step are extraction

step and main clustering step, whether the optional step

is extra clustering step.

The rest of this paper is structured as follows: Section 2

formally introduces the decomposition method, dataset,

and evaluation method. Section 3 describes the result of

the experiment. In section 4, the conclusion of this study

is drawn and discussed potential future work and

limitation.

2. Research Methods

2.1 Decomposition Method

The main idea of the proposed method is based on one

of Unix's Philosophies which states that each service is

responsible for performing a single business task. That

statement also constructed the basis of Microservice

architecture (MSA). In Domain Driven Design, a

software development approach focusing on domain

model development [15], "performing a single business

task," is implemented by creating bounded contexts.

Bounded contexts are boundaries created to separate

different business concepts/business domains in

software [16].

Components of software that reside in the same

bounded context are assumed to have the same business

domain between one and the others and are prohibited

from having direct dependency or relation to

components outside their bounded context.

Components in software can be in various forms. In

Object Oriented Programming, a component may be in

the form of a class. Each class can have dependencies

or relations to other classes, which is identified by usage

of specific keywords on the source code. For example,

in PHP, these keywords are “use” and “extends”.

Different programming languages may have different
keywords. The extracting step of the proposed method

is done by analyzing information about the usage of the

keywords that represented a relation or dependency

between components. This kind of information is

significant because components in the monolithic

application can be clustered by specific rules to create

candidate recommendations for microservices.

Figure 1. Example of Graph Representation of monolith Mo

A graph representing a monolith can be built using the

component's relation as a base. The vertices represent

 Bintang Nuralamsyah, Siti Rochimah

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 2 (2023)

DOI: https://doi.org/10.29207/resti.v7i2.4866

Creative Commons Attribution 4.0 International License (CC BY 4.0)

265

component/class in the OOP paradigm, and the directed

edges represent the existence of dependency from one

component to the other. An edge from a vertex to the

other vertices informs that a component is dependent on

a particular component. For example, a sample

monolith Mo with 15 components is represented in

Figure 1. The source code for the sample can be

accessed on the attached repository [17].

The graph was built by analyzing the relationship of

every component that built the monolith Mo. On figure
1, some nodes do not have an arrow pointing to them.

These nodes in this paper are called leaf nodes. On the

contrary, nodes with no arrow coming out from them

are defined as root nodes.

The clustering step of the proposed method is initialized

by doing Bread First Traversal (BFS) on every leaf node

with a stopping point last root node that has a path to

the corresponding leaf node. For example, the BFS

traversal on the leaf node 𝑣2 visits these nodes

consecutively: 𝑣2 → 𝑣5 → 𝑣4 → 𝑣7 → 𝑣6

The method utilizes array to save list of nodes that were

visited during each BFS as shown in Table 1. A graph

with 𝑛-leaf nodes produces 𝑛-one-dimensional arrays

because there are 𝑛 different BFS traversal. These

arrays are the seeds for microservices recommendation.

Table 1.The List of Arrays Produced by BFS

Leaf Node Array

𝒗𝟏 [𝑣1, 𝑣7, 𝑣5]

𝒗𝟐 [𝑣2, 𝑣5, 𝑣4, 𝑣7, 𝑣6]

𝒗𝟑 [𝑣3, 𝑣4, 𝑣6]

𝒗𝟏𝟎 [𝑣10, 𝑣9, 𝑣11, 𝑣8, 𝑣6]

𝒗𝟏𝟐 [𝑣12, 𝑣11, 𝑣8, 𝑣6]

𝒗𝟏𝟑 [𝑣13]

𝒗𝟏𝟒 [𝑣14]

𝒗𝟏𝟓 [𝑣15]

After all leaf nodes are traversed, the arrays are merged

one with the other with specific rules. First, if they have

𝑛 similar members, they are merged into one until no

array has 𝑛 similar members. This merging is based on

a domain-driven design paradigm; a component should

only depend on a component in the same bounded

context.

Two arrays with n similar members are assumed to

contain classes with similar business processes, so they

should be grouped in the same microservices. The user

determines the value of n. The default value equals one.

one is selected as default, because in the exemplary

implementation of domain-driven design, the

component is only directly connected to the other
component with the same business domain. Therefore,

having one similar member is assumed to have a similar

business process. Second, if there is no more array with

𝑛 similar member, all arrays with one member only are

merged.

The purpose of this process is to avoid the proposed

method generating many microservice candidates with

only one member, which is assumed may lead the

developer to confusion. Third, an element of an array

that exists in the other array must select one array

randomly as its owner, so no element resides on two

arrays. The arrays that have gone through the merging

process are the microservices candidate

recommendation for the developer.

Classes or components in the same array indicate they
contain similar business processes and hence should be

put in the same microservices. Therefore, the

recommendation can help the developer know which

monolithic component should be in the same

microservice so the process of software comprehension,

component mapping, and migration planning can be

done faster as shown in Table 2.

Table 2. Final Result of Main Decomposing Process with 𝑛 = 2

Cluster Member

1 [𝑣1 ,𝑣2 , 𝑣3, 𝑣5, 𝑣4, 𝑣7, 𝑣6]

2 [𝑣10 , 𝑣9, 𝑣11, 𝑣8, 𝑣6, 𝑣12]

3 [𝑣13, 𝑣14, 𝑣15]

Table 3 are the pseudocodes of the extracting step. Line

2 – 6 in EXTRACT() function defines the extraction

process of each class file in the source code repository

and determines what information is extracted from the

class files.

Table 3. Pseudocode of Extraction Step

Pseudocode 1 Extraction Step

1: function EXTRACT(repository s)

2: for file in s do

3: class.classname ← GETCLASSNAME(file)

4: class.references ← GETREFERENCES(file)

5: classList.push(class)

6: endfor

7: Return classList

8: end function

Table 4 shows the pseudocode of the main clustering

process. DECOMPOSE() is a function that decomposes the

monolith by using information from the extracting step.

Line 4 determines whether a class is a leaf node or not.

If it is a leaf node, the algorithm starts the BFS traversal

from the node and adds the visited nodes into array
cluster. Lines 8-15 iterates over clusters and merged

them if those clusters can be merged. Line 16 adds the

special cluster into the list of the cluster. Function

canMerge() takes argument 𝑛 as the minimum

threshold to determine whether two clusters can be

merged. This algorithm returns a group of clusters that

become the recommendation of the microservices.

There is a possibility that a class without any
dependencies exists in the monolith, which means that

the class will generate a one-member cluster and then

merge into one big cluster. If the number of one-

member clusters is too many, the particular cluster

 Bintang Nuralamsyah, Siti Rochimah

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 2 (2023)

DOI: https://doi.org/10.29207/resti.v7i2.4866

Creative Commons Attribution 4.0 International License (CC BY 4.0)

266

(combination of all clusters with one member) 's size

will be enormous.

Table 4. Pseudocode of Main Clustering Step

Pseudocode 2 Primary Clustering Step

1: function DECOMPOSE(classList)

2: clusterList = []

3: for class in classList do

4: if isLeaf(class) == true do

5: clusterList.add(BFS(class))

6: endfor

7: specialCluster = []

8: for cluster in clusterList do

9: if canMerge(cluster, cluster+1, n) do

10: MERGE(cluster, cluster+1)

11: reset loop

12: else if cluster.length == 1 do

13: MERGE(specialCluster, cluster)

14: endif

15: endfor

16: clusterList.push(specialCluster)

17: return clusterList

18: end function

To reduce the size of the unique cluster, the proposed

method is extracting another keyword, the namespace

keyword. The namespace is a keyword that does not
directly tell the dependencies of a class to another class.

Nevertheless, this keyword can be used to help in

grouping the one-member cluster. For each class that is

a member of the unique cluster, the namespace is

identified.

Table 5. Pseudocode of Extra Clustering Step

Pseudocode 3 Extra Clustering Step

1: function EXTRACLUSTER (clusterList)

2: for class in clusterList[“-1”] do

3: namespace = class.namespace; specialclass = class

4: for cluster in clusterList do

5: for class in cluster do

6: if namespace == class.namespace do

7: cluster.push(specialclass)

8: clusters[-1].remove(specialclass)

9: found = True

10: end if

11: end for

12: endfor

13: if found == False do

14: new_cluster =[specialclass]

15: clusterList.push(new_cluster)

16: end if

17: end for

18: clusterList.pop(“-1”)

19: return clusterList

20: end function

Then, the method searchs in all clusters produced by the

DECOMPOSE() function for a member with the same

namespace as the current analyzed class. If there is a

member with the same namespace, the class is then

assigned to that cluster. However, if there is no member

in all clusters with the same namespace, it then

constructs its own cluster. In this paper, this kind of

clustering is called the extra clustering step because it

was done after the primary clustering step. This extra

clustering step aims to improve the result of the
decomposition method. The pseudocode is shown in

Table 5.

2.2 Evaluation Method

A good form of monolith application decomposition is

when each cluster generated by the process consists of

classes that share the same business domain or are in the

same bounded context. This argument is in line with the

concept of microservice architecture, where each

service on a microservice architecture is expected to

have one specific responsibility in a bounded context

[18]. In the grouping process carried out manually, each
class on the monolith is analyzed. The analysis process

is carried out by understanding the source code of the

monolith application. From the results of the analysis,

the business domain of each of these classes is

determined. The process of clustering existing classes is

carried out by grouping classes that have similar

business domains. Through this process, a list of classes

and their domains is generated. The list can then be used

as ground truth to evaluate the decomposition results of

the application by using the decomposition method. In

this study, the evaluation was carried out by calculating

the accuracy by matching the business domain resulting
from manual analysis and the business domain resulting

from the decomposition by automatic decomposition

method. For the matching process to be carried out,

each class in the decomposition result by the method

must have a predicted domain. This method performs

clustering, where clustering usually groups based on

similarities between members without labels which in

this context are the business domain of the class.

Therefore, the authors use the dominant domain to help

provide business domain predictions on each class in

each cluster generated by decomposition by the method.
The dominant domain is the business domain that has

the most members in a cluster. For example, a clustering

result from decomposition by the decomposition

method, from now on referred to as cluster X, has five

members, namely 𝑥1, 𝑥2, 𝑥3, 𝑥4, and 𝑥5 shown in Table

6. By following ground truth, the actual business

domain of all five-member sequentially transaction and

authentication. Because business domain transaction

owns one element more than authentication, the

dominant domain of the current cluster is the

transaction. So, all members of cluster X will be
predicted as transaction business domains even though

two of them have distinct business domains.

 Bintang Nuralamsyah, Siti Rochimah

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 2 (2023)

DOI: https://doi.org/10.29207/resti.v7i2.4866

Creative Commons Attribution 4.0 International License (CC BY 4.0)

267

Figure 2. Accuracy Graph of The Proposed Method variants and Mazlami's Method

Table 6. Comparison of Actual and Predicted domain on Cluster X’s

member

Member Actual Dom Predicted Dom

x1 Authentication Authentication

x2 Authentication Authentication

x3 Authentication Authentication

x4 Transaction Authentication

x5 Transaction Authentication

By using that dominant domain concept, the formula of

accuracy that is used in this paper is formulated in

Equation 1.

Accuracy =
 ∑ 𝑓(𝑐𝑖)

𝑗
𝑖=0

𝑛
 (1)

J is the number of clusters created, n is a number of

classes in monolith application, ci is a a cluster created

where 𝑐𝑖 ∈ 𝐶, C is a set of clusters created during

decomposition, and f(ci) is a function to calculate the

number of dominant domain classes in a cluster which

formulated by Equation 2.

𝑓(𝑐) = max(𝑛𝐷1, 𝑛𝐷2, . . . , 𝑛𝐷𝑘) (2)

𝑛𝐷𝑥 isa number of classes which have business domain

𝐷𝑥 domain in cluster c, and k is a number of domains in

monolith.

The greater the number of members with the same

prediction domain as the actual domain, the higher the

accuracy value. Clusters with all members having the

same business domain will produce ∑ 𝑓(𝑐𝑖)
𝑗
𝑖=0 equals

to 𝑛 which lead to accuracy score equals to 1, the

highest accuracy that can be achieved. Therefore, the

more uniform the business domain of the cluster’s

members of each cluster produced, the greater the

accuracy, which reflected better cluster quality. This
evaluation compares the cluster quality generated by

this paper method with the other method.

Seven datasets shown in Table 7 are used as ground

truth sources in this experiment. Those seven datasets

were web applications built by the PHP programming

language and Laravel framework. Those datasets were

chosen because, for the current method development,

the author's focus is to decompose a PHP web

application built with a monolithic architecture. Most of

the datasets are taken from the Directorate of

Technology and Information System Development of

Institut Teknologi Sepuluh Nopember's git repository.

Table 7. Dataset Characteristic

No. Dataset LOC Class

Number

Domain’s

Variance

Number

1 Kayumas 2,990 34 3

2 Skill Passport 4,046 78 7

3 MyITS thesis 6,039 174 6

4 MyITS dorm 9731 197 5

5 MyITS Connect 35,194 322 8

6 MyITS

Admission

50,021 1038 16

7 MyITS

Studentconnect

170,970 952 10

Class Number describes the number of classes that

constructed the monolithic.

The domain's variance number is the number of the

possible business domains on the corresponding

dataset. For performance evaluation, the proposed

methodology was compared to Mazlami Semantic

Coupling Decomposition Algorithm [12]. Mazlami's

algorithm was chosen because it uses the similar input

as the proposed method and produces the same type of

result (cluster of class). The experiments were done by

decomposing those datasets using both algorithms. The

evaluation is started with decomposing the dataset by

the proposed method without the extra clustering step

and n value equal to 1. After that, the proposed method
decomposes the dataset with the extra clustering step

and n value equal to 1. Finally, the dataset is

decomposed by Mazlami's semantic coupling method.

Because mazlami's method needs the number of clusters

as an additional parameter, mazlami's method is run

several times by varying the number of clusters. The

minimum value for the number of clusters is the

smallest total cluster created by the variance of the

proposed method, which has been done before whereas

the maximum value of the number of clusters is the

highest total cluster created by the variance of the

proposed method.

3. Results and Discussions

Figure 2 lists the evaluation result of each algorithm.

For the easiness of writing, the proposed method

without the extra clustering step is written MD, and the

proposed method with an extra clustering step is written

MD+. Figure 2 shows that the proposed method

 Bintang Nuralamsyah, Siti Rochimah

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 2 (2023)

DOI: https://doi.org/10.29207/resti.v7i2.4866

Creative Commons Attribution 4.0 International License (CC BY 4.0)

268

variances have better performances, in terms of

accuracy, than the Mazlami’s method. Either with or

without additional clustering, the proposed method

successfully delivers accuracy performance over

Mazlami's on six of the seven available datasets.

Mazlami's accuracy mean in this experiment is 0.47,

with 0.25 as the standard deviation. Mazlami's method

depends on the source code's semantic similarity score.

Mazlami's method assumes that two components with

similar syntax may have a similar business process. On

the other side, most of the applications used as datasets

come from an institute's repository.

Figure 3. Decomposition Visualization on MyITS Studentconnect

They are built with some conventions the institute

defines, such as variable and function naming rules and

model and controller defining rules. These rules

influenced the semantic similarity score, so two

components written with the same convention will have
similar semantics, even though they contain different

business processes. Therefore, Mazlami's method is not

suitable for this kind of application. T

he decomposition of Mazlami's method in this

experiment creates one big cluster with various business

domains. This kind of cluster is not preferable because

the primary purpose of the decomposition is to split one

enormous-size cluster called monolith into several

smaller clusters called microservices. Each

microservices is expected to have components with

related business processes. The proposed method

variants, MD and MD+, performed well on most
datasets. The MD variant got a 0.79 accuracy mean with

0.26 as the standard deviation, while the MD+ variant

accuracy was 0.84 with 0.28 as the standard deviation.

5 from 7 datasets were built by domain-driven design

paradigm, which means the component source code

writing follows the Domain Driven Design(DDD) rules.

One of the DDD rules is that a component should not be

dependent directly on a component with a different

bounded context. Implementing those DDD rules on the

source code caused most components to depend only on

other components with similar business contexts, even
though some components still violate these rules. Table

8 shows the number of components in each dataset

which violated the DDD rules.

Table 8. Number of Violating Class in Dataset

Dataset Violating Class

Kayumas 8

Skill Passport 0

MyITS thesis 2

MyITS dorm 0

MyITS Connect 0

MyITS Admission 20

MyITS Studentconnect 6

The Dataset with the highest number of violating

classes is MyITS Admission. The combination of a high

number of violating classes and a high number of total

classes resulted in the creation of one enormous cluster

that contains various domain businesses.

By analyzing the decomposition result[17], it is known

that the giant cluster in MyITS Admission contained

884 components in the MD variant. Whereas the

maximum number of components of a domain in

MyITS Admission where only 122 components. It

caused at least 762 components to be incorrectly

predicted. It also happens in the MD+ variant, where

894 components got the wrong predicted domain. With

this many wrong predicted components, it makes sense

if MD and MD+ got low accuracy scores on MyITS

Admission, even though they got 0.1 higher accuracy

scores than Mazlami's method. MyITS StudentConnect
is the largest Dataset in terms of LOC. The visualization

of decomposition on this Dataset is shown in Figure 3.

The blue dots represent the cluster's index, and the tiny

colored dots represent classes or components. Small

dots with the same color mean they have the same

business domain. An edge from a small colored dot to a

blue dot indicates that that class is a cluster member

whose index was shown by the blue dot. The spatial

placement does not represent anything; the main focus

of the visualization is the relation between the blue dot

with the small dots. From Figure 3 can be seen,
Mazlami's method tends to build one big cluster, as

described before. Whereas the MD and MD+ could split

the components into several clusters, almost all clusters

contain classes with the same business domain. One key

difference in results between MD and MD+ is the

existence of an extra clustering step. Without the

clustering step, all arrays with one member component

will be merged into one cluster. If the one-member

arrays come from various domain businesses, the

combined cluster will contain many different

businesses process, as shown in the right-top cluster in

the middle picture. Whereas only one domain was
selected as the dominant domain; hence, classes with

 Bintang Nuralamsyah, Siti Rochimah

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 2 (2023)

DOI: https://doi.org/10.29207/resti.v7i2.4866

Creative Commons Attribution 4.0 International License (CC BY 4.0)

269

non-dominant domains in that cluster will be predicted

wrong. The greater the number of classes predicted

wrong, the lower the accuracy. This kind of situation

did not happen in the MD+ variant because the MD+

variant mapped the classes without dependency into a

cluster containing a component with the same

namespace. In the author's habit of writing source code,

classes with the same namespace usually contain

similar business processes, even though this assumption

still needs further investigation. Hence grouping the
classes without dependency with this kind of approach

improves the accuracy of the decomposition method in

this context. However, further research may be needed,

especially on namespace writing habits.

This experiment show that the MD and MD+ method

are suitable for decomposing applications built with

domain-driven design. With MD accuracy mean equals

to 0.79 and MD+ accuracy mean equals to 0.84, it can

be concluded that the proposed method got 0.81 in

accuracy mean which means it decomposed the

monolith well. Using a domain-driven design paradigm,
the component is ruled to only be dependent on the

component in the same bounded context. Therefore, the

clusters of application with DDD generated by the

proposed method tend to group components with the

same business domain in one cluster. This kind of

clustering is preferable because it helps developers

understand which components of the application should

be put in the same microservices later. For detailed

report of the experiment please refer to the referenced

repository [17].

4. Conclusion

This paper introduced a new approach to help
developers decompose monolithic software into

microservices. This approach analyzes information on

reserved keyword usage that resides in the source code.

Using source code as input, the proposed method in all

variants could decompose the monolithic semi-

automatically. By experiment, the proposed method got

0.81 on accuracy mean; compared to a similar existing

method, the proposed method shows better results. The

coupling of the component in the source code is the

primary influencer of the decomposition result. The

proposed method performs very well on source code
built with the domain-driven design approach. The fact

that this method was focused on PHP web applications

with the Laravel framework built is one of the

limitations of this work. This work focuses on analyzing

keywords in the Laravel PHP framework, so currently,

the scope of this method is only in applications built

with the Laravel PHP framework.

Further research on other programming languages and

other frameworks has the potential to expand the scope

of the proposed method and is therefore considered

advanced research. In addition, the additional clustering

stages in this method result in more clusters, although

their accuracy values are higher than the proposed

method without additional clustering stages. Further

research to assess the influence of the number of

clusters and namespace writing habits on

decomposition results can also be used as a further

research direction. Another research direction is

combining two or more existing methods with this

proposed method. Various methods have been proposed

before, even though they all have weaknesses.
Combining those methods with this proposed method

may increase the quality of software decomposition

results.

Acknowledgment

This paper’s experiment is supported by Directorate of

Technology and Information System Development

Institut Teknologi Sepuluh Nopember by providing

Source code and developers to assist author in analyzing

the dataset.

Reference

[1] F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T.

Toulkeridis, “From Monolithic Systems to Microservices: A

Comparative Study of Performance,” Appl. Sci., vol. 10, no.

17, Art. no. 17, Aug. 2020, doi: 10.3390/app10175797.

[2] S. Li et al., “A dataflow-driven approach to identifying

microservices from monolithic applications,” J. Syst. Softw.,

vol. 157, p. 110380, Nov. 2019, doi:

10.1016/j.jss.2019.07.008.

[3] K. Gos and W. Zabierowski, “The Comparison of Microservice

and Monolithic Architecture,” in 2020 IEEE XVIth

International Conference on the Perspective Technologies and

Methods in MEMS Design (MEMSTECH), Lviv, Ukraine, Apr.

2020, pp. 150–153. doi:

10.1109/MEMSTECH49584.2020.9109514.

[4] D. Trihinas, A. Tryfonos, M. D. Dikaiakos, and G. Pallis,

“DevOps as a Service: Pushing the Boundaries of Microservice

Adoption,” IEEE Internet Comput., vol. 22, no. 3, Art. no. 3,

May 2018, doi: 10.1109/MIC.2018.032501519.

[5] A. Carrasco, B. van Bladel, and S. Demeyer, “Migrating

towards microservices: migration and architecture smells,” in

Proceedings of the 2nd International Workshop on

Refactoring, Montpellier France, Sep. 2018, pp. 1–6. doi:

10.1145/3242163.3242164.

[6] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T.

Larsen, and S. Dustdar, “Microservices: Migration of a

Mission Critical System,” IEEE Trans. Serv. Comput., vol. 14,

no. 5, Art. no. 5, Sep. 2021, doi: 10.1109/TSC.2018.2889087.

[7] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros,

“Migrating Enterprise Legacy Source Code to Microservices:

On Multitenancy, Statefulness, and Data Consistency,” IEEE

Softw., vol. 35, no. 3, Art. no. 3, May 2018, doi:

10.1109/MS.2017.440134612.

[8] A. Singleton, “The Economics of Microservices,” IEEE Cloud

Comput., vol. 3, no. 5, pp. 16–20, Sep. 2016, doi:

10.1109/MCC.2016.109.

[9] V. Velepucha and P. Flores, “Monoliths to microservices -

Migration Problems and Challenges: A SMS,” in 2021 Second

International Conference on Information Systems and

Software Technologies (ICI2ST), Quito, Ecuador, Mar. 2021,

pp. 135–142. doi: 10.1109/ICI2ST51859.2021.00027.

[10] S. Newman, Monolith to microservices: evolutionary patterns

to transform your monolith, First edition. Beijing [China] ;

Sebastopol, CA: O’Reilly Media, Inc, 2019.

 Bintang Nuralamsyah, Siti Rochimah

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 2 (2023)

DOI: https://doi.org/10.29207/resti.v7i2.4866

Creative Commons Attribution 4.0 International License (CC BY 4.0)

270

[11] T. Vresk and I. Cavrak, “Architecture of an interoperable IoT

platform based on microservices,” in 2016 39th International

Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), Opatija, Croatia,

May 2016, pp. 1196–1201. doi:

10.1109/MIPRO.2016.7522321.

[12] G. Mazlami, J. Cito, and P. Leitner, “Extraction of

Microservices from Monolithic Software Architectures,” in

2017 IEEE International Conference on Web Services (ICWS),

Honolulu, HI, USA, Jun. 2017, pp. 524–531. doi:

10.1109/ICWS.2017.61.

[13] L. Baresi, M. Garriga, and A. De Renzis, “Microservices

Identification Through Interface Analysis,” in Service-

Oriented and Cloud Computing, vol. 10465, F. De Paoli, S.

Schulte, and E. Broch Johnsen, Eds. Cham: Springer

International Publishing, 2017, pp. 19–33. doi: 10.1007/978-3-

319-67262-5_2.

[14] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. Oumarou

Mahamane, P. Zaragoza, and C. Dony, “From Monolithic

Architecture Style to Microservice one Based on a Semi-

Automatic Approach,” in 2020 IEEE International Conference

on Software Architecture (ICSA), Salvador, Brazil, Mar. 2020,

pp. 157–168. doi: 10.1109/ICSA47634.2020.00023.

[15] H. Vural and M. Koyuncu, “Does Domain-Driven Design Lead

to Finding the Optimal Modularity of a Microservice?,” IEEE

Access, vol. 9, pp. 32721–32733, 2021, doi:

10.1109/ACCESS.2021.3060895.

[16] P. Oukes, M. van Andel, E. Folmer, R. Bennett, and C.

Lemmen, “Domain-Driven Design applied to land

administration system development: Lessons from the

Netherlands,” Land Use Policy, vol. 104, p. 105379, May

2021, doi: 10.1016/j.landusepol.2021.105379.

[17] B. Nuralamsyah, “Monolith Mo.” Accessed: Nov. 08, 2022.

[Online]. Available:

https://github.com/gslayer0/decomposing-monolith-to-

microservices

[18] A. R. Sampaio, J. Rubin, I. Beschastnikh, and N. S. Rosa,

“Improving microservice-based applications with runtime

placement adaptation,” J. Internet Serv. Appl., vol. 10, no. 1, p.

4, Dec. 2019, doi: 10.1186/s13174-019-0104-0.

