
 Accepted: 06-04-2023 | Received in revised: 16-09-2023 | Published: 22-10-2023

1174

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 5 (2023) 1174 - 1181 ISSN Media Electronic: 2580-0760

Service Automation Implementation for Delivering CaaS at the Ministry of

Finance of Indonesia

Achmad Farid Rusdi1, Teguh Raharjo2, Bob Hardian3, Tiarma Simanungkalit4
1,2,3,4Faculty of Computer Science, Universitas Indonesia, Jakarta, Indonesia

1achmad.farid11@ui.ac.id, 2teguhr2000@gmail.com, 3hardian@cs.ui.ac.id, 4tiarma.simanungkalit@ui.ac.id

Abstract

Evaluation is an essential aspect of service improvement. Within the Ministry of Finance, there is an organization responsible

for providing IT services to various units and employees. One of the services offered by this organization is cloud computing,

which supports the development of information systems. However, there are several challenges related to service fulfillment.

For instance, the time required to fulfill a service is relatively long, taking two days, in contrast to public cloud providers who

can deliver their services within minutes. Additionally, there is a potential for human errors in the manual process carried out

by the Request Fulfillment Team (RFT) during service delivery. This study aims to explore the design and implementation of

automated service fulfillment for containers, transforming them into self-service products. The author employs the Finite State

Automata (FSA) model to test the input and output of the automation system using seven states and inputs. The results indicate

that the service cycle for containers when compiled and tested with FSA using predetermined inputs, can generate containers

according to user-selected specifications. As a result, the implementation of an automated and self-service model is proposed

to reduce delivery time and mitigate potential errors in the Container-as-a-Service (CaaS) offering.

Keywords: cloud service automation; cloud service implementation; container as a service; CaaS; finite state automata

1. Introduction

Cloud computing is a computerized process for the

needs of applications, and infrastructure, including

storage, as a service to customers with Internet access

[1]. Cloud services are generally provided in three

models: (1) Infrastructure as a Service (IaaS), namely

infrastructure through web portals and APIs; (2)

Platform as a Service (PaaS), which is a platform for

application development services, such as database

services and scripting environments. (3) Software as a

Service (SaaS), namely the provision of applications as

a service, (example: Google Service) [2]. In its

development, there is Container, a virtualization

technology that does not require a VM (virtual

machine). Container virtual environments are isolated

at the operating system level, so a particular operating

system will be executed by a different container [3].

Containers use fewer resources for random-access

memory (RAM) and the central processing unit (CPU)

than conventional VMs and are located between IaaS

and PaaS [4]. A container can be used as a cloud

service, and it’s called "container as a service (CaaS).

CaaS is a technology where resources are stored in

containers and can be accessed by applications

according to the needs of the application [5].

Technological developments require organizations to

innovate and utilize information technology to

continuously improve their services. ITSM

(Information Technology Service Management) is a

framework used by companies to manage IT services

and achieve business goals. The ITIL (Information

Technology Infrastructure Library) provides a general

structure for ITSM and guides the IT governance

structure and continuous improvement of IT service

performance provided by the organization [6]. Within

ITIL, there is a lifecycle to implement ITSM efficiently,

which does not define a definite start and endpoint. The

lifecycle consists of service strategy, service design,

service transition, service operation, and continual

service improvement [7].

There is an organization within the Ministry of Finance

that offers cloud computing services, in terms of PaaS

server-tier development, including container services.

These services are managed using the ITSM

framework. This organization manages its cloud data

center, it can be categorized as a private cloud [8]. In

fulfilling PaaS server-tier development service, there

are several obstacles, service fulfillment which takes

two working days [9], relatively more time compared to

cloud computing services in the current public cloud,

Achmad Farid Rusdi, Teguh Raharjo, Bob Hardian, Tiarma Simanungkalit

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 5 (2023)

DOI: https://doi.org/10.29207/resti.v7i5.5032

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1175

and the potential for errors in service fulfillment by the

RFT (Request Fulfillment Team) caused by human

error. After conducting service evaluation activities and

gathering feedback through various forums, meetings,

and user satisfaction surveys, gaps were identified in the

cloud services that require improvement. Specifically,

the areas that need attention are service fulfillment time

and personnel availability. These improvements will be

part of the continuous service improvement process.

Several studies have shown an automated iterative

process to shorten the processing time, for example,

automated teller machines (ATMs), where services

previously performed by humans are replaced by

automated machines [10]. In the cloud area, there is a

cloud computing architecture of the Government of

India that is moving towards cloud service automation

scenarios, which includes the use of containers using

the VMware Technology Stack [1]. The development of

Cloud CAMP as a tool that automates and orchestrates

the cloud that complies with OASIS standards with

GUI-based. This tool aims to reduce the manual effort

involved in developing and orchestration cloud services

[11]. As technology continues to evolve, there is

potential for automating increasingly complex

processes [12]. In developing automation, predefined

inputs, and intended outputs are required. There is a

mathematical model that can be used to automate the

processing of inputs and outputs, known as finite state

automata (FSA). An FSA is used to represent a system

that has a finite number of states and can transition

between them based on the input it receives [14]. FSA

can be used to test automation processes in which there

are specified inputs and outputs. FSA is expressed in 5

tuples [16]: Q (state set), ∑ (input set), δ (transition

function), S (initial state), and F (final state).

In realizing the design of PaaS server-tier development

services for containers that are more efficient and

effective, organizations need to consider automating

these services. This can be done through container

orchestration, which enables service providers to define

how to coordinate and continuously manage containers

in the cloud [13], and by using low-level scripting in the

container service implementation process as per

established procedures [11].

The conditions described previously indicate that

service automation for the PaaS server-tier

development for containers can reduce service

fulfillment times and minimize coordination and

potential errors. Thus, this research was conducted to

answer the questions “What kind of service design can

be implemented for self-service containers?” and “How

can container services be automated?”.

Several studies have been conducted on CaaS. Research

[4] describes the pricing scheme for CaaS services,

research [14] explains data center resource savings that

can be achieved by implementing CaaS, and research

[15] discusses container implementation. In addition,

there are studies related to FSA, research [8], [9] using

FSA as a conceptual model of e-services, research [17]–

[21] discussing the use of FSA in service automation

tests through vending machines, research [22]–[24]

discussing the use of FSA in system menu selection, and

research [25] using FSA for virtual server service

automation test. In our study, we will use non-

deterministic finite automata (NFA) as there is more

than one transition direction. In comparison with

previous research, this research contributes to the form

of service cycle design and its application to the

provision of CaaS through automated processes in the

public sector.

2. Research Methods

This part will outline the research methodology to

utilize container service automation design and

implementation. We are starting with the research

phase, data collection, and design test method.

2.1 Research Phase

This research consists of four stages, the first is

understanding the current business process flow. The

second is the service cycle design that the author will

try to construct a service cycle. This cycle consists of

activities that will be automated using tools. The third

is the service cycle validation. In this case, the

researcher uses the JFLAP application in making FSA

diagrams and FSA testing by describing the transition

table. The last stage is the process of designing a

solution design and implementing a container service as

can be seen in Figure 1.

Figure 1. Research Process

Figure 1 shows that this research was carried out in 5

stages. First is business process understanding, at this

stage the current business process flow in the

organization will be explained. The second is service

cycle design. At this stage, the service cycle will be

designed when the service is automated using tools and

becomes a self-service service. Third is state diagram

design, at this stage, the states contained in the service

cycle will be designed later. Fourth is the state test. At

this stage, the researcher uses the input transition

function and the output transition function to test the

Achmad Farid Rusdi, Teguh Raharjo, Bob Hardian, Tiarma Simanungkalit

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 5 (2023)

DOI: https://doi.org/10.29207/resti.v7i5.5032

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1176

stages of each state of the FSA so that it can be ensured

that there are no errors in the state design of the FSA.

The final step is service design and implementation.

Solution design for CaaS and interface of the CaaS

service form is carried out on the development tier on

the Service Portal where users can make service

requests according to what the user needs.

2.2 Data Collection

Data collection in this study used a qualitative approach

with an exploratory literature review and semi-

structured interview [26]. A literature study was used to

obtain secondary data and interviews were to collect

primary data. Secondary data was collected from the

Service Catalog, IT Regulations, and presentation

documents related to the CaaS at the Ministry of

Finance. For primary data, we conducted semi-

structured interviews.

For the interview, the informants were selected by the

purposive sampling method because they can provide

in-depth and detailed information. The source people in

this study are the Server Manager (13 years of working

experience), the Quality Assurance Manager (13 years

of working experience), and two technical staff (12- and

9 years of working experience). In addition, information

was also gathered from representatives from some

public providers that already offer products of CaaS as

self-service in the private sector.

2.3 Design test method

All repetitive processes that are typically performed by

individuals will be carried out by machines or tools.

Therefore, to ensure the smooth operation of the process

with these tools, this research will utilize the FSA model

to test the input and output of the service cycle design

for container service automation.

Once the automation process is set up, the next step will

be testing with FSA. The objective is to validate the

flow and make any necessary adjustments based on the

results obtained. A flow diagram will be created for

testing purposes using FSA.

3. Results and Discussions

3.1 Result

The study discusses the transformation of services that

were previously manually executed by multiple

individuals into automated processes using tools.

Providing PaaS development server services previously

took two days because it not only involved many people

fulfilling the request manually but also encompassed

many steps in the process itself. Therefore, this study

will concentrate on automating repetitive activities to

enhance service quality.

Some processes will be conducted to automate

repetitive activities using tools. The discussion begins

with comprehending the pre-existing business

processes, followed by designing the service cycle to

fulfill the service, validating the service cycle, and

concluding with the design and implementation of the

service solution.

During business process understanding, requests for

container services currently running in the organization

are still running manually. Users make requests via

email or the service desk service portal. After the

request is received, the Service Desk team will check

the request. If the information and files for the request

are considered complete by the Service Desk team, then

the ticket goes to the Server Management team which is

the RFT (Request Fulfillment Team) for the service and

will then be fulfilled by them according to

specifications that have been determined by the user and

approved by Change Manager if the request

specification exceeds the standard specifications

specified in the Service Catalog, as shown in the Figure

2.

Figure 2. Existing Service Fulfillment Flowchart for Container

Services

Based on the picture above, we can understand that the

process of fulfilling these services is routine and

repetitive. Meeting the demand for services requires the

availability of human resources and time from the

service desk team and the RFT team. In addition, this

RFT consists of two different teams (server team and

network team) so it means that to deliver the service,

the organization needs resources from three teams.

Achmad Farid Rusdi, Teguh Raharjo, Bob Hardian, Tiarma Simanungkalit

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 5 (2023)

DOI: https://doi.org/10.29207/resti.v7i5.5032

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1177

As stated in the Service Catalog, the norm for this

service time is two working days. Therefore, it is

necessary to design a system that can help simplify the

tasks of the Server Manager team to shorten the time for

service fulfillment and as the Server Manager said,

“have a service model that can be fully self-service like

services in public clouds”. The system in question can

enable users to make service requests on the Service

Portal according to the required specifications

independently (self-service). In the Service Portal, the

service cycle flow can run immediately, and the service

fulfillment process is automated using tools so that

requests are possible to be fulfilled in minutes if the

request is immediately approved by the user's Direct

Manager.

There are nine stages of the PaaS development server

service process for the current container. The process

starts with a user who makes a service request via the

Service Desk Service Portal. After that, the Service

Desk team will receive and check the completeness of

the service requirements. If the requirements are not

complete, then the request is returned to the user to be

completed and resubmitted the request. If the

requirements are complete, it will be checked whether

the standard specifications are as stated in the Service

Catalog or not. If it meets the standard specifications,

then the process will continue to the ticket delegation

process to the RFT which is the Server Team. If the

specifications are non-standard, then approval by the

Server Change Manager is required. If the Server

Change Manager approves, the process will continue to

the ticket delegation process to the RFT service. If

rejected, the Service Desk team will convey the status

of service information to the user. Thirdly, RFT will

create a PaaS cluster for the container which includes

DNS registration and port opening. For the DNS

registration process, RFT will coordinate with the

Network Team the DNS, and AD (Active Directory)

management team. For the opening of the port, RFT

will coordinate with the network team. Next, RFT will

grant AD account temporary access to users. Then, RFT

will prepare the release document. After this document

is completed, RFT will inform the Service Desk about

the completion of services. Having this information, the

next step is to convey the service status information to

Users by the Service Desk team. Then, users can receive

information and provide feedback on services. Finally,

the process ends with the Service Desk Team closing

the service ticket.

During service cycle design, based on the existence of

the service fulfillment flowchart for container services,

the process needed to fulfill these services requires a

long step, the availability of time and human resources

as well as good synergy between teams. Based on an

interview with Server Manager and Quality Assurance

Manager, the required service design is fully self-

service, and faster than current services, such as public

cloud services.

After the data collection process is carried out, the

author constructs a service cycle in which the process

of activities that are still carried out manually by RFT

and related teams will be automated using tools.

However, for good governance and validating that the

request is indeed needed by the organization, each

request still requires approval by the Direct Manager of

the User.

Figure 3. The Service Fulfillment Flowchart

Figure 3 illustrates the service fulfillment process that

has been automated and the request can be made self-

service by the user. With this service cycle, it is hoped

that the fulfillment of PaaS server-tier development for

container services will meet the requirement of the

Server Manager, which is to provide faster and more

dynamic development infrastructure for users.

The process in the implemented service cycle starts with

the user logging into the Service Portal. Then, the user

can select CaaS service. After that, the user is demanded

to input a form request such as Namespace Name. In

this form, there is an option to customize the size of PV

by checkbox Created PV. When this is selected, the user

will input the size for customized PV and then PVC will

be updated to claim PV according to the input size. The

next process will be to the Direct Supervisor for

approval. If the User didn’t select created PV, the

request will continue to the Direct Supervisor for

approval. After getting approval, Namespace will be

created with default or customized size PV based on

User selection. Finally, after successful creation, email

notifications will be sent to the user with details of

Achmad Farid Rusdi, Teguh Raharjo, Bob Hardian, Tiarma Simanungkalit

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 5 (2023)

DOI: https://doi.org/10.29207/resti.v7i5.5032

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1178

Namespace Name and Cluster URL to be accessible

with their AD.

In the process of the Service Cycle Validation, there are

two states which are State Diagram Design and State

Testing. The State Diagram Design is used to describe

in detail the flow of the system that will be designed so

that it can describe a complete and comprehensive

system.

Figure 4. Diagram State Design

The FSA diagram illustrates a machine model that can

obtain input and provide output with a finite number of

states and can move from one state to the next according

to the input obtained from the transition functions [25].

An item in Figure 4 can be explained in Table 1.

Table 1. FSA Item Description

Tuple State

and
Input

Description

Q q0 Initial State - service portal login

 q1 Show container service options

 q2 Show a field to input Namespace Name
 q3 Show a direct supervisor approval for

Namespace with a default size of PV

 q4 Show a display to input the customized size of
the PV

 q5 Show a direct supervisor approval for

Namespace with customize the size of PV
 q6 Final State – Namespace created, and Email

Notification sent to Requestor

∑ a Chose container service
 b Input Namespace Name

 c Input customizes the size of the PV

 0 follow-up
 1 execute

S q0 Initial state
F q6 Final state

In the State Diagram Design in Figure 4, state q0

describes that the user is logged in to the service portal.

State q1 displays the choice of container services. State

q2 displays a field to input the Namespace Name that

will be built into the project and bind to the AD account.

State q3 is a user selection that Namespace is processed

with a default size of PV, this state will go for Direct

Supervisor approval. State q4 shows a field to input the

customized size of PV for the Namespace that will be

built. After input size for customized PV, the process

will then be executed in state q5 for Direct Supervisor

approval. After getting approval from the Direct

Supervisor in states q3 and q5. Last transition in q6, a

Namespace will be created based on the user selection

size of PV, and an email notification will be sent to the

requestor with a detailed Namespace and Cluster URL

for access with the AD account. The transition function

between states can be seen in the following table 2.

Table 22. Transition Function

δ q0 q1 q2 q3 q4 q5 q6

a q1 - - - - - -

b - q2 - - - - -

c - - q4 - - - -
d - - - - - - -

e - - - - - - -

0 - q1 q2 q0 q4 q0 -
1 - - q3 q6 q5 q6 -

In the State Testing, FSA testing on the PaaS

development server service for this container uses the

JFLAP application as a tool or tool in making FSA and

testing [5]. The system will follow the flow from

starting the login process into the Service Portal. FSA

is used to read the given input symbol from the initial

state to the end of the process so that it can be

recognized by the Service Portal. The following is an

overview of testing whether the input entered is

accepted or rejected based on input from the user:

Figure 5. FSA Testing State

Figure 5 shows the design of the FSA input system with

the JFLAP application trial. All the test input results in

the transition function table show consistent results

according to the transition function table above. An

example of FSA testing with the input "abc11" is

accepted. The input “ab11” was accepted but not

complete to the final state, another input “ab10” was

rejected because there is no further transition from q2 to

q3 or q4.

In service solution design and implementation phase,

the solution design used for Caas automation as shown

in Figure 6. The service will be developed using a

service portal, orchestrator, container solution,

virtualization management solution, and AD Server that

will be integrated to make the process of delivering

container service. So, when the users choose the CaaS

directly on the catalog, the tools that have already been

configured before will process the request

automatically.

Achmad Farid Rusdi, Teguh Raharjo, Bob Hardian, Tiarma Simanungkalit

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 5 (2023)

DOI: https://doi.org/10.29207/resti.v7i5.5032

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1179

Figure 6. Solution Design CaaS

A service portal is needed that can allow users to select

container services, input Namespace Name, an option

to create PV, and the approval request from their Direct

Supervisor. The form and display for the service can be

shown in Figure 7 and 8.

Figure 7. Container Service Options Display

Figure 8. Display Container Service Request Form

Figures 7 and 8 illustrate the input form that the user

must fill out when requesting a service. The user will

input the container name in Deployment and

Namespace, and an option to customize the size of PV

by filling the checkbox Create PV. After the user

completes the input on this form, it will trigger the

workflow to execute pre- and post-provision actions.

Cluster Role Binding is created for the requested user

for the given container cluster to allow access to storage

classes and PV. Role binding was created for the

requested AD user for the new namespace in the CLI

VM server for the administrative role. The size of PV

can be increased when the request is submitted.

Figure 9. Approval Form Display

Figure 9 is a display of the approval form when the

direct supervisor wants to approve or reject an incoming

request from a requestor.

3.2 Discussions

According to the results obtained in this research, the

automation process uses the service design that has been

explained in service design and implementation. The

service design describes the service process flow

starting from service requests by users to automatic

fulfillment of services through the system. Based on

interviews that have been conducted, the backend of the

system that runs the service flow is supported by two

products, namely the cloud management platform and

the container platform which are also integrated with

AD and DNS servers. With this flow, it is hoped that

the fulfillment of services can be carried out by users

independently as Server Manager hoped, so that users

can immediately deploy microservice applications

without waiting for admin availability. PV selection is

intended to fulfill storage needs if the developer

requires PV outside the predetermined storage classes

and PVs that are already included when requesting a

namespace.

The supervisor’s approval is needed as a form of check

and control so that the requested content is to the needs

of the organization. Container control by the admin is

carried out by using monitoring tools and scanning for

containers that will enter the production area. If high

and very high-security gaps are found, then the

deployment process to the production area will not be

able to be carried out by the user. Security gap findings

need to be closed by the user.

Other things that can be added to this service, first is an

option to add PV size according to system developer

requirements. Along with the use of containers, there is

a potential need for more storage, so options are needed

to increase the size of the PV. However, according to

the initial PV submission form, the addition of the PV

size can only be done on the Namespace that is bound

to the AD’s user account and the initial Namespace

submission does not choose to change the PV size. The

second is in system development, the common thing is

collaboration between developers. So, another thing

that can be added is a collaboration between developers.

Initially, each Namespace will only be bound with one

Achmad Farid Rusdi, Teguh Raharjo, Bob Hardian, Tiarma Simanungkalit

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 5 (2023)

DOI: https://doi.org/10.29207/resti.v7i5.5032

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1180

AD account, therefore an additional form is needed to

add other developers to that Namespace within the same

project.

In providing services that are automated with the

system, according to the Server Manager, some things

need attention, such as standardization. It is required in

several aspects, such as standardization of containers

used and security. Capacity planning is also important

because it is difficult to predict, especially during the

mid-year period when many system changes and

developments occur. Then, for the smooth use of the

service, users need to be provided with training and

guidelines for using the service.

Change management is also a challenge for

organizations, such as how to rearrange existing human

resources after the automation of these services. Some

recommendations to minimize the impact of automation

[7], [27]. The success of automation in organizations

requires a change in organizational culture to reduce

resistance to automation projects, training of

automation tools and techniques to its users in the

organization identifying new roles that arise with the

automation, and mapping these new roles to existing

human resources.

4. Conclusion

Routine and repetitive processes in fulfilling the

services of containers are implemented to be automated

using tools. Service lifecycle proposals of automated

container services can be drawn up and tested using an

FSA. The implementation of FSA is described by

providing input that is given to the system as a language

that can be recognized by the system. Then the system

will issue an output in the form of a container with a

default or customized size of PV.

The design for container service in section 3 can answer

research question 1. Based on the design, the Service

Desk Team and Request Fulfillment Team no longer

have a role in fulfilling the container services. Their role

is replaced by a system flow that is designed using a

cloud management platform and container platform

tools that can do automatic tasks. Users can get the

container by self-service in Portal. The system

generates Namespace and Cluster URLs which can be

accessed by AD’s User account.

To answer research question 2, the first thing that we

did was identify routine and repetitive activities in the

provision of container services and then configure the

activities to be automated by the system. As a form of

control, there is a direct supervisor as the party that

validates the container request, and the server admin

who monitors the containers that have been created.

This automation will have a good impact on the

organization, routine and repetitive processes are

automated. Existing human resources can be directed to

other processes that require more skills and knowledge

to complete the process. Implementing the automated

and self-service model aims to reduce the time and

potential for errors in the fulfillment of container

services.

This research’s limitations are that it is restricted to the

provision of container service at the Ministry of Finance

in Indonesia. As a result, the findings do not fully

describe the issues the public sector faces in Indonesia

related to the provision of container services.

Furthermore, there are few references to container

services design in the public sector. Further research

can be conducted by using more research objects,

especially in the public sector, to provide a more

comprehensive view.

Acknowledgment

This research was funded by the Ministry of

Communication and Information of the Republic of

Indonesia based on the announcement letter number B-

2048/BLSDM.1/LT.02.03/10/2022.

References

[1] N. V. Choudhari and A. B. Sasankar, “Architectural vision of
cloud computing in the Indian government,” 2021 Int. Conf.

Innov. Trends Inf. Technol. ICITIIT 2021, 2021, doi:
10.1109/ICITIIT51526.2021.9399598.

[2] W. Faiq, “IMPLEMENTASI CLOUD COMPUTING DI

BEBERAPA INSTANSI PEMERINTAHAN Cloud
Computing Implementation in Several Government

Institutions Faiq Wildana,” J. Masy. Telemat. dan Inf., pp. 97–
108, 2017.

[3] M. K. Hussein, M. H. Mousa, and M. A. Alqarni, “A placement

architecture for a container as a service (CaaS) in a cloud
environment,” J. Cloud Comput., vol. 8, no. 1, pp. 1–15, 2019,
doi: 10.1186/s13677-019-0131-1.

[4] V. Liagkou, G. Fragiadakis, E. Filiopoulou, C. Michalakelis,

T. Kamalakis, and M. Nikolaidou, “A pricing model for

Container-as-a-Service, based on hedonic indices,” Simul.
Model. Pract. Theory, vol. 115, no. November 2021, p.
102441, 2022, doi: 10.1016/j.simpat.2021.102441.

[5] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-

a-Service at the Edge: Trade-off between Energy Efficiency

and Service Availability at Fog Nano Data Centers,” IEEE
Wirel. Commun., vol. 24, no. 3, pp. 48–56, 2017, doi:
10.1109/MWC.2017.1600427.

[6] R. Yandri, Suharjito, D. N. Utama, and A. Zahra, “Evaluation

model for the implementation of information technology

service management using fuzzy ITIL,” Procedia Comput.
Sci., vol. 157, pp. 290–297, 2019, doi:

10.1016/j.procs.2019.08.169.

[7] G. Krishnan and V. Ravindran, “IT service management

automation and its impact on IT industry,” ICCIDS 2017 - Int.

Conf. Comput. Intell. Data Sci. Proc., vol. 2018-Janua, pp. 5–
8, 2018, doi: 10.1109/ICCIDS.2017.8272633.

[8] F. Mohammed, A. M. Ali, A. S. A. M. Al-Ghamdi, F.
Alsolami, S. M. Shamsuddin, and F. E. Eassa, “Cloud

computing services: Taxonomy of discovery approaches and

extraction solutions,” Symmetry (Basel)., vol. 12, no. 8, pp. 1–
15, 2020, doi: 10.3390/sym12081354.

[9] Pusintek, “IT Service Catalog Pusat Sistem Informasi dan
Teknologi Keuangan.” Kementerian Keuangan, Jakarta, 2021.

[10] S. H. Ivanov, C. Webster, and K. Berezina, “Adoption of robots

Achmad Farid Rusdi, Teguh Raharjo, Bob Hardian, Tiarma Simanungkalit

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 5 (2023)

DOI: https://doi.org/10.29207/resti.v7i5.5032

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1181

and service automation by tourism and hospitality companies,”

Rev. Tur. …, vol. 1, no. 27/28, pp. 1501–1517, 2017, [Online].

Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2964308
.

[11] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda,

“(WIP) CloudCAMP: Automating the deployment and

management of cloud services,” Proc. - 2018 IEEE Int. Conf.
Serv. Comput. SCC 2018 - Part 2018 IEEE World Congr.
Serv., pp. 237–240, 2018, doi: 10.1109/SCC.2018.00038.

[12] S. E. Sampson, “A Strategic Framework for Task Automation

in Professional Services,” J. Serv. Res., vol. 24, no. 1, pp. 122–
140, 2021, doi: 10.1177/1094670520940407.

[13] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container

technologies: A state-of-the-art review,” IEEE Trans. Cloud
Comput., vol. 7, no. 3, pp. 677–692, 2019, doi:
10.1109/TCC.2017.2702586.

[14] N. Kumar, G. S. Aujla, S. Garg, K. Kaur, R. Ranjan, and S. K.

Garg, “Renewable Energy-Based Multi-Indexed Job

Classification and Container Management Scheme for

Sustainability of Cloud Data Centers,” IEEE Trans. Ind.

Informatics, vol. 15, no. 5, pp. 2947–2957, 2019, doi:
10.1109/TII.2018.2800693.

[15] E. Kristiani, C. T. Yang, C. Y. Huang, Y. T. Wang, and P. C.

Ko, “The Implementation of a Cloud-Edge Computing
Architecture Using OpenStack and Kubernetes for Air Quality

Monitoring Application,” Mob. Networks Appl., vol. 26, no. 3,
pp. 1070–1092, 2021, doi: 10.1007/s11036-020-01620-5.

[16] Y. Jiang, “A formal model of semantic computing,” Soft

Comput., vol. 23, no. 14, pp. 5411–5429, 2019, doi:
10.1007/s00500-018-3502-5.

[17] D. Berardi, F. De Rosa, L. De Santis, and M. Mecella, “Finite
state automata as conceptual model for e-Services,” J. Integr.
Des. Process Sci., vol. 8, no. 2, pp. 105–121, 2004.

[18] R. Muhammad, W. Gata, H. B. Novitasari, L. Kurniawati, and

S. Rahayu, “Penerapan Finite State Automata Pada Desain

Vending Machine Masker Dan Hand Sanitizer,” J. Inf. dan
Komput., vol. 10, no. 1, pp. 21–28, 2022, doi:

10.35959/jik.v10i1.275.

[19] E. Supriyanto, A. Ardiansyah, F. Frieyadie, S. Rahayu, and W.
Gata, “Penerapan Finite State Automata Pada Vending

Machine Penjual Obat Non Resep Dokter Dan Keperluan

Medis,” J. Inf. dan Komput., vol. 9, no. 2, pp. 08–14, 2021, doi:
10.35959/jik.v9i2.206.

[20] D. Erwanto, “Penerapan Konsep Finite State Automata Pada
Desain Vending Machine Angkringan,” J. Inform., vol. 21, no.
2, pp. 161–173, 2022, doi: 10.30873/ji.v21i2.3063.

[21] A. Faisal, G. V. Saragih, and W. Gata, “Desain Vending

Machine Rokok Dengan Mengimplementasikan Finite State

Automata Terintegrasi Dengan E-KTP,” Matics, vol. 12, no. 1,
p. 55, 2020, doi: 10.18860/mat.v12i1.8693.

[22] F. Said, D. Andriyanto, R. Sari, and W. Gata, “Perancangan
Validasi Permohonan Narasumber Pada Sistem Informasi

Permohonan Narasumber Menggunakan Finite State

Automata,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2,
pp. 189–196, 2020, doi: 10.31294/p.v22i2.8157.

[23] T. Rivanie, “Implementasi Finite State Automata dalam Proses

Registrasi Workout Plan pada Pusat Kebugaran,” Matics, vol.
12, no. 1, p. 94, 2020, doi: 10.18860/mat.v12i1.8573.

[24] F. Aziz, “Penerapan Konsep Finite State Automata Dalam

Proses Pendaftaran Kelas Kursus Bahasa Inggris Pada Tempat

Kursus,” Matics, vol. 12, no. 2, pp. 93–98, 2021, doi:
10.18860/mat.v12i2.9330.

[25] M. B. Shidiq, W. Gata, H. B. Novitasari, A. Bayhaqy, and H.
Setiawan, “Penerapan Layanan Cloud Server Secara Self-

Service Menggunakan Model Finite State Automata,”

INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 73–
82, 2022, doi: 10.31539/intecoms.v5i1.3216.

[26] J. Recker, Scientific Research in Information Systems.
Springer, 2013.

[27] R. Dunlap and M. Lacity, “Resolving tussles in service
automation deployments: Service automation at Blue Cross

Blue Shield North Carolina (BCBSNC),” J. Inf. Technol.

Teach. Cases, vol. 7, no. 1, pp. 29–34, 2017, doi:
10.1057/s41266-016-0008-9.

