Accredited Ranking SINTA 2 Decree of the Director General of Higher Education, Research and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Robust Digital Watermarking on Vital Archives using Hybrid SVD and DWT Methods

Alita Wulan Dini¹, Shelvie Nidya Neyman², Toto Haryanto³

^{1,2,3}Computer Science Departement, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor, Bogor, Indonesia ¹alitawulandini@apps.ipb.ac.id, ²shelvie@apps.ipb.ac.id, ³totoharyanto@apps.ipb.ac.id

Abstract

The development of internet technology affects the dissemination of data, especially in vital government archives. This research uses a hybrid Singular Value Decomposition (SVD) and Discrete Wavelet Transform (DWT) method, which aims to protect the copyright of vital archives. The stages of the insertion and extraction process are carried out to test the effect of the alpha value on the quality (imperceptibility) and robustness of the inserted image by measuring the Peak Signal to Noise Ratio (PSNR), verifying similarity by measuring the Normalized Cross-Correlation (NC) and Structural Similarity Index (SSIM). The results of research with ten vital archives and a protection watermark logo in JPEG format with a size of 512x512 pixels obtained a maximum PSNR with a value of $\alpha = 0.01$ of 41.0567 dB, NC of 0.98904, and SSIM of 0.98023 on the Cibereum Land Certificate. So it can be proven that this method produces vital archive watermarks that can be extracted and are robust to JPEG compression attacks of 75%, median filtering 3x3, Gaussian noise 0.01, speckle noise 0.01, and salt and pepper noise 0.01 but not resistant to rotation 80° and cropping attacks 2 %.

Keywords: vital archives; DWT; robustness; SVD; watermarking

1. Introduction

Technological developments in the form of digital data, especially images, are straightforward to modify using the internet [1], many of which utilize copyright, mainly vital archives, for personal interests. Maintaining vital archives is a challenge for the government in maintaining the copyright of vital archives so that they remain authentic. Cryptography and encryption are several methods of protecting multimedia data [2]. The technique for protecting copyright is using watermarking [3]. The history of watermarking dates back to the 13th century in 1282 in Italy at the Fabriano paper mill [4]. Watermarking is a technique of inserting or hiding data in other data. The extraction technique consists of two parts [3], consisting of spatial domain techniques and frequency domain techniques. Watermarking maintains the originality of vital records and creates marks such as copyrights, trademarks, and patents.

Based on Law Number 43 of 2009 concerning archives in article [5], what is meant by archives or records are recordings of activities or events in various forms and media. Government Regulation of the Republic of Indonesia [6] and Regulation of the Minister of Law and Human Rights [7] is one of the management of dynamic records.

Several vital archives include land certificates, copyright certificates, birth certificates, passports, building plans, vehicle registration certificates, marriage certificates, diplomas, driver's licenses, and daktiloscopes. Characteristics of vital government archives are used to determine the position to maintain ownership rights as an example of misuse of ownership rights, namely the brand's PT Ayam Geprek Benny Sujono and Geprek Bensu Ruben Onsu Year 2022. As for preventing unauthorized reproduction (piracy protection or copy control) and broadcast monitoring, a watermarking method is required by archival principles, namely authenticity, the integrity of original rules (principle of the original order), and origin (principle of provenance) as well as protecting the media from security disturbances. Furthermore, to protect Intellectual Property Rights (HAKI) [8], especially on copyrights of vital archives and multimedia data [9], watermarking is a process or technique of hiding information [10] by looking at copyright from the multimedia data [11]. Several studies have been conducted on watermarking [9] with a hybrid DWT-SVD scheme to produce a more effective watermarking scheme [12]. Digital watermarking has criteria for

Accepted: 21-03-2023 | Received in revised: 30-09-2023 | Published: 28-10-2023

imperceptibility, security, and robustness [13]. Research [14] provides copyright protection for egovernment documents. Research [15] improved performance on the imperceptibility and robustness of medical images against attack. Research [16] resulted in resistance to signal processing and geometric attacks on government documents.

This research uses a hybrid SVD method with DWT because it has good resistance to receiving various types of attacks and has good enough transparency so that the inserted information will not be visible. In contrast, watermarked images are very susceptible to distortion [17]. This research aims to obtain watermarked vital archive image results that are robust and invisible and can be extracted well without reducing the quality of the vital archive so that it can protect the copyright of the Ministry of Law and Human Rights vital archive, which is currently still implemented in hardcopy form. Characteristics of vital archive images in the Region of Interest (ROI), where the part that must be robust as ownership or copyright. Furthermore, the vital archive image will be tested with JPEG compression attack, rotation, cropping, filtering, gaussian noise, speckle noise, and salt and pepper noise. The vital archive images used are raster images with *.jpeg format, consisting of ten host images and one watermarking logo. To prove that the extracted watermark is the same as the watermark inserted in the vital archive media by testing the effect of the alpha value on the quality (imperceptibility) of the inserted image by measuring the Peak Signal to Noise Ratio (PSNR), the verifiability of similarity with the original image of the vital archive by measuring the Normalized Cross-Correlation (NC) and Structural Similarity Index (SSIM) against the robustness of attacks that will affect the quality of the vital archive watermark.

2. Research Methods

This research uses a robust digital watermarking hybrid SVD technique with DWT through data collection, preprocessing, system design, and attack testing on vital archival images.

2.1 Research Data

Data collection was carried out using a quantitative method, namely collecting vital archival data at the Secretariat General and Directorate General of KI in the form of land certificates, trademark certificates, and copyright certificates, as shown in Table 1 and Figure 1 and 2.

Figure 1. Pengayoman Logo Watermark Image (7.93 x 8.28 cm)

Table	1. Image Dataset
-------	------------------

Image Data	Format	Size	Resolution
		(cm)	(pixel)
Cibereum Land Certificate	RGB	15.74 x 22.28	595 x 842
Mount Sindur Land Certificate	RGB	16.19 x 20.95	612 x 792
Lebak Bulus Land Certificate	RGB	16.19 x 20.95	612 x 792
Jagakarsa Land Certificate	RGB	15.74 x 22.28	595 x 842
Kedoya Land Certificate	RGB	15.74 x 22.28	595 x 842
Kojal Logo Brand	RGB	19.05 x 23.81	720 x 900
Irubistie Logo Brand	RGB	12.70 x 15.88	720 x 900
Human Solidarity Logo Brand	RGB	10.23 x 15.29	580 x 867
Antaranews Logo Brand	RGB	29.99 x 47.10	1700 x 2670
Create a Book	RGB	16.19 x 24.76	612 x 936
Pengayoman Logo	RGB	7.93 x 8.28	936 x 978

Figure 2. Copyright Certificate for Women's Empowerment Books as the Host Image (16.19 x 24.76 cm)

2.2 Data Preprocessing

This research preprocesses the data by cropping the Region of Interest (ROI) section of vital archival images to obtain vital archival image objects to be protected. Furthermore, all image data is given RGB format with *.jpg extension with host image and one shelter logo as watermark image, which is resized to 512 x 512 pixels as shown in Table 2.

Table 2. Image Dataset Preprocessing

Image Data	Format	Size
		(cm)
Cibereum Land Certificate	RGB	512 x 512
Mount Sindur Land Certificate	RGB	512 x 512
Lebak Bulus Land Certificate	RGB	512 x 512
Jagakarsa Land Certificate	RGB	512 x 512
Kedoya Land Certificate	RGB	512 x 512
Kojal Logo Brand	RGB	512 x 512
Irubistie Logo Brand	RGB	512 x 512
Human Solidarity Logo Brand	RGB	512 x 512
Antaranews Logo Brand	RGB	512 x 512
Create a Book	RGB	512 x 512
Pengayoman Logo	RGB	512 x 512

2.3 Discrete Wavelet Transform (DWT)

The discrete signaling method is used to provide timefrequency representation. The transformation process can be done repeatedly or recursively, called a multiscale transform, which produces a 2^{n} -1 approximation coefficient containing the lowfrequency components of the image and the wavelet coefficient containing the high-frequency.

DWT decomposition will divide four types of the subband, low frequency on the low-pass filter (LL) function, and three high frequencies on the high-pass

filter (HL), vertical (LH), and diagonal (HH) functions [18]as shown in Figure 3.

Figure 3. The Structure of The 1 DWT Scale Representation [18]

DWT consists of LL, HL, LH, and HH [19]. The equation can be seen in Formula 1.

$$W(j,k) = \sum_{j} \sum_{k} x(k) 2^{-j/2} \psi((2^{-j}x - k))$$
(1)

x is the sampled signal and is the mother wavelet, and x is the sampled signal $\psi(t)$ (See Figure 4).

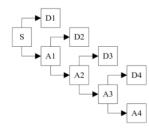


Figure 4. Decomposition DWT 4 Levels [20]

2.4 Singular Value Decomposition (SVD)

Three characteristics of SVD, namely the hanger matrix (U), stretcher (S), and aligner (V) [21] in Formula 2.

$$A = U S V^T \tag{2}$$

A is the size matrixes mxn the singular vector of the matrix A, D is the singular store value, VT (^T means transpose) singular vectors. The matrix factorization process decomposes a matrix using the Eigenvector basis [22].

2.5 Research Related to Hybrid SVD-DWT

This study [14] uses a size of 256 x 1024 pixels with JPEG compression attacks, salt and pepper noise, and Gaussian noise with a PSNR value of 22.24 dB and NC of 0.589, where it is necessary to increase the capacity of embedding e-government document watermarks. The hybrid technique is a fusion of two techniques. Here, DWT and SVD are used together to improve the quality of digital watermarking and hence increase the robustness and imperceptibility of an image. Research [15] increased performance on the imperceptibility and robustness of medical images of salt and pepper attack, speckle noise, gaussian, rescaling, histogram, gamma correction, rotation, and Gaussian low pass filter. Research [16] produced resistance to signal processing and geometric attacks on three grayscale threeministerial e-government document header hosts in Jordan, host image 512 x 512 pixels and one watermark

image 32 x 32 pixels with four levels of decomposition, with compression attacks JPEG, scaling, gaussian noise, rotation, and median filtering.

2.6 System Planning

This research is designed to conduct the insertion and extraction process watermarked images are separated into watermarked images again. Then you can find out the quality of the extracted watermark image by looking for the PSNR, NC, and SSIM values in Figure 5.

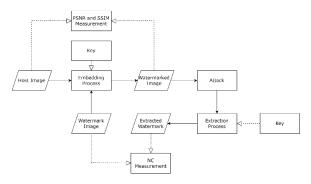


Figure 5. Watermarking System Design

2.7 Embedding Process

The process of embedding the watermarked image into the original image.

SVD transformation with DWT is performed on the host image, and a watermark is inserted to form a watermarked image. First, using 3-level DWT. Subband, LL, HL, LH, and HH are Level 1. Subbands LL2, HL2, LH2, HH2, HL, LH, and HH are level 2. At level 3, the LL2 subband is decomposed to get the LL3 subband. Factorize the LL3 subband with SVD. The formula is where A=subband LL3. Key generation uses the LL3 subband. $A = U S V^{T}$.

Watermarks will be inserted, and the ROI calculation will be carried out. Then, a 3-level decomposition will be carried out. On the L_L3 matrix, the watermark with SVD on the LL3 matrix. In L_L3, the LL2 subband is inserted with Formula 3.

$$f' = f + \alpha. w(k) + K(k), k = 1, ..., L$$
(3)

f' is the watermarked image, f is the host image, w is the watermark, α is the value of the amount of watermark inserted, K namely the key, k which is (m,n) subband LL3 to get a watermarked image. The insertion process is shown in Figure 6.

This research is designed to conduct the insertion and extraction process, and watermarked images are separated into watermarked images again.

2.8 Extraction Process

In the watermarking extraction, the input is the watermarked host image C', and the output is extracted watermark W'.

DOI: https://doi.org/10.29207/resti.v7i5.5003

Creative Commons Attribution 4.0 International License (CC BY 4.0)

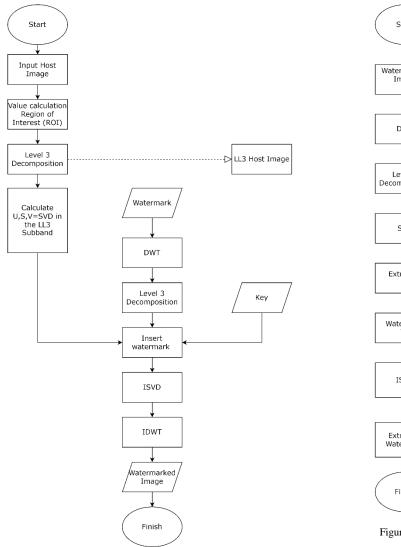


Figure 6. Embedded Process Diagram

The size of W' is *NxN*. The LL subband consists of the LL2, HL2, LH2, HH2, HL, LH, and HH subbands at level 2. The LL2 subband at level 3 is decomposed to produce the LL3 subband. Before the extraction process, perform critical matching by matching the value of the scalar quantity in the host image. The extraction process is carried out by removing the watermark from the host image. PSNR, MSE, SSIM, and NC were performed to perform watermark detection calculations to determine the success of the vital archive image extraction. The procedure of the watermarking extraction is shown in Figure 7.

PSNR is one way to measure image quality [22]. It compares the maximum value of the measured signal with the amount of noise that affects the signal. The PSNR equation is expressed in dB units as in Formula 4.

$$PSNR = 10\log_{10}(\frac{l^2max}{MSE})$$
(4)

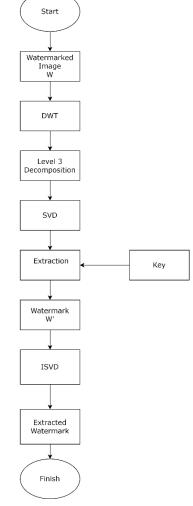


Figure 7. Extraction Process Diagram

 l^2max the maximum pixel value of the image l in the Mean Square Error Formula 5.

$$MSE = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} (S_{xy} - l_{xy})^2$$
(5)

The image coordinates are x and y, the dimensions are M and N, the watermark is denoted as S_{xy} , and the host image is denoted as l_{xy} . PSNR is in decibels (dB). PSNR < 30 dB has a reasonably low image quality, and > 30 dB has a high image quality [23].

Normalized Cross-Correlation (NC), is a standard tool for evaluating the degree of similarity between the original watermark and the extracted watermark, namely testing the robustness of the image [24]. The following are defined in Formula 6.

$$NC(W,W') = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} [W(i,j).W'-(i,j)]}{\sum_{i=1}^{m} \sum_{j=1}^{n} (W(i,j))^2}$$
(6)

W is the watermark image, and W' is the extracted watermark image.

The structural Similarity Index (SSIM) is a method for finding the similarity between the original image and a watermarked image. It is a perception-based model that considers image degradation as a perceived change in structural information, as shown in Formula 7.

$$SSIM = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$
(7)

 μ_x and μ_y the X and Y images are the means, the covariance of the X versus Y images is σ_{xy} , the X image variance is $\mu \frac{2}{x}$, the Y image variance is $\mu \frac{2}{y}C_1$, is $(k_1L)^2$ and C_2 is $(k_2L)^2$, L is the dynamic range of the image $(2^{bit} - 1)$.

Region of Interest (ROI) is defined as a rectangle around the center of the image. The ROI will be divided into blocks of 6x6 pixels. We use a smaller 6x6 pixels block size instead of 8x8 pixels to achieve better tamper localization accuracy and better-recovered image quality.

We need to prepare a one-to-one block mapping sequence $A \rightarrow B \rightarrow C \rightarrow D \rightarrow \dots \rightarrow A$ for watermark embedding in ROI, where each symbol denotes an individual block. We use a similar mapping sequence proposed by Zain in Formula 8.

$$B = [(k \ x \ B) modNb] + 1 \tag{8}$$

B, $k[1,N_b],k$ is the aprime number, and N_b is the total number of blocks in the ROI.

2.9 Image Attack

In this study, an attack on vital archive images was carried out on watermarked vital archive images. The matrix that is given the attack then performs an absolute calculation of LL3 when it is given an attack with the key that has been generated.

Based on research [14]-[16], this research uses parameter values α =0.01, α =0.05, α =0.5, α =0.7, and α =0.9 with some that attack shown in Table 3.

Table 3. Attack on Watermark Image

No	Attack Type	Parameter
1	JPEG compression	75%
2	Rotation	80°
3	cropping	2%
4	filtering	Median 3x3
5	Gaussian Noise	0.01
6	Speckle Noise	0.01
7	Salt and Pepper Noise	0.01

The total test combination scenarios in this research are 105 tests to determine the level of complexity of this research. The graphical process of testing using various attacks can be seen in Figure 8.

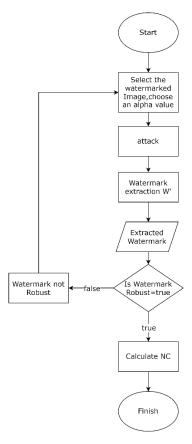


Figure 8. Attack Process Diagram

3. Results and Discussions

The test results in this research to prove that the extracted watermark is the same as the watermark inserted in the vital archive media by testing the effect of the alpha value on the quality (imperceptibility) of the inserted image by measuring the PSNR, verifiability of similarity with the original image of the vital archive by measuring the NC and SSIM against the robustness of attacks that will affect the quality of the vital archive watermark.

The first test is a vital archive image inserted with a watermark of the Pengayoman logo. The second test inserts a watermark into a vital archive image with 3 levels of decomposition, while the third test is carried out by giving various attacks on the watermarked image.

The research was conducted with ten vital archive images consisting of Cibereum Land Certificate.jpg, Mount Sindur Land Certificate.jpg, Lebak Bulus Land Certificate.jpg, Jagakarsa Land Certificate.jpg, Kedoya Land Certificate.jpg, Kojal Logo Brand.jpg, Irubistie Logo Brand.jpg, Human Solidarity Logo Brand.jpg, Antaranews Logo Brand.jpg, and Create a Book.jpg which has a size of (512 x 512) with one watermark in the form of Pengayoman Logo.jpg.

This test is conducted to obtain the PSNR, NC, and SSIM values to determine the quality of the extracted watermark vital archive image. The analysis of the three tests will be explained in detail in the following subsections:

3.1 Specification

This research is supported by software and hardware, as shown in Table 4.

Table 4. Experimental Environment

No	Simulation Environment	Environment Configuration
1	Software	Matlab R2021b
2	Operation System	Windows 11
3	CPU	Intel Core i7 @ 2.80 GHz
4	Memory	16 GB

3.2 Image Testing Results Without Attack

Results of analysis of host image testing without attack with α =0.01, α =0.05, α =0.5, α =0.7, and α =0.9 as shown in Table 5-Table 8.

Table 5. Image Test Results in PSNR Without Attack

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
a	51.7825	42.0278	26.9824	24.8659	23.4694
b	48.1378	38.6902	25.9378	24.3800	23.3328
c	48.9553	39.6758	26.1591	24.1234	22.7214
d	47.7105	35.7715	23.4565	22.1600	23.4565
e	47.7106	37.3785	25.2248	23.6044	22.4718
f	48.2035	35.6959	21.6613	20.2442	19.2320
g	48.2920	35.8767	21.6531	20.2275	19.2351
h	48.1762	35.9364	22.0571	20.6106	19.5875
i	48.2112	35.8985	22.1035	20.5270	19.3542
j	48.2203	35.4027	20.3508	19.0453	18.1518

Table 6. Image Test Results NC Without Attack

The results of the extracted watermark test at level 3 are
similar to the original watermark. The best PSNR value
in the (a) Cibereum Land Certificate image of 51.7825
dB, NC=0.9995, and the SSIM=0.99843 indicating the
level of similarity of the original watermark with the
extracted watermark is very high and the vital archive
image is of good quality.

Table 8	Image	Extraction	Result	Without	Attack
Table 6.	image	Extraction	Result	winnout	Allack

3.1 JPEG Compression Attack Test Results

JPEG compression attack with a quality factor (QF) of 75% (Table 9-Table 12).

Table 9. JPEG Compression Attack Test Results PSNR

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	41.0567	38.8197	26.3634	24.3397	23.0971
b	40.7962	37.0525	25.6772	24.1973	23.211
с	36.8744	35.1405	24.9758	23.5778	22.2788
d	39.5062	34.8195	23.5702	22.2708	21.325
e	39.8636	36.0491	25.2719	23.6094	22.4519
f	33.3972	31.456	21.6501	20.2671	19.2753
g	33.082	31.4173	21.5206	20.1308	19.176
ĥ	32.6995	31.0949	21.9564	20.5707	19.593
i	34.0107	31.9583	21.7761	20.2311	19.0904
i	32.8524	30.9357	20.2554	18.9677	18.096

Table 10. JPEG Compression Attack Test Results NC

Image			α			-					
Data	0.01	0.05	0.5	0.7	0.9	Image			α		
a	0.99955	0.99524	0.85869	0.80174	0.75901	Data	0.01	0.05	0.5	0.7	0.9
b	0.99913	0.98803	0.79345	0.74142	0.70362	а	0.98904	0.98389	0.83604	0.78013	0.74314
						b	0.98573	0.976	0.78039	0.72826	0.69085
с	0.99946	0.99376	0.87878	0.83596	0.8005	c	0.98125	0.97666	0.85184	0.82536	0.78916
d	0.99933	0.98962	0.82432	0.77423	0.82432				0.000.		
e	0.9995	0.99222	0.82126	0.76231	0.71713	d	0.98134	0.97182	0.79479	0.74174	0.69778
f	0.99994	0.99893	0.95482	0.92954	0.90365	e	0.98674	0.98026	0.80857	0.74544	0.69632
a	0.99992	0.99866	0.94525	0.91628	0.88751	f	0.99253	0.99183	0.94669	0.92064	0.89389
g			0.00 .00 =0			g	0.99039	0.98947	0.93195	0.90093	0.87118
h	0.99989	0.99828	0.93279	0.89744	0.86307	h	0.98615	0.98506	0.91817	0.88208	0.84717
i	0.99973	0.99615	0.86972	0.80949	0.7535		0.00000				
i	0.99986	0.99785	0.92241	0.88532	0.84783	1	0.97978	0.9773	0.83694	0.77004	0.70871
5						j	0.98438	0.98307	0.90228	0.86122	0.82164

Table 7. Image Test Results From SSIM Without Attack

Table 11. JPEG Compression Attack Test Results SSIM

Image			α								
Data	0.01	0.05	0.5	0.7	0.9	Image	-		α		
a	0.99843	0.97698	0.94973	0.93865	0.93049	Data	0.01	0.05	0.5	0.7	0.9
b	0.99912	0.97064	0.94604	0.93741	0.93179	а	0.98023	0.97698	0.94028	0.93023	0.92333
c	0.99912	0.96972	0.94604	0.93905	0.93179	b	0.97286	0.97064	0.93524	0.9283	0.92356
	0.99967		0.94057		0.94057	с	0.97023	0.96972	0.92567	0.92351	0.91359
d		0.9626		0.93491		d	0.96561	0.9626	0.93584	0.93067	0.92666
e	0.99966	0.96743	0.94817	0.93968	0.93304	e	0.97092	0.96743	0.93739	0.9289	0.92291
t	0.99977	0.9421	0.87509	0.83553	0.8058	f	0.94258	0.9421	0.8177	0.78822	0.76697
g	0.99976	0.93293	0.86366	0.8181	0.78499	1					
h	0.99973	0.9253	0.86919	0.82821	0.79724	g	0.93271	0.93293	0.79491	0.75673	0.7321
i	0.99969	0.92962	0.87582	0.83276	0.79727	h	0.92571	0.9253	0.80293	0.77381	0.7539
i	0.99974	0.92089	0.85479	0.81012	0.76704	i	0.92908	0.92962	0.80301	0.77159	0.74646
J		0				i	0.92245	0.92089	0.77618	0.73306	0.70253

The best PSNR value α =0.01 and parameter 75% is (a) Cibereum Land Certificate image is 41.0567 dB, NC=0.98904, and SSIM=0.98023 indicating the level of similarity of the original watermark with the extracted watermark is very high and the vital archive image is of good quality, and robust to attacks.

Table 12. JPEG Compression Attack Image Extraction Result

3.4 Rotation Attack Test Results

Image

Image

Data

a b

c d

e

f

g h 0.01

0.77032

0.78863

0.70964

0.80177

0.78377

0.36878

0.35188

0.42307

0.48197

0.35284

Rotation is an attack that will change the image, as it can make all pixels move or disappear—rotation 80° attack as shown in Table 13-Table 16.

Data	0.01	0.05	0.5	0.7	0.9
а	11.0532	11.0385	10.8004	10.6877	10.5967
b	11.523	11.5039	11.3078	11.2407	11.1873
c	11.1413	11.1311	10.967	10.8664	10.7648
d	11.4678	11.4367	11.1549	11.0624	10.979
e	11.2871	11.261	11.0596	10.9682	10.8845
f	9.714	9.6625	9.4245	9.3926	9.3689
g	9.8447	9.7895	9.5046	9.4534	9.4151
h	10.4079	10.3595	10.0947	10.033	9.9782
i	11.5254	11.4834	11.1666	11.0571	10.9457
j	10.8254	10.7638	10.269	10.169	10.0947
Image	Table I	4. Rotation	Attack Test	Results NC	
Data	0.01	0.05	0.5	0.7	0.9
a	-0.0277	-0.0277	-0.0264	-0.0256	-0.0250
b	0.14651	0.14566	0.13987	0.13848	0.13737
с	0.06149	0.06161	0.06046	0.05941	0.05838
d	0.00122	0.00199	0.00976	0.01156	0.01300
e					
	0.01699	0.01670	0.01617	0.01603	0.01600
f	0.01699 0.04112	0.01670 0.04318	0.01617 0.05756	0.01603 0.06074	0.01600 0.06319
	0.04112 -0.0216		0.05756 -0.02347		
f g h	0.04112 -0.0216 0.03543	0.04318 -0.02203 0.03599	0.05756 -0.02347 0.03518	0.06074 -0.02310 0.0348	0.06319 -0.0226 0.03448
f g	0.04112 -0.0216	0.04318 -0.02203	0.05756 -0.02347	0.06074 -0.02310	0.06319 -0.0226

Table 15. Rotation Attack Test Results SSIM

0.05

0.77305

0.79312

0.71142

0.80145

0.7866

0.36912

0.3525

0.4243

0.4816

0.35216

α

0.5

0.77387

0.81015

0.72251

0.80928

0.79091

0.40339

0.39181

0.45808

0.51323

0.37939

0.7

0.7736

0.8115

0.72499

0.80895

0.7906

0.4135

0.40345

0.46694

0.52284

0.39

0.9

0.77309

0.81215

0.72638

0.80874

0.79047

0.42038

0.41112

0.47312

0 52965

0.39959

Table 13. Rotation Attack Test Results in PSNR

α

The test results of images subjected to rotation attacks all failed to be extracted. All tested images have a low NC value of around 0.01-0.2, which shows the level of similarity between the extracted watermark and the original watermark is very low. As for the PSNR value in the whole image, around 9-11 dB, which shows the image quality is not good.

Table	16.	Rotation	Attack	Image	Extraction	Result

3.5 Cropping Attack Test Results

Cropping is similar to a rotation attack that will change the image, as it can make all pixels move or disappear cropping attack 2% as shown in Table 17-Table 20.

Table 17. Cropping Attack Test Results PSNR

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
a	22.4075	22.3052	20.5729	19.8637	19.346
b	24.6668	24.2595	21.5586	20.9136	20.4339
с	21.1308	21.0065	19.5475	18.8899	18.3219
d	25.054	24.4928	20.8131	22.5142	19.4837
e	22.7376	22.4055	20.3828	19.7315	19.2148
f	14.3382	14.2686	13.7819	13.6912	13.6185
g	14.6131	14.5452	14.0084	13.8874	13.7911
h	15.5601	15.477	14.882	14.7248	14.5827
i	18.3077	18.1429	16.7497	16.3007	15.8894
j	16.1198	16.0073	14.7501	14.4696	14.2619

Table 18. Cropping Attack Test Results NC

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	0.18176	0.19405	0.26491	0.27188	0.2746
b	0.3058	0.29573	0.24516	0.24212	0.24133
с	0.28345	0.28193	0.26505	0.25935	0.25456
d	0.37533	0.37932	0.32739	0.07137	0.3084
e	0.16222	0.16559	0.15973	0.15838	0.15694
f	0.37789	0.3862	0.41328	0.41529	0.4161
g	0.29758	0.30627	0.32811	0.32808	0.3271
h	0.27038	0.2791	0.29877	0.29812	0.29644
i	0.18867	0.19584	0.17226	0.15994	0.14882
j	0.2243	0.2363	0.2645	0.26028	0.25566

Table 19. Cropping Attack Test Results SSIM

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	0.8666	0.87099	0.87439	0.87452	0.87444
b	0.89176	0.89718	0.90277	0.90201	0.90146
с	0.82046	0.82378	0.8328	0.8343	0.83499
d	0.88238	0.88313	0.89924	0.86533	0.89875
e	0.87646	0.88113	0.88646	0.88639	0.88626
f	0.47034	0.47093	0.51028	0.51942	0.52508
g	0.44628	0.44704	0.48553	0.49443	0.50028
ĥ	0.49745	0.49887	0.53199	0.53865	0.54268
i	0.54352	0.54288	0.56789	0.5754	0.58071
j	0.40798	0.40671	0.4351	0.44459	0.45251

DOI: https://doi.org/10.29207/resti.v7i5.5003 Creative Commons Attribution 4.0 International License (CC BY 4.0)

Table 20-Table 23 shows that all images given a cropping attack failed to be extracted. The NC value is very small, between 0.1-0.4, which shows that the level of similarity between the original watermark and the extracted watermark is very low. The quality of the extracted watermark is good because the PSNR value obtained ranges from 22-24 dB.

Table 20. Cropping Attack Image Extraction Result

3.6 Filtering Attack Test Results

The 3 x 3 Median Filtering attack is shown in Table 21-Table 24.

Table 21. Filtering Attack Test Results PSNR

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
a	32.6601	32.3707	24.4222	24.1669	23.1174
b	35.0168	33.6716	25.5671	24.2033	23.2544
с	30.9627	30.4891	24.7942	23.1282	21.9328
d	34.4856	32.1703	23.5001	22.2518	21.3292
e	33.0128	31.8005	24.8718	23.3732	22.3205
f	21.4062	21.1678	18.2095	17.4881	16.9323
g	21.2308	21.0164	18.1598	17.4626	16.9314
h	22.7689	20.125	19.2098	18.4278	17.8154
i	24.4319	24.067	19.9952	18.939	18.0738
j	24.6935	24.2077	18.7103	17.7599	17.096

Table 22. Filtering Attack Test Results NC

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	0.92761	0.91897	0.71484	0.72991	0.70176
b	0.942	0.93152	0.75573	0.71226	0.67993
с	0.93078	0.92435	0.81238	0.77798	0.74921
d	0.93462	0.92281	0.76166	0.71979	0.68452
e	0.9289	0.92074	0.75503	0.70189	0.66291
f	0.87355	0.8729	0.82287	0.79632	0.77078
g	0.84078	0.84009	0.78066	0.75105	0.72245
h	0.85657	0.73486	0.78548	0.75061	0.71755
i	0.79868	0.79796	0.65827	0.60103	0.55187
j	0.89122	0.88845	0.80657	0.76925	0.73266

Table 23. Filtering Attack Test Results SSIM

0.05

0.96416

0.96473

0.95933

0.96747

0.96394

0.83256

0.78743

0.69279

0.81665

0.80358

α

0.5

0.91576

0.92506

0.93423

0.93117

0.74866

0.70927

0.74212

0.74537

0.71909

0.9317

0.7

0.92494

0.92648

0.91614

0.93037

0.92457

0.72268

0.68634

0.71991

0.72166

0.69122

0.91965

0.70434

0.6687

0.70259

0.70284

0.66488

Image

Data

а

b

с

d

e

f

g

h

i

0.01

0.9699

0.96965

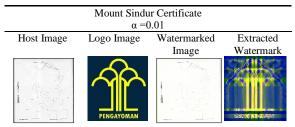
0.96319

0.97115

0.96928

0.83469

0.78941


0.81548

0.81894

0.80552

Table 25-Table 28, with values α =0.01 is the (b) Mount Sindur Certificate image, where the durability and quality level of similarity of the extracted watermark and the original watermark is very high.

Table 24. Filtering Attack Image Extraction Res	ult
---	-----

3.7 Gaussian Noise Attack Test Results

Gaussian noise is noise consisting of white dots with input values of average and variation. The results of the analysis of image testing with α =0.01, α =0.05, α =0.5, α =0.7, and α =0.9. Gaussian Noise 0.01 attack as shown in Table 25-Table 28.

Table 25. Gaussian Noise Attack Test Results PSNR

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	23.6259	26.3105	25.7359	24.6801	25.7163
b	23.5877	26.0138	25.8889	25.2596	25.1164
с	23.4064	25.6264	22.419	21.8729	21.8073
d	23.1639	25.1277	24.2937	23.7259	23.5058
e	23.5389	25.8951	25.2813	24.3313	23.8638
f	21.9895	22.5355	15.2261	13.9099	13.3942
g	21.992	22.5045	15.6497	14.4839	14.0183
ĥ	22.1746	22.8826	15.6397	15.6397	15.6397
i	22.2406	23.0624	18.2071	17.6771	17.5755
j	21.4652	21.6151	15.3576	14.6797	14.4971

Table 26. Gaussian Noise Attack Test Results NC

Image	_		α		
Data	0.01	0.05	0.5	0.7	0.9
а	0.67957	0.74547	0.67116	0.43195	0.67116
b	0.59366	0.64813	0.55176	0.31828	0.081344
с	0.73657	0.78137	0.51179	0.22386	0.061209
d	0.57426	0.63153	0.62334	0.43523	0.20122
e	0.65004	0.71029	0.70013	0.55653	0.27281
f	0.90274	0.91551	0.7883	0.58101	0.31471
g	0.88618	0.89886	0.76355	0.56308	0.3033
h	0.86243	0.87958	0.52801	0.52801	0.52801
i	0.76546	0.78878	0.57049	0.30698	0.076041
i	0.82058	0.83499	0.66451	0.41535	0.14314

0.73266		0.82058	0.83499	0.66451	0.41535	0.14314
0.13200	Т	Table 27. Gau	ussian Noise	Attack Tes	t Results SS	IM
	Image			α		
	Data	0.01	0.05	0.5	0.7	0.9
0.9	а	0.41353	0.56433	0.91544	0.91034	0.90995
0.91996	b	0.37153	0.51622	0.92504	0.92416	0.924
0.92305	с	0.40532	0.54532	0.88654	0.87921	0.87833
0.90943	d	0.31557	0.43805	0.92391	0.92015	0.9196
0.92736	e	0.36034	0.49874	0.91904	0.91626	0.91599

0.50361

0.51362

0.50484

0.47459

0.47057

0.66436

0.63158

0.61315

0.66907

0.57841

0.61044

0.58036

0.61315

0.6465

0.53595

0.59239

0.56214

0.61315

0.64357

0.52698

0.43989

0.45316

0.43673

0.40252

0.42699

DOI: https://doi.org/10.29207/resti.v7i5.5003 Creative Commons Attribution 4.0 International License (CC BY 4.0)

f

g

h

In Table 30-Table 34, with values α =0.05, on the Gunung Sindur Certificate Image, the PSNR value is 26.3105 dB, NC=0.74547, SSIM=0.56433 where the resistance is quite good, where the robustness is quite good, and the watermark extraction result is degraded.

		nd Certificate 0.05	
Host Image	Logo Image	Watermarked Image	Extracted Watermark
	$\hat{\mathbf{T}}$		el de la companya de El companya de la comp

3.8 Speckle Noise Attack Test Results

The results of the analysis of image testing with α =0.01, α =0.05, α =0.5, α =0.7, and α =0.9. Speckle Noise 0.01 attack as shown in Table 29-Table 32.

Table 29.	Speckle Noise	e Attack Test	Results PSNR

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	23.08	16.1139	6.5175	5.7817	5.3677
b	23.1353	16.1875	6.5801	5.8554	5.4446
с	23.1357	16.1851	6.6209	5.8865	5.4589
d	22.9288	16.297	6.7809	6.0311	5.6245
e	23.1736	16.2407	6.6423	5.907	5.5047
f	22.755	22.755	7.2882	6.5598	6.1493
g	22.6829	16.384	7.2446	6.5215	6.1059
ĥ	22.678	16.3548	7.1374	6.4199	5.9949
i	22.5904	16.2667	7.0709	6.3419	5.9348
j	22.3063	16.2771	7.4094	6.6938	6.2798

Table 30. Speckle Noise Attack Test Results From NC

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	0.77072	0.44225	0.10689	0.088795	0.079967
b	0.59374	0.28206	0.051552	0.044964	0.039481
с	0.74504	0.41084	0.080761	0.064981	0.055466
d	0.57712	0.29206	0.059951	0.050156	0.045059
e	0.65244	0.33945	0.075949	0.063404	0.059571
f	0.92018	0.92018	0.26104	0.22213	0.1993
g	0.90465	0.69996	0.23329	0.19802	0.17775
ĥ	0.88056	0.64716	0.19532	0.16536	0.14661
i	0.78569	0.48554	0.11374	0.089866	0.079933
j	0.84851	0.59483	0.16849	0.1404	0.1217

Table 31. Speckle Noise Attack Test Results SSIM

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
a	0.3547	0.13519	0.024683	0.019823	0.017355
b	0.31722	0.11386	0.019146	0.015611	0.014066
с	0.35756	0.14497	0.026936	0.022013	0.018674
d	0.27714	0.11009	0.021135	0.016727	0.015182
e	0.31336	0.1189	0.02095	0.017043	0.015598
f	0.44011	0.44011	0.079187	0.065824	0.057711
g	0.45088	0.25125	0.076587	0.064417	0.056956
h	0.42719	0.22927	0.06442	0.053125	0.046788
i	0.39258	0.18918	0.041779	0.032436	0.028761
j	0.43938	0.23002	0.057635	0.046887	0.040873

In Table 35-Table 38 with value α =0.01, PSNR is 23.1736 dB, NC=0.65244, SSIM=0.31336 where the (e) Kedoya Land Certificate Image.

Table 32. Speckle Noise Attack Image Extraction Result

3.9 Salt and Pepper Noise Attack Test Results

Salt and Pepper Noise is noise consisting of black and white dots. In Matlab, input with a constant value between 0-1, the greater the constant value inputted, the more blurred the image will be. Salt and Pepper Noise testing results are shown in Table 33-Table 36.

Table 33. Salt and Pepper Noise Attack Test Results PSNR

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	23.0569	16.097	6.1029	4.6569	3.563
b	23.1619	16.2274	6.2089	4.7353	3.6283
с	23.066	16.2348	6.2236	4.7568	3.6727
d	23.4274	16.397	6.3765	4.9148	3.8222
e	23.1486	16.2248	6.248	4.7778	3.6823
f	23.7455	16.8124	6.8019	5.3352	4.251
g	23.8941	16.7607	6.7958	5.3365	4.2384
ĥ	23.7253	16.6912	6.7216	5.2522	4.1624
i	23.7096	16.72	6.7069	5.2284	4.1427
j	24.039	17.0356	7.0237	5.5777	4.4926

Table 34. Salt and Pepper Noise Attack Test Results NC

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	0.73405	0.42464	0.087975	0.048487	0.01584
b	0.59655	0.30824	0.060826	0.031638	0.011788
с	0.73214	0.43326	0.090205	0.050776	0.015223
d	0.60742	0.31386	0.060562	0.034415	0.011249
e	0.6409	0.34331	0.068744	0.036182	0.011831
f	0.93595	0.75657	0.20715	0.11109	0.036689
g	0.92753	0.72589	0.19035	0.10404	0.03332
ĥ	0.90526	0.67537	0.16845	0.091295	0.028476
i	0.83132	0.5446	0.11972	0.064901	0.017996
j	0.89479	0.65359	0.15421	0.083326	0.027563

Table 35. Salt and Pepper Noise Attack Test Results SSIM

Image			α		
Data	0.01	0.05	0.5	0.7	0.9
а	0.95107	0.78285	0.074123	0.24727	0.0085624
b	0.95066	0.7805	0.069551	0.021794	0.007693
с	0.95024	0.78346	0.077148	0.026848	0.0090882
d	0.94939	0.7698	0.06463	0.022122	0.0081123
e	0.95065	0.7789	0.070707	0.022644	0.0081558
f	0.95267	0.78759	0.10158	0.042008	0.01505
g	0.95457	0.78896	0.10408	0.044005	0.014746
ĥ	0.95322	0.78619	0.09763	0.040184	0.013767
i	0.95099	0.77959	0.084274	0.03226	0.010891
j	0.95046	0.77688	0.090027	0.03711	0.013228

The results of Table 40-Table 44 have the same pattern as the test results of the Gaussian Noise attack, with values α =0.01, on the (g) Irubistie Logo Brand, the

DOI: https://doi.org/10.29207/resti.v7i5.5003

Creative Commons Attribution 4.0 International License (CC BY 4.0)

PSNR is 23.8941 dB, NC=0.92753, value SSIM=0.95457.

The watermark can be extracted well when the input constant is small with a high NC value and the similarity level of the extracted watermark with the original watermark is high. But when the input noise constant is larger, the watermark fails to be extracted, and the NC value obtained is low, indicating the similarity level of the original watermark with the extracted watermark is low. This proves that a high level of similarity will result in a lower error rate. At the same time, the PSNR value shows good image quality.

Table 36. Salt and Pepper Noise Attack Image Extraction Result

Irubistie Logo Brand $\alpha = 0.01$					
Host Image	Logo Image	Watermarked Image	Extracted Watermark		
	PENGAYOMAN				

3.10 SVD-DWT Method Test Results

The test results of the SVD-DWT method with ten vital archive images have a graphic pattern or characteristic of the best PSNR, NC, and SSIM values with almost the same pattern with various attacks seen in the images in Table 37-Table 39, and comparison of PSNR, NC and SSIM values in Figure 9-Figure 21.

Table 37. Summary Table of PSNR with Various Attacks

No	Image Data	Attack	α	PSNR
1	Cibereum Land	JPEG	0.01	41.0567
	Certificate	Compression		
		75%		
2	Mount Sindur	Filtering	0.01	35.0168
	Land Certificate	Median 3x3		
3	Cibereum Land	Gaussian	0.01	26.3105
	Certificate	Noise 0.01		
4	Lebak Bulus	Speckle	0.05	24.039
	Land Certificate	Noise 0.01		

	14010 201 Dullillary	ruote of file white	, arrous r	in the second se
No	Image Data	Attack	α	NC
1	Kojal Land	JPEG	0.01	0.99253
	Certificate	Compression		
		75%		
2	Jagakarsa Land	Filtering	0.01	0.93462
	Certificate	Median 3x3		
3	Kojal Land	Speckle	0.05	0.92018
	Certificate	Noise 0.01		
4	Kojal Land	Salt and	0.01	0.93595

Table 38	Summary	Table o	f NC y	with V	Various Attack	c
Table So.	Summary	I able 0		with	v arrous Anack	

2	Jagakarsa Land	Filtering	0.01	0.93462
	Certificate	Median 3x3		
3	Kojal Land	Speckle	0.05	0.92018
	Certificate	Noise 0.01		
4	Kojal Land	Salt and	0.01	0.93595
	Certificate	Pepper		
		Noise 0.01		
	Table 39. Summary	Table of SSIM wi	th Various A	Attacks
No	Image Data	Attack	α	SSIM
1	Cibereum Land	JPEG	0.05, 0.7	0.97698
	Cartificate	Compression		

1	Cibereum Land	JPEG	0.05, 0.7	0.97698
	Certificate	Compression 75%		

2	Mount Sindur Land Certificate	Rotation 80°	0.9	0.81215
3	Mount Sindur	Cropping	0.5	0.90277
	Land Certificate	2%		
4	Cibereum Land	Filtering	0.01	0.96965
	Certificate	Median 3x3		
5	Irubistie Logo	Salt and	0.01	0.95457
	Brand	Pepper		
		Noise 0.01		

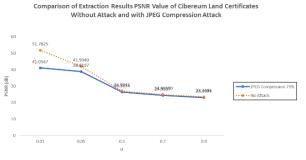


Figure 9. PSNR with JPEG Compression 75%

Comparison of PSNR Value of Gunung Sindur Land Certificate Without Attack and with Filtering Attack

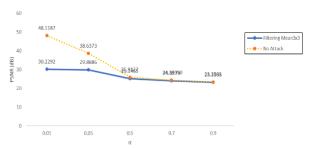


Figure 10. PSNR with Filtering Median 3x3

Comparison of Extraction Results PSNR Value of Cibereum Land Certificates Without Attack and with Gaussian Noise Attack

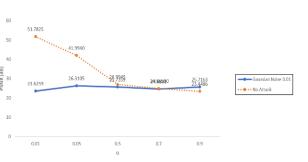


Figure 11. PSNR with Gaussian Noise 0.01

Comparison of PSNR Value of Lebak Bulus Land Certificate Without Attack and with Speckle Noise Attack

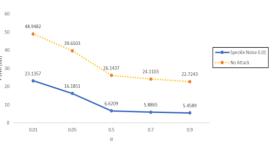


Figure 12. PSNR with Speckle Noise 0.01

DOI: https://doi.org/10.29207/resti.v7i5.5003	
Creative Commons Attribution 4.0 International License (CC BY 4.0)	

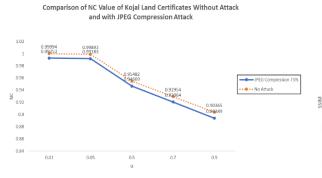


Figure 13. NC with JPEG Compression 75%

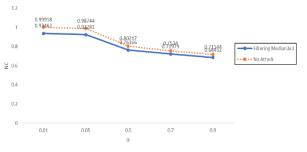


Figure 14. NC with Filtering Median 3x3

Comparison of NC Value of Kojal Land Certificates Without Attack and with Speckle Noise Attack

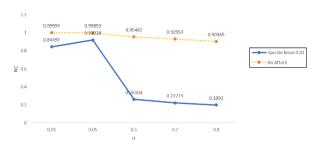
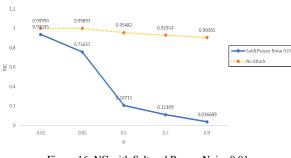
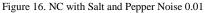
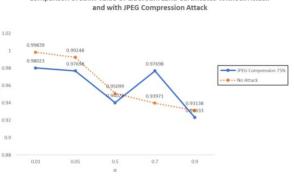





Figure 15. NC with Speckle Noise 0.01 Comparison of NC Value of Kojal Land Certificates Without Attack

and with Salt and Pepper Noise Attack

Comparison of SSIM Value of Cibereum Land Certificates Without Attack

Figure 17. SSIM with JPEG Compression 75%

Comparison of SSIM Values of Gunung Sindur Land Certificates without Attack and with Rotation Attack

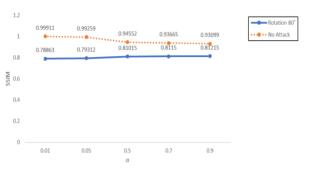


Figure 18. SSIM with Rotation 80°

Comparison of SSIM Values of Gunung Sindur Land Certificates without Attack and with Cropping Attack



Figure 19. SSIM with Cropping 2%

Comparison of SSIM Value of Cibereum Land Certificates Without Attack and with Filtering Attack

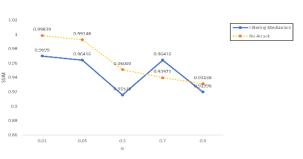


Figure 20. SSIM with Filtering Median 3x3

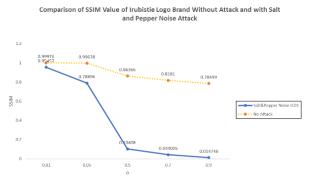


Figure 21. SSIM with Salt and Pepper Noise 0.01

In Figure 9-Figure 21 without attacks, the PSNR value pattern is above 30 dB, while NC, and SSIM are close to the value of 1, indicating the level of similarity of the original watermark with the extracted watermark is very high and the vital archive image is of good quality. The test results with various attacks get a pattern of PSNR values ranging from 20-40 dB, NC=0.9, and SSIM ranging from 0 to 1. These results show that the level of similarity of the original watermark with the extracted watermark is good and robust to 75% JPEG compression attacks, median filtering 3x3, gaussian noise 0.01, speckle noise 0.01, and salt and pepper noise 0.01 but the watermark is not robust to rotation and cropping attacks.

4. Conclusion

The results of the research and discussion were carried out, and it can be concluded that the SVD hybrid robust digital watermarking technique with DWT can be extracted back well by previous research using vital archives. The best PSNR without attack test is the Cibereum Land Certificate with a size of 512 x 512 pixels 51.7825 dB, MSE=0.09896, NC=0.9995, and SSIM=0.99843. The results of testing on JPEG compression attacks with a quality of 75% obtained the best PSNR values on the Cibereum Land Certificate with PSNR = 41.0567 dB, MSE=2.6002, NC = 0.98904, and SSIM = 0.98023. Test results filtering median 3 x 3 images can be appropriately extracted using $\alpha=0.01$ obtained the best PSNR value of 35.0168 dB, MSE=1.1764, NC=0.942, and SSIM=0.96965, there is the Mount Sindur Land Certificate. The increasing value of alpha (α) causes imperceptibility to have a decreased image quality. When the PSNR value is above 25-30 dB, it shows good image quality. If the NC and SSIM values are close to 1, the more similar the host image or the quality of the detected watermark is getting better. So it can be proven that digital image watermarking with hybrid SVD and DWT watermarking techniques can be extracted well with PSNR values above 25 dB, NC, and SSIM 0.9. Produce watermarks that are resistant to several attacks such as 75% JPEG compression attack, median filtering 3 x 3, gaussian noise 0.01, speckle noise 0.01, and salt and

pepper noise 0.01. Still, the watermark is not robust to 80° rotation and 2% cropping attacks. This method is very well for protecting digital images of vital archives and can maintain authentication of image ownership, which is more robust to attack. In the Future research can use additional attack variations in testing and use image color models other than RGB, such as HSI (Hue, Saturation, Intensity) and CMY (Cyan, Magenta, Yellow).

References

- A. G. Gani, "Pengenalan Teknologi Internet Serta Dampaknya," Jurnal Sistem Informasi Universitas Suryadarma, vol. 2, Feb. 2014, doi: https://doi.org/10.35968/jsi.v2i2.49.
- [2] R. A. A. B. and P. A. M. I. Ukkas, "Teknik Pengamanan Data Dengan Steganografi Metode End Of File (EOF) Dan Kriptografi Vernam Cipher,"," Sebatik, vol. 17, pp. 20–26, Jan. 2017, Accessed: Jul. 22, 2022. [Online]. Available: https://jurnal.wicida.ac.id/index.php/sebatik/article/view/82.pdf
- [3] R. Munir, "Image Watermarking untuk Citra Berwarna dengan Metode Berbasis Korelasi dalam Ranah DCT," *Program Studi Teknik Informatika. Institut Teknologi Bandung. Bandung.*, 2010, Accessed: Jul. 30, 2022. [Online]. Available: https://Informatika.Stei.Itb.Ac.Id/~rinaldi.Munir/Penelitian/Ma kalahdiJurnalPETIR.Pdf.
- [4] J. K. F. T. L. and T. S. I. J. Cox, "Secure Spread Spectrum Watermarking for Multimedia," *IEEE Transaction on Image Processing*, vol. 6, no. 12, pp. 1673–1987, Dec. 1997, doi: doi:10.1109/83.650120.
- [5] Arsip Nasional Republik Indonesia, "Undang-Undang No. 43 Tahun 2009 Tentang Kearsipan," *Sekretariat Negara*, no. 152. Jakarta, 2009. Accessed: Oct. 05, 2023. [Online]. Available: https://jdihn.go.id/files/4/2009uu043.pdf
- [6] Arsip Nasional Republik Indonesia, "Peraturan Pemerintah Republik Indonesia Nomor 28 Tahun 2012 Pelaksanaan Undang-Undang No. 43 Tahun 2009 Tentang Kearsipan.," no. 41. Sekretariat Negara, Jakarta, 2005. Accessed: Oct. 05, 2023.
 [Online]. Available: https://jdih.kemenkeu.go.id/fullText/2012/28TAHUN2012PP.p df
- [7] Kementerian Hukum dan Hak Asasi Manusia, "Peraturan Menteri Hukum dan Hak Asasi Mnausia Republik Indonesia Nomor 23 Tahun 2017 Tata Kelola Arsip Vital dan Arsip Terjaga di Lingkungan Kementerian Hukum dan Hak Asasi Manusia," Sekretariat Negara, no. 1668. Jakarta, 2017.
- [8] K. Naoe and Y. Takefuji, "Damageless Information Hiding using Neural Network on YCbCr Domain," 2008. [Online]. Available:

https://www.researchgate.net/publication/252319078

- [9] Y. J. Chang, R. Z. Wang, and J. C. Lin, "A sharing-based fragile watermarking method for authentication and self-recovery of image tampering," *EURASIP J Adv Signal Process*, vol. 2008, 2008, doi: 10.1155/2008/846967.
- [10] C. S. Shieh, H. C. Huang, F. H. Wang, and J. S. Pan, "Genetic watermarking based on transform-domain techniques," *Pattern Recognit*, vol. 37, no. 3, pp. 555–565, 2004, doi: 10.1016/j.patcog.2003.07.003.
- [11] B. Isac and V. Santhi, "A Study on Digital Image and Video Watermarking Schemes using Neural Networks," 2011.
- [12] R. Azhar, D. Tuwohingide, D. Kamudi, Sarimuddin, and N. Suciati, "Batik Image Classification Using SIFT Feature Extraction, Bag of Features and Support Vector Machine," in *Procedia Computer Science*, Elsevier, 2015, pp. 24–30. doi: 10.1016/j.procs.2015.12.101.
- [13] L. R.-Y. and W. Lei. Z. Zhi-Ming, "Adaptive Watermark Scheme with RBF Neural Networks," International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003, 2003, pp. 1517-1520.".

DOI: https://doi.org/10.29207/resti.v7i5.5003

Creative Commons Attribution 4.0 International License (CC BY 4.0)

- [14] A., & B. H. (2017) Al-Haj, "Copyright protection of egovernment document images using digital watermarking. 2017 3rd International Conference on Information Management (ICIM).".
- [15] Y. Gangadhar, V. S. Giridhar Akula, and P. C. Reddy, "An evolutionary programming approach for securing medical images using a watermarking scheme in invariant discrete wavelet transformation," *Biomed Signal Process Control*, vol. 43, pp. 31–40, May 2018, doi: 10.1016/j.bspc.2018.02.007.
- [16] H. Barouqa and A. Al-Haj, "Watermarking E-Government Document Images Using the Discrete Wavelets Transform and Schur Decomposition," in 2021 7th International Conference on Information Management, ICIM 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 102–106. doi: 10.1109/ICIM52229.2021.9417146.
- [17] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, "Digital image steganography: Survey and analysis of current methods," *Signal Processing*, vol. 90, no. 3. pp. 727–752, Mar. 2010. doi: 10.1016/j.sigpro.2009.08.010.
- [18] Madenda S. 2015., Pengolahan Citra Dan Video Digital : Teori, Aplikasi, Dan Pemrograman Menggunakan MATLAB. Jakarta: Erlangga.

- [19] S. G. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," 1989.
- [20] A. and M. A. (2010). Al-Haj, "Digital Audio Watermarking Based on the Discrete Wavelets Transform and Singular Value Decomposition. European Journal of Scientific Research, 39, 6-21.".
- [21] A. G. Akritas and G. I. Malaschonok, "Applications of singularvalue decomposition (SVD)," in *Mathematics and Computers in Simulation*, Sep. 2004, pp. 15–31. doi: 10.1016/j.matcom.2004.05.005.
- [22] J. Kardamis, "Audio watermarking techniques using singular value Audio watermarking techniques using singular value decomposition decomposition." [Online]. Available: https://scholarworks.rit.edu/theses
- [23] W. C. Chen and M. S. Wang, "A fuzzy c-means clustering-based fragile watermarking scheme for image authentication," *Expert Syst Appl*, vol. 36, no. 2 PART 1, pp. 1300–1307, 2009, doi: 10.1016/j.eswa.2007.11.018.
- [24] L. Qiao and K. Nahrstedt, "Watermarking Schemes and Protocols for Protecting Rightful Ownership and Customer's Rights," 1998. Accessed: Oct. 05, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S104732 039890391