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Abstract  

Indonesia’s frequent earthquakes, caused by its position at the convergence of multiple tectonic plates, Indonesia's frequent 

earthquakes, caused by its position at the convergence of multiple tectonic plates, necessitate precise seismic zone identification 

to improve disaster preparedness. This research evaluates the effectiveness of five clustering algorithms—K-Medoids, K-

Means, DBSCAN, Fuzzy C-Means, and K-Affinity Propagation (K-AP)—for analyzing earthquake data from January 2017 to 

January 2023. Using a dataset from BMKG encompassing 13,860 seismic events, each algorithm was assessed based on 

Silhouette Score and Cluster Purity metrics. Results indicated that K-Means provided the best balance, forming six clusters 

with a Silhouette Score of 0.3245 and Cluster Purity of 0.7366, making it the most suitable for seismic zone analysis. K-Medoids 

closely followed with a Silhouette Score of 0.3158 and Cluster Purity of 0.7190. Although DBSCAN effectively handled noise, 

its negative Silhouette values indicated poor clustering quality. Fuzzy C-Means and K-AP underperformed, with K-AP 

generating an impractically high number of clusters (196) and the lowest Silhouette Score (0.2550). This study offers a novel, 

comprehensive comparison of clustering algorithms for Indonesian earthquake data, emphasizing a dual-metric evaluation 

approach. By identifying K-Means as the most effective algorithm, provides valuable insights for disaster mitigation and 

seismic risk analysis. 
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1. Introduction  

Indonesia frequently experiences earthquakes, a 

common natural calamity in the region. The elevated 

seismicity and volcanic activity of the nation can be 

ascribed to its location at the intersection of numerous 

dynamic tectonic plates worldwide, such as the 

Eurasian, Pacific, and Indo-Australian plates, in 

addition to the Philippine microplate This geological 

setting results in the heightened susceptibility of 

Indonesia to seismic events [1]-[5]. The interaction of 

these tectonic plates situates Indonesia within a zone 

characterized by elevated levels of volcanic eruptions 

and seismic events [6]. Indonesia encounters 6,512 

tectonic earthquake occurrences annually, with 543 

incidents recorded monthly and 18 events on a daily 

basis, as indicated by statistical information [7]. Given 

the considerable seismic activity present, there are 

limited regions in Indonesia that remain unaffected by 

the possibility of experiencing earthquakes. 

Consequently, individuals residing in zones at high risk 

must maintain a constant state of vigilance, considering 

the unpredictability of earthquake occurrences. 

Adopting novel approaches to disaster mitigation is 

imperative in diminishing the probability of damage 

and casualties resulting from these capricious seismic 

occurrences. Diverse stakeholders, encompassing 

governmental bodies, academia, the scientific sphere, 

and the wider populace, have endorsed a variety of 

strategies. Precise delineation of earthquake-prone 

regions stands as a pivotal element within these 

frameworks. The objective is to equip authorities with 

the requisite data to formulate tailored development 

blueprints for each high-risk zone through meticulous 

mapping exercises. This crucial realization further 

enables the implementation of focused mitigation 

https://doi.org/10.29207/resti.v8i6.5514
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actions aimed at mitigating seismic repercussions [8], 

[9].  

Clustering methodologies represent a viable approach 

for delineating regions susceptible to seismic activity. 

These methodologies segment a collection of data into 

clusters of interconnected entities, referred to as 

clusters. Therefore, this division aids in the grouping 

together of similar entities or cases, guaranteeing that 

entities/cases within the identical cluster display a 

higher degree of similarity to one another when 

contrasted with entities/cases in separate clusters [10], 

[11]. Clusters enable the discovery of underlying 

patterns in datasets by employing the technique of 

clustering. Entities grouped together in a cluster display 

a notable degree of resemblance, whereas those found 

in separate clusters manifest remarkable differences. 

Essentially, entities within a single cluster are expected 

to display a notably greater degree of resemblance 

compared to those distributed across diverse clusters 

[8]. Clustering techniques can be employed to identify 

seismic or earthquake patterns based on unlabelled 

attributes [12]. 

Several clustering methods have been employed in past 

research for examining seismic event data. Methods 

like K-Medoids, K-Means, DBSCAN, Fuzzy C-Means, 

and K-AP exhibit diverse effectiveness in the clustering 

of earthquakes, a process assessed through metrics like 

Sum of Squared Errors (SSE), Davies-Bouldin Index 

(DBI), Dunn Index (DI), and silhouette score. K-Means, 

which is a type of partition-based clustering 

methodology, is renowned for its effectiveness and 

simplicity, often surpassing alternative techniques in 

terms of SSE, DBI, and DI. Consequently, it is 

frequently favored for the clustering of seismic data 

based on attributes such as longitude, latitude, 

magnitude, and depth [13], [14]. The K-Medoids 

algorithm, akin to K-Means but employing medoids in 

lieu of centroids, has demonstrated superior silhouette 

scores and computational efficacy in numerous research 

endeavors, notably in the clustering of earthquake data 

in Indonesia. This algorithm exhibits resilience towards 

outliers and excels in handling extensive datasets [15].  

For example, in research conducted by [1] using 

earthquake data in Indonesia sourced from USGS data 

for the period 2014-2018 comparing the K-Medoids 

method with K-Means. The research variables are 

latitude, longitude, earthquake depth, and earthquake 

strength. According to the study, the K-Medoids 

approach produces a Silhouette Score = 0.4574067 with 

cluster 6 as the most optimal cluster compared to the K-

Means method with k = 4 having a Silhouette Score = 

0.3607622. Similar research conducted also by [8] 

shows the results of the Silhouette Score = 0.546 from 

the K-Medoids Algorithm are better than the results of 

the Silhouette Score = 0.516 from the K-Means 

algorithm for k = 5 in clustering earthquake data in 

Indonesia in 1973-2017 based on depth and magnitude. 

DBSCAN, a density-based algorithm, excels in 

handling noise and outliers, making it suitable for 

spatial clustering of seismic events, although it has 

difficulty in handling datasets with varying densities 

and large sizes [16]. For instance, a comparative 

analysis was conducted on the DBSCAN and PCA-

DBSCAN algorithms used for clustering seismic 

regions [17]. The findings showed that the experiment 

using PCA resulted in the highest SI value, which was 

0.4137. The study showed that the DBSCAN algorithm 

performed better than the K-Medoids algorithm in the 

classification of earthquake-prone areas [18]. 

Meanwhile, Fuzzy C-Means offers a robust clustering 

approach characterized by high precision and efficient 

computational speed [19]. The computational method 

identified as Fuzzy C-Means facilitates the allocation of 

data points to various clusters with diverse degrees of 

membership, hence providing flexibility in clustering 

ambiguous data. Nevertheless, the efficiency of this 

method might not reach its peak when encountering 

non-convex clusters [13], [20]. 

The K-AP algorithm, despite not being explicitly 

addressed in the provided context, is recognized for its 

capability to detect instances and create clusters without 

the need to specify the number of clusters, a feature that 

can be beneficial in scenarios involving dynamic 

earthquake datasets. Studies have been conducted 

simultaneously on the seismic event grouping in the 

region of Indonesia, employing the K-AP clustering 

method in contrast to the K-Means clustering approach. 

The results revealed that the assessments of K-Means 

and K-AP utilizing the C-Index, Davies Bouldin Index, 

and Connectivity Index determined the most suitable 

number of clusters for K-Means as 3 and 5 (C-

Index=0.052; DBI=0.109 and CI=5.102). Conversely, 

for K-AP, the optimum cluster quantities were 

recognized to be 2 and 4 (C-Index=0.022; DBI=0.108 

and CI=2.173). Through the utilization of cluster 

variance, it was ascertained that employing four clusters 

with K-AP was the optimal approach due to its lower 

Sw/Sb value in comparison to K-Means [4]. When 

considering the entirety of the situation, the selection of 

an algorithm is contingent upon the distinct attributes of 

the seismic data and the preferred equilibrium between 

computational efficacy and clustering precision. Every 

algorithm possesses its own set of advantages and 

disadvantages, and its effectiveness may exhibit notable 

discrepancies depending on the assessment criteria 

employed and the characteristics of the data [1], [13], 

[16], [20]-[22]. 

Therefore, by leveraging existing research, the current 

study seeks to perform a comprehensive comparative 

analysis of five different clustering methodologies - 

specifically K-Medoids, K-Means, DBSCAN, Fuzzy C-

Means, and K-AP - within the framework of seismic 

data acquired from Indonesia spanning from 2017 to 

2023. The investigation will concentrate on crucial 

variables such as latitude, longitude, depth, and 

magnitude to evaluate the efficacy of the 

aforementioned clustering techniques, this study will 

employ a range of evaluation metrics, such as the 
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Silhouette Score, and Cluster Purity, which will serve 

as a unique feature setting it apart from prior research. 

The use of cluster purity allows for an evaluation of 

whether the clustering results of a particular algorithm 

accurately reflect groupings of seismic events within 

the same geographic region or with similar 

characteristics. This indicator is considered more 

relevant and direct compared to the Silhouette Score, 

which primarily evaluates the internal cohesion of 

clusters without considering actual ground truth labels. 

While earlier research often compared a limited range 

of clustering algorithms based on the Silhouette Score 

metric, the main objective of this study is to pinpoint 

the most appropriate algorithm capable of 

accommodating the unique seismic attributes of 

Indonesia. A reliable clustering algorithm should also 

elucidate patterns of earthquakes, thus improving 

strategies for mitigation and preparedness. 

2. Research Methods 

Describe the research methods and research techniques 

The approach utilized in this research encompassed a 

systematic procedure consisting of five separate phases: 

gathering of data, preprocessing of data, 

implementation of clustering techniques, assessment of 

clustering methodologies, and ultimately, visualization 

and scrutiny of the cluster results. The procedural 

framework utilized in the investigation is depicted in 

Figure 1. 

Start

Data Collection

Prepocessing data

The clustering algorithm: K-Medoids, K-Means, 

DBSCAN, Fuzzy Means, K-Affinity Propagation (K-AP) 

Evaluation the clustering algorithms

Visualization and Interpretation the cluster result

Start
 

Figure 1. The Research Methodology 

2.1 Data Collection 

Acquiring seismic activity data in Indonesia spanning 

from January 2017 to January 2023 represents the 

foundational stage of the research. The seismic data 

employed in this investigation was acquired from the 

Indonesian Agency for Meteorological, Climatological, 

and Geophysics (BMKG) Contained within this dataset 

were a total of 13,860 seismic events registering 

magnitudes of three or higher, a significant observation 

[23]. The dataset comprises the exact coordinates 

(latitude and longitude), geographic position, depth, and 

magnitude of every seismic event. Table 1 provides a 

thorough analysis. 

Table  1. Earthquake Data in Indonesia 

Date Lat Lon Depth Mag Location 

01/01/2017 -6,02 103,78 10 4,1 Southwest 

of Sumatra, 

Indonesia 

01/01/2017 -8,96 110 10 4 Java, 

Indonesia 

... ... ... ... ... ... 

31/01/2023 -3,43 127,43 10 4,5 Seram, 

Indonesia 

31/01/2023 3,89 128,47 84 4,8 North of 

Halmahera, 

Indonesia 

2.2 Data Preprocessing 

Data preprocessing is the second step, which modifies 

the overall data format to make the data usable. The data 

cleaning, data selection, and data standardization steps 

make up this stage. Variable standardization is 

necessary because grouping and forecasting techniques 

may be disproportionately impacted by a variable 

having a much wider range than other variables. In 

order to guarantee balanced contributions in clustering 

and prediction models, all variables should be scaled 

uniformly [19]. 

Using ideas like mean and standard deviation, this 

method takes the unstructured data and scales, 

transforms, and organizes it before producing the 

normalized values or range of data. This process is 

known as Z-score Normalization [20]. Equation 1 is 

used to carry out this standardization process. 

 𝑧 =  
𝑥−𝜇

𝜎
                                                           (1) 

The outcomes of the data standardization procedure for 

the chosen attributes are shown in Table 2. 

Table  2. Earthquake Data in Indonesia 

Date Lat Lon Depth Mag Location 

01/01/2017 -0,67 -1,63 -0,62 -0,99 Southwest 

of Sumatra, 

Indonesia 

01/01/2017 -1,31 -1,07 -0,62 -1,25 Java, 

Indonesia 

... ... ... ... ... ... 

31/01/2023 -0,12 0,511 -0,62 -0,99 Seram, 

Indonesia 

31/01/2023 1,45 0,60 0,06 0,25 North of 

Halmahera,

Indonesia 

2.3. Algorithms for Clustering 

Using K-Medoids, K-Means, DBSCAN, Fuzzy C-

Means, and K-AP clustering, the third stage involves 

cluster formation.  

The K-Medoids algorithm is used to locate medoids in 

a cluster. The research steps for applying the K-
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Medoids clustering method are as follows [18]: Choose 

k out of n data points at random to be the medoids; 

Connect every data point with the nearest medoid; 

calculate the total cost of the configuration, which is the 

average dissimilarity of o to all the data points 

associated with m, swap m and o for each medoid m and 

each data point o associated with m. Choose the 

configuration medoid that has the lowest cost; Continue 

steps 2 and 3 until the medoids remain unchanged. 

One of the easiest algorithms to comprehend is K-

means [24]. The research steps for utilizing K-means in 

optimization are as follows[25]: Choose k out of n data 

points at random to be the starting centroids; Assign 

each piece of data to the cluster whose centroid is 

closest; Determine the centroid and average of the data 

in each cluster anew; Continue steps 2-3 until either a 

stopping criterion is met or the centroids do not change. 

DBSCAN is an algorithm that belongs to the class of 

density-based clustering, which is the process of 

creating clusters according to the degree of density 

between objects in the dataset in terms of proximity or 

distance. The DBSCAN algorithm has several 

advantages over other clustering algorithms, such as its 

ability to detect outliers/noise [26].  Additionally, 

DBSCAN can identify clusters of arbitrary shapes and 

does not require a number of clusters for 

initialization.[27] Here is a thorough step-by-step 

breakdown of the DBSCAN clustering method [26], 

[28], [29]: Determine every point that is within the 

current point's eps distance; Form a cluster if 

min_samples or more points are found within the eps 

distance. If not, label the point as irrelevant; Repeat 

steps 2 and 3 for each neighboring point. Include it in 

the cluster if it is dense; Repeat the procedure for each 

of the dataset's unexplored points. Once every point has 

been visited and classified as core, border, or noise, the 

algorithm comes to an end. 

A clustering technique called fuzzy C-Means enables a 

single data point to be a part of several clusters with 

different levels of membership. When compared to hard 

clustering techniques, fuzzy C-Means yield a more 

nuanced clustering result. When the boundaries 

between clusters are unclear, it is especially helpful 

[30], [31]. The following steps can be used to 

summarize the FCM algorithm: Set up k cluster centers 

at random; Assign every piece of data, with varying 

membership levels, to every cluster; Each cluster center 

should be updated using the weighted average of all 

earthquakes, with the membership degrees serving as 

the weights; Until the cluster centers stabilize or a 

stopping criterion is satisfied, repeat steps 2-3. 

The Affinity Propagation (AP) algorithm is modified by 

KAP to find the ideal number of sample sets. [32] The 

following steps can be used to describe the K-Affinity 

Propagation algorithm [4]: Start the similarity matrix 

with negative squared differences in the attributes 

(depth, magnitude, etc.) of the earthquakes; Refresh 

availability and responsibility matrices with an iterative 

set of "message-passing" rules; Determine the 

exemplars, or cluster centers, by adding the matrices for 

availability and responsibility; Assign the nearest 

exemplar to earthquakes; Continue steps 2-4 until a 

stopping criterion is satisfied or the exemplars stabilize. 

2.4 Clustering Algorithm Evaluation  

The assessment of clustering algorithms has 

significance in assessing their effectiveness in 

partitioning data into coherent clusters. In this research, 

various evaluation metrics will be presented to measure 

the performance of clustering algorithms including: 

The Silhouette Score serves as an intrinsic evaluation 

metric designed to measure the degree of similarity 

between data points and their respective clusters in 

relation to alternative clusters. The Silhouette Score has 

a value range of -1 to 1. The quality of data clustering 

increases the closer the silhouette coefficient value is to 

1. Conversely, the worse the clustering of data in a 

cluster, the closer the silhouette score value is to -1. [33] 

Equation 2 is used to determine the Silhouette score: 

𝑠 =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
                  (2) 

The evaluation of Cluster Purity serves as a metric 

external to the clustering algorithm, employed for 

assessing the level of prevalence demonstrated by the 

predominant class within a specific cluster. The range 

of Cluster Purity values spans from 0 to 1, with a score 

of 1 denoting flawless clustering. The calculation of the 

Cluster Purity value is achievable by utilizing the 

subsequent formula in Equation 3. 

𝑃𝑢𝑟𝑖𝑡𝑦 =
1

𝑁
∑ 𝑚𝑎𝑥𝑗|𝐶𝑘 ∩ 𝐿𝑗|𝑘                        (3) 

The Silhouette Score is utilized for the purpose of 

optimizing clustering hyperparameters and assessing 

the effectiveness of clustering algorithms. Through the 

incorporation of various clustering validity metrics like 

the Silhouette Coefficient and Cluster Purity can 

effectively evaluate and improve clustering results, 

thereby achieving more accurate and meaningful 

insights from the data. 

The ultimate phase involves the visual representation 

and analysis of the top cluster outcomes. 

3. Results and Discussions 

We used the k-medoids technique to classify the data in 

our research of 13,860 earthquake cases from Indonesia 

into groups of two to ten clusters. We identified the 

clusters and their centers, and then calculated the 

Euclidean Distance between each center and the closest 

non-centroid earthquake data point. The silhouette 

method was employed in our study to determine the 

optimal number of clusters. Better clustering quality is 

indicated by a higher silhouette value. Figure 2 shows 

how our findings are represented visually: 
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Figure 2. K-Medoids silhouette average graph 

The silhouette value noticeably decreases to somewhat 

less than 0.25 when we use the k-medoids approach, as 

shown in Figure 2, with k assigned at 10. Conversely, 

when k is set to 6, we observe a significant rise, with the 

value rising over 0.31. Table 3 provides a detailed 

summary of the silhouette results obtained using the k-

medoids approach on the full dataset. 

Table  3. K-Medoids for Silhouette Score 

No Number of Clusters Silhouette Score  

1 2 0.274307 

2 3 0.310028 

3 4 0.284735 

4 5 0.307621 

5 6 0.315820 

6 7 0.276869 

7 8 0.270761 

8 9 0.256713 

9 10 0.242656 

The maximum silhouette value, with k=6, is 0.315820, 

according to Table 3. 

Table 4 displays the K-Means cluster results. Table 4 

demonstrates that, with a silhouette value of 0.324548, 

six clusters is the ideal amount for K-Means. 

Table  4. Shilhoutte Score Using K-Means 

No Number of Clusters Silhouette Score  

1 2 0.273463 

2 3 0.321254 

3 4 0.308797 

4 5  0.312178 

5 6 0.324548 

6 7 0.297986 

7 8 0.313608 

8 9 0.315864 

9 10 0.319170 

The number of clusters from the DBSCAN clustering 

using various Eps and MinPts settings is shown in Table 

5. The present study employs a MinPts interval of 3 to 

6 and an Eps value of 0.7 to 0.9.  

Table 5 shows that, with two clusters produced and 29 

noise, the maximum silhouette score is 0.563362, or at 

MinPts=4 and Eps=0.9. The items in the dataset appear 

to be quite strongly grouped based on these results; that 

is, they have low intra-cluster distances and high inter-

cluster distances (the distance between an object and 

other objects in the same cluster). This shows that 

although each cluster member has a very high density 

with other items in the same cluster, each cluster is 

relatively isolated from the others [26]. 

Table 5. Silhouette Score Calculated with DBSCAN 

No Eps MinPts 
Shilhoutte 

Score 

Number 

of 

Clusters 

Noise 

1 0.7 3 0.345012 5 48 

2 0.7 4 0.469739 4 63 

3 0.7 5 0.256496 2 81 

4 0.7 6 0.533721 1 93 

5 0.8 3 0.540739 2 33 

6 0.8 4 0.540311 3 36 

7 0.8 5 0.551297 2 44 

8 0.8 6 0.550882 2 53 

9 0.9 3 0.541971 2 21 

10 0.9 4 0.563362 2 29 

11 0.9 5 0.560521 2 31 

12 0.9 6 0.553540 3 34 

3.4 Fuzzy C-Means Cluster Analysis 

Table 6 illustrates that the ideal number of clusters 

when utilizing Fuzzy C-Means is 5, with a Shilhoutte 

Score of 0.297185.  

Table  6. Fuzzy C-Means-Based Shilhoutte Score 

No Number of Clusters Silhouette Score  

1 2 0.253232 

2 3 0.296397 

3 4 0.276139 

4 5 0.297185 

5 6 0.269957 

6 7 0.268747 

7 8 0.288997 

8 9 0.290241 

9 10 0.276212 

The Shilhoutte score and number of clusters using the 

K-Affinity Propagation technique are displayed in 

Figure 3. With 196 clusters, the optimal Shilhoutte 

value was 0.2550. 
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Figure 3. Silhouette average graph from K-AP 

To find a better technique for clustering earthquake data 

in Indonesia from January 2017 to January 2023, the K-

Medoids, K-Means, DBSCAN, Fuzzy C Means, and K-

Affinity Propagation algorithms were used to analyze 

the data. The results were then compared. The optimal 

silhouette score is calculated by comparing the cluster 

results to decide which cluster is the best.[34] Figure 4 

displays a visualization plot of the average silhouette 

score for every cluster created using the five techniques. 

The plot of the average silhouette score for each cluster 

in each of the five algorithms is shown to be negative in 

Figure 4. This suggests the data has been placed in the 

incorrect cluster.[35] DBSCAN and K Means, two of 

the five algorithms, have the best Shilhoutte scores 

when compared to the other techniques, at 0.563362 and 

0.324548, respectively. This suggests that there are 

strong connections between the objects in the cluster. 

Nevertheless, if the silhouette score in any of the first 

three clusters is negative, it means that the data belongs 

to the incorrect cluster. Nevertheless, negative 

silhouette scores are found in DBSCAN cluster one, 

while negative silhouette coefficients are found in K-

Means algorithm clusters one, four, and six. This 

signifies that data has entered the wrong cluster. 

Based on the results, the silhouette coefficient values 

obtained by the two algorithms show quite considerable 

disparities. If viewed from the average silhouette 

coefficient value of the two algorithms, the DBSCAN 

algorithm is a better strategy for clustering earthquake 

data. However, looking at the silhouette coefficient plot 

of the two algorithms, both techniques exhibit negative 

silhouette widths. This indicates a mistake in the 

clustering procedure. The error value in the silhouette 

width of the K-Means algorithm is less than the 

DBSCAN algorithm. Therefore, the K-Means approach 

was determined as a better technique for grouping 

earthquake data in Indonesia from January 2017 to 

January 2023. 

Moreover, in order to assess the efficacy of the data 

clustering generated by the five clustering algorithms, 

cluster purity is employed as a metric to gauge the 

degree to which items grouped within a particular 

cluster share identical labels or classes, particularly in 

the context of clustering seismic regions in Indonesia. 

This evaluation is conducted using the BMKG 

catalogue to quantify the cluster purity[1], The number 

of clustering of earthquake areas in Indonesia based on 

Depth and Magnitude consists of 9 clusters. Table 7 

shows the validation test with silhouette score and 

cluster purity. 

Table  7. Validation Test 

Cluster 

Methods 

Number of 

Clusters 

Silhouette 

Score  

Cluster  

Purity 

K-Medoids 6 0.315820 0.718975 

K-Means 6 0.324548 0.736580 

DBSCAN 2 0.563362 0.567965 

Fuzzy C-Means 5 0.297185 0.691341 

K-AP 196 0.2550 0.931313 

 

From Table 7 shows that K-Medoids method produced 

6 clusters with a moderate Silhouette Score of 

0.315820, indicating that the clusters are reasonably 

compact and well-separated. The Cluster Purity of 

0.718975 suggests that approximately 72% of the points 

within each cluster belong to the dominant class. 

Similar to K-Medoids, K-Means also produced 6 

clusters but with a slightly higher Silhouette Score of 

0.324548, indicating better-defined clusters. The 

Cluster Purity of 0.736580 is also higher, indicating that 

around 74% of the points within each cluster belong to 

the dominant class.  

Fuzzy C-Means method produced 5 clusters with the 

lowest Silhouette Score of 0.297185 among the non- 

Affinity Propagation methods, indicating less defined 

clusters. The Cluster Purity of 0.691341 indicates that 

approximately 69% of the points within each cluster 

belong to the dominant class. K-Affinity Propagation 

produced a very large number of clusters (196) with the 

lowest Silhouette Score of 0.2550, indicating poorly 

defined clusters. However, it has the highest Cluster 

Purity of 0.931313, suggesting that the clusters formed 

are very pure, with about 93% of the points within each 

cluster belonging to the dominant class. This result 

indicates that while clusters are highly pure, the large 

number of clusters might indicate overfitting. 
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Figure 4. Average silhouette scores for K-Means, K-Medoids, DBSCAN, Fuzzy C Means, and K-AP are plotted in a visualization 

While DBSCAN exhibits a lower Cluster Purity, its 

elevated Silhouette Score and capacity to manage noise 

render it a robust contender for clustering seismic data 

in Indonesia. Nevertheless, the negative Silhouette 

values depicted in Figure 4 signify substandard 

clustering efficacy and the presence of overlapping 

clusters. Considering these factors, K-Means emerges 

as the most appropriate clustering technique for seismic 

data in Indonesia due to its ability to strike a favorable 

equilibrium between Silhouette Score (0.324548) and 

Cluster Purity (0.736580). This results in well-defined 

and easily interpretable clusters that demonstrate a 

certain level of homogeneity, thus proving to be well-

suited for practical applications in the analysis of 

seismic events. 

After finding that the K-Means technique is a better 

approach for grouping earthquake data in Indonesia, the 

following step is to describe the earthquake data from 

the clustering results. 

From Table 8, it is known that earthquakes included in 

clusters 2 to 5 are shallow earthquakes with less than 70 

kilometers, with typical damage being light and 

moderate in class. In this cluster, earthquakes are 

regularly felt but only cause small damage including 

damage the building and other structures.[35] 

Meanwhile, the earthquakes contained in clusters 1 is 

intermediate where its depth between 70 km up to 300 

km, and cluster 6 is deep earthquakes with a depth of 

more than 300 kilometers and minor up to strong 

damages. In this cluster, the earthquake caused modest 
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damage to buildings and other structures, up to serious 

damage. 

An image of mapping earthquake zones in Indonesia 

based on K-Means clustering algorithm illustrated in 

Figure 5. 

Table  8. Descriptive Statistic for The Cluster Result of K-Means 

Cluster Variabel Statictic Cluster Members 

Mean Median Min Max  

1 Latitude -6.7273 -6.89 -10.49 1.28 2164 

 Longitude 128.7728 130 107.14 140.76  

 Depth 152.17 157.00 10 313  

 Magnitude 4.51 4.50 4 5.4  

2 Latitude -0.2066 -0.04 -10.86 6 1682 

 Longitude 126.8654 127 96.05 140.97  

 Depth 49.59 34.00 5 352  

 Magnitude 5.16 5.00 4.8 7.5  

3 Latitude -1.0336 -0.77 -9.27 5.99 1633 

 Longitude 99.4685 100 94.7 113.53  

 Depth 42.00 24.00 5 266  

 Magnitude 4.51 4.50 4 5.7  

4 Latitude -8.6599 -8.68 -11 -3.5 2624 

 Longitude 114.5574 116 101.25 130.42  

 Depth 28.91 12.00 5 233  

 Magnitude 4.40 4.30 4 5.3  

5 Latitude 0.3792 0,11 -6,77 6 5125 

 Longitude 127,7926 127 115,61 140,92  

 Depth 42,93 14,00 5 280  

 Magnitude 4,32 4,30 4 4,7  

6 Latitude -3,6876 -6,18 -8,1 5,93 632 

 Longitude 123,6913 125 96,93 129,99  

 Depth 451,62 442,00 265 700  

 Magnitude 4,53 4,50 4 7,2  

 

 

Figure 5. Results of Mapping K-Means Clusters with k=6

From the cluster results using the K-Means algorithm, 

it was revealed that cluster 1 had an average magnitude 

of 4.51 M and an average depth of 152,17 km with 2164 

earthquake occurrences occurring in 22 regions of 

Indonesia, including the Arafura Sea, Aru Islands 

Region, Bali Region, and its environs. This cluster, on 

average, has an intermediate earthquake depth (70-300 

km). Cluster 2 has an average magnitude of 5.16 and an 

average depth of 49.59, with the most earthquakes 

occurring at 1682 in 26 regions of Indonesia, including 

the Aru Islands, Banda Sea, Kalimantan, Buru, and 

adjacent areas. This cluster is shallow earthquakes with 

mild seismic consequences.   

Cluster 3 has average magnitude of 4.51, with an 

average depth of 42.00 and an earthquake occurrence 

rate of 1633 across 46 regions of Indonesia. 

Earthquakes in this cluster caused modest damage. 

Cluster 4 has multiple earthquake events, 2624 with an 

average magnitude of 4.40 and an average depth of 

28.91. This cluster is classified a shallow earthquake 

because it has an average depth (<60 kilometers). There 

are 21 Indonesian regions in cluster 4, including the 
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Bali Region, Bali Sea, Banda Sea, Flores Region, 

Flores Sea, and neighboring territories.  

Meanwhile, cluster 5 has an average magnitude of 4.32 

and an average depth of 42.93, with the number of 

earthquakes happening being 5125 across 9 regions of 

Indonesia, including Kalimantan, Java Sea, Java, North 

Sumatra, and adjacent areas. The last cluster is cluster 

6, which had a minor earthquake incidence compared 

to other clusters, namely 632 earthquakes with an 

average magnitude of 4.53 and an average depth of 

451.62 in 9 regions of Indonesia, namely the Bali Sea, 

Banda Sea, Sulawesi Sea, Flores Sea, and adjacent 

areas. From the results of the clustering mapping, it can 

be concluded that there are several areas that need to 

carry mitigation steps because of the considerable 

potential for disasters that will occur, such as areas 

included in clusters 2 where these areas have an average 

of earthquake magnitude 5.16, namely moderate in 

class and also has average of shallow earthquake.  

The implementation of the K-Means clustering 

algorithm on seismic activity data in Indonesia 

spanning from January 2017 to January 2023 resulted 

in the establishment of six discrete clusters. Each 

cluster was analyzed based on key seismic attributes 

such as latitude, longitude, depth, and magnitude. The 

visualization of these clusters, as presented in Table 8, 

offers insights into the geographical and seismological 

patterns across the Indonesian archipelago. Previous 

research results k=3 for earthquake clustering in 

Indonesia using K-Means [2], [36], but the data used 

was only up to 2019. This research has included 

earthquake data until 2023 so the data is the latest ones.  

The K-Means algorithm identified that Cluster 2, which 

includes 26 regions of Indonesia such as the Aru 

Islands and Banda Sea, has the highest average 

earthquake magnitude (5.16) and shallow depth (49.59 

km). This suggests a higher likelihood of seismic 

events causing moderate damage in these regions, 

necessitating targeted disaster preparedness and 

mitigation strategies. Clusters 1 and 6, with deeper 

earthquakes (average depths of 152.17 km and 451.62 

km, respectively), predominantly encompass regions 

like the Arafura Sea and Flores Sea. These clusters 

signify seismic phenomena that are less probable to 

inflict surface harm; nonetheless, they present 

considerable hazards owing to the possibility of 

aftershocks and ancillary consequences such as 

tsunamis. 

The K-Means algorithm, which generated six clusters, 

achieved the highest Silhouette Score of 0.324548 and 

a Cluster Purity of 0.736580. This indicates that the 

clusters formed are both well-defined and exhibit a high 

degree of homogeneity. In comparison to earlier 

studies, which often relied solely on Silhouette Score 

or other single metrics, our dual-metric approach offers 

a more nuanced evaluation. For example, previous 

research by [1] reported a Silhouette Score of 

0.4574067 using the K-Medoids algorithm, but it did 

not incorporate Cluster Purity, which is crucial for 

understanding the actual grouping accuracy in a 

seismic context. In contrast, the inclusion of Cluster 

Purity in our analysis reveals the extent to which 

earthquakes within the same cluster share similar 

characteristics, providing deeper insights into the 

reliability of the clustering. 

Moreover, the findings show that the K-Means 

algorithm outperforms not only K-Medoids but also 

other clustering methods such as DBSCAN, Fuzzy C-

Means, and K-Affinity Propagation (K-AP). 

DBSCAN, while effective in handling noise, exhibited 

a negative Silhouette Score, indicating poor clustering 

quality. Fuzzy C-Means and K-AP were less effective, 

with K-AP producing an impractically high number of 

clusters (196), leading to a lower overall effectiveness 

despite its high Cluster Purity. This demonstrates that 

while DBSCAN and K-AP have their strengths in 

specific contexts, K-Means provides a more balanced 

and practical approach for seismic data clustering. 

The novelty of this study lies in its comprehensive 

comparative analysis, which is the first of its kind to 

apply both Silhouette Score and Cluster Purity metrics 

to earthquake data clustering in Indonesia. In this 

research we compares five methods that have never 

been carried out by previous research, where at most 

they only compare three methods [15], [18]. This dual 

approach not only confirms the internal coherence of 

the clusters but also verifies their external validity by 

ensuring that the clusters reflect actual seismic 

groupings. This is a significant advancement over 

previous studies, which often did not consider how well 

the clusters correspond to real-world seismic 

phenomena. 

4. Conclusions 

Earthquake data in Indonesia from January 2017 to 

January 2023 has been effectively grouped using the K-

Medoids, K-Means, DBSCAN, Fuzzy C Means and K-

Affinity Propagation algorithms. From the analysis 

results, the K-Medoids and K-Means algorithms 

formed 6 clusters using the silhouette approach. In 

comparison, the DBSCAN algorithm succeeded in 

generating 2 clusters, Fuzzy C-Means succeeded in 

generating 5 clusters, and K-Affinity succeeded in 

generating 196 clusters. Based on the silhouette scores 

and cluster purity acquired by the five algorithms, K-

Means is the most appropriate clustering algorithm for 

earthquake data in Indonesia. It provides a balanced 

performance with well-defined, homogeneous clusters 

that are easy to interpret and practical for real-world 

applications in seismic activity analysis. Future 

research should investigate adding another evaluation 

model to show a more ideal comparison of clustering 

findings. 
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