
 Received: 03-11-2024 | Accepted: 24-04-2024 | Published Online: 05-06-2024

368

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 3 (2024) 368 - 376 e-ISSN: 2580-0760

Implementing Continuous Integration and Deployment Strategy:

Cloversy.id RESTful API Development

Eric Prima Wijaya1*, Sandy Kosasi2, David3
1,3Teknik Informatika, STMIK Pontianak

2Sistem Informasi, STMIK Pontianak
1ericrimaw@stmikpontianak.ac.id, 2sandykosasi@stmikpontianak.ac.id, 3david@stmikpontianak.ac.id

Abstract

The software development cycle involves testing and deployment stages that can be laborious and time-consuming, especially

in collaborative projects that involve several developers. Implementing Continuous Integration (CI) and Continuous Delivery

(CD) offers a solution to streamline this process. This study presents a case study of the Cloversy.id RESTful API project,

highlighting challenges encountered during development and the implementation of a new system using GitHub Actions as the

DevOps tool. The research resulted in the adoption of a new system, replacing the conventional practices previously employed

by the Cloversy.id development team. Employing flowcharts, the study meticulously mapped out the development flow,

pinpointing bottlenecks and areas for optimization within the cycle. Notably, the implementation of a CI/CD pipeline resulted

in a notable improvement, with a 35% increase in speed for CI and a remarkable 39% enhancement for CD. GitHub Actions

played a pivotal role in automating critical tasks, reducing reliance on manual intervention, and minimizing dependency on

team leaders. The platform's features, including detailed logs and email notifications, empowered team leaders and developers

alike to take informed actions swiftly. Furthermore, the study highlights the novelty of integrating CI/CD by considering factors

such as branching strategy, code review practices, testing methodologies, deployment methods, and infrastructure.

Keywords: automation; DevOps; continuous integration; continuous delivery

How to Cite: Eric Prima Wijaya, Sandy Kosasi, and David, “Implementing Continuous Integration and Deployment Strategy:

Cloversy.id RESTful API Development”, J. RESTI (Rekayasa Sist. Teknol. Inf.), vol. 8, no. 3, pp. 368 - 376, Jun. 2024.

DOI: https://doi.org/10.29207/resti.v8i3.5527

1. Introduction

Software development in the entire cycle can be divided

into five primary stages to produce high-quality and

low-cost software: planning, creating, developing,

testing, and deploying [1]. Testing and deployment are

the last 2 stages that have an essential role right before

the application goes to market. Software testing is a

critical aspect of development to ensure software

modules work as intended, which helps minimize the

chance of failure reaching production or client level [2].

Meanwhile, the deployment process continues the

testing stage by launching the application to the staging

environment to satisfy User Acceptance Testing (UAT)

before moving on to production deployment [3].

Testing and deployment stages could be laborious,

manual, and time-consuming if several developers are

working on the same project; challenges often occur

when merging multiple development branches to the

main branch and the process of deployment stage

preparation [4]. One practical solution to overcome

those challenges is to implement DevOps with

continuous integration (CI) and continuous delivery

(CD) flow [5]. CI is a development practice that

requires application developers to integrate, such as

merging their code changes, into a collaborative

repository version control system such as GitHub.

Meanwhile, CD is the incremental delivery of software

in a production environment, or it could be said that CD

is the automation of changes to software so that it can

be immediately deployed to a system that can be

reached by target users [6]. Simultaneously CI/CD

means the process of automating recurring tasks related

to deployment and testing in the application

development process, either on cloud or on-premise

systems environment [7].

DevOps can significantly improve time to deployment

and provide a much smoother experience for developers

to maintain code integrity at all stages of development,

https://doi.org/10.29207/resti.v8i3.5527

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 369

which results in much more efficient outcomes [8].

Implementation of CI/CD is also proven to significantly

improve repository commit velocity by 141.19% [9].

Commit velocity directly affects engineering

productivity level to perform smoother and more

efficient development cycle.

There is a wide range of CI/CD reliable tools to be used

by developers to design and perform CI/CD flow, such

as Github Actions, Jenkins, CircleCI, GitLab CI/CD,

Azure DevOps, and Travis, which come with its own

set of advantages and disadvantages over the

implementation [10]–[12]. One of the popular tools

used is Github Actions due to its direct integration with

GitHub as the most significant social coding platform,

providing a collaborative repository ecosystem for over

94 million developers in 2022 [13]. Developers prefer

GitHub Actions due to its easy-to-use and flexible

behavior. Additionally, GitHub Actions offers more

than 12,000 reusable components on its marketplace

which is 4 times more than CircleCI and 6 times higher

than Jenkins [14]. GitHub has excellent support,

especially if the application development process

involves Git as version control, and GitHub remote

repository place to host the software code in the

development process.

Most of the time, the process of integrating CI/CD into

existing projects is time-consuming caused by the

CI/CD tools implementation and architecture, which

sometimes are overcomplicated. For example,

integration using Jenkins requires developers to learn

about Master/Slave Architecture which is implemented

on the Jenkins system [15]. Besides that, migration

from the conventional approach to CI/CD in software

development could be challenging and sometimes

require a dedicated DevOps engineer with sufficient

knowledge. That complexity is often formed by the

ecosystem of the DevOps field and additional tools for

specific cloud platforms or software architecture [16],

[17]. Creating a complex DevOps ecosystem will

require much effort and time, especially in terms of

selecting suitable tools, flow planning, monitoring

systems, and compatibility with company requirements.

Drawing on numerous past research studies, various use

cases and approaches have been employed to achieve

successful integration of CI/CD, whether on existing

projects or those in their initial stages. Raut et al.

implemented a CI/CD pipeline using Jenkins on AWS

Cloud architecture alongside additional tools such as

Docker, SonarCube, and Trivy [18]. Their research led

to the development of a new workflow, triggered by

GitHub commits, which initiates Jenkins to run Maven

tests and deploy using a shell script and DockerHub.

Similarly, Kavya and Smitha conducted research in an

AWS environment, employing Jenkins, Docker, and

Kubernetes to create a single-container application

integrated with a CI/CD flow [19]. Widiyanto et al.

presented a slightly different CI/CD for non-AWS

server environments by also implementing integration

tests and using Gitea instead of GitHub [20].

Alam et al. implemented a CI/CD flow for smaller

teams using Jenkins combined with Nexus Repository,

Ansible, and Nagios on an AWS server environment

[21]. Meanwhile, Railic and Savid's research covered

CI/CD implementation in a microservices architecture,

resulting in improved efficiency and structure across

various software development stages [22]. Reflecting

on these studies, the majority opted to use Jenkins as the

main CI/CD tool, combined with Docker and various

additional tools, to implement CI/CD in the AWS cloud

environment. While much of the research focused on

implementation details of selected technologies, certain

edge cases remained unexplored, such as the influence

of repository branching strategy, code review practices,

team roles, and the actual benefits of CI/CD integration

in the development cycle.

The goal of this research is to showcase a

comprehensive exploration of the CI/CD

implementation process and its profound impact on

established software development methodologies. To

achieve this, the Cloversy.id RESTful API project will

be utilized as a real-world case study. This research

emphasizes the unexplored edge cases particularly

branching strategy utilization, the impact of CI/CD on

developer responsibility, and its correlation with code

review practices, testing processes, and notifications or

alert systems. To conclude the research results, a series

of tests will be conducted to assess the efficiency

difference between development processes with and

without CI/CD integration over time. Additionally, an

analysis of additional influencing factors of CI/CD will

be carried out to support the final research findings.

2. Research Methods

Adapting to the research objective and the

implementation of the current system, the phases in this

research were organized and divided into 4 primary

stages to keep this research on track which is shown in

Figure 1.

Figure 1. Research Phases

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 370

2.1 Current System Flow Overview

To provide an overview of the in-use branching strategy

and its relationship with the development team and

provide a general view regarding the system

implementation, the current development system flow

used by the Cloversy.id team RESTful API is shown

below in Figure 2.

Figure 2. Current Branching Strategy Flow

Figure 2 illustrates the comprehensive delivery process

of the Cloversy.id RESTful API application. The

development team employs a branching strategy

consisting of three types: Firstly, individual developer

branches follow the naming convention

"dev/<developer_name>", assigned to each developer

to monitor individual progress and changes. Secondly,

the "dev branch" houses the staging app codebase,

while the "prod branch" stores the final production

application. Initially, developers make changes to the

codebase and commit them locally using Git for version

control.

Once a feature is completed, including passing unit and

integration testing, developers must push their local

changes to the remote repository hosting, which in this

case is GitHub. Changes are pushed to the individual

developer remote branch "dev/<developer_name>",

followed by creating a pull request to the development

branch. Every pull request must be well-documented,

starting with a descriptive title that indicates the

intention of the desired change. Additionally, the pull

request should include a detailed description listing all

code modifications made by the application developer.

The standard for writing pull requests used by the

Cloversy.id developer team is straightforward: it

involves specifying the type of pull request intent, such

as Hotfix, Update, or New Feature, followed by

outlining the major changes made to represent this pull

request.

Afterward, the pull request will be reviewed by the team

leader by running unit tests and integration tests locally

to ensure code changes meet the company code standard

and fulfill the module's requirements. It's worth noting

that the tests applied to this project have been

configured to be executed with a single command,

facilitating ease of use and efficiency in the testing

process.

After the pull request has been reviewed, it is merged

into the development branch. Subsequently, the team

leader manually deploys the code by accessing the

staging Virtual Private Server (VPS) using an SSH

connection. The staging app hosted on the staging

server is then utilized for stakeholders to conduct testing

and undergo User Acceptance Testing (UAT). Once all

features on the staging app have been thoroughly tested,

passed all tests, and confirmed to be valid, the developer

creates another pull request to merge the code from the

development branch to the production branch.

Finally, the team leader performs another manual

deployment by accessing the VPS with an SSH

connection, this time utilizing the production branch

and targeting the production server. As a result, at the

conclusion of the development cycle, the changes are

effectively applied to live applications accessible by

end-users. The current system flow architecture

employed by the Cloversy.id team for internal app

development is illustrated in Figure 3.

Figure 3. Current System Architecture Flow

Figure 3 shows the current system architecture flow of

Cloversy.id RESTful API. There are 4 actors involved,

namely developers, team leaders, stakeholders, and end

users. Git is used by developers as version control

which is connected to the GitHub remote repository, the

team leader has the role of controlling which version of

the app to deploy and serve in either the staging server

or the production server. To manage all of the

application deployments, the team leader uses direct

SSH connection access to each server, and then the

applications on each server are managed using the PM2

process manager.

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 371

2.2 Current System Data Collection

The deployment time data for the application on the

current system is collected using time-tracking

software. The tracker is activated at the start of the

deployment process and deactivated once the

application is up and running on the server, signifying

the completion of the deployment process.

This dataset comprises 10 deployment trials overseen

by the developers. Time data, originally recorded in

various units by the time tracker application, has been

standardized into seconds. This dataset enables the

assessment of differences in the total deployment time,

serving as a baseline for comparison against post-

CI/CD implementation metrics.

2.3. Mapping Current System Flow Obstacles

Current development system flowchart of Cloversy.id

RESTful API is shown below in Figure 4.

Figure 4. Current Development System Flowchart

Figure 4 illustrates the flowchart of the current

development cycle, showcasing the sequential process

of implementing codebase changes and transformations

within the system. It delineates the stages starting from

developers making modifications to the codebase,

including developing new features or rectifying bugs,

followed by the team leader conducting code reviews

and tests, merging between branches, and ultimately

culminating in deployment. The flowchart highlights

several activities marked in red, indicating obstacles

commonly encountered in the development cycle.

Upon thorough examination of the flowchart, it

becomes apparent that several identified constraints

manifest as repetitive tasks, notably including pulling

codebase from a remote repository, conducting unit and

integration tests, accessing VPS, and executing the

building and deployment of applications onto their

respective servers. These recurring obstacles often

consume significant time and effort during the

development cycle.

However, these challenges present an opportunity for

improvement through the implementation of a CI/CD

pipeline. By automating critical processes such as

testing, code retrieval, and deployment, organizations

can streamline their development workflows, enhance

efficiency, and reduce manual intervention. Moreover,

CI/CD pipelines facilitate consistent and reliable

software delivery, mitigating the risk of human error

and accelerating time-to-market for new features and

updates.

2.4 New System Flow Planning and Design

The current development system flow used by the

Cloversy.id team for RESTful API is shown below in

Figure 5.

Figure 5. Current System Architecture Flow

Figure 5 shows the design of the new system

architecture flow, showcasing the integration of

additional tools, notably GitHub Actions, to orchestrate

CI/CD pipelines. In the illustration, GitHub Actions

assumes the responsibilities previously handled by the

team leader, encompassing tasks such as code retrieval,

testing, linting, server access, process manager

management, and application deployment.

During the CI/CD process, Github actions require full

control from the team leader to confirm the merging

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 372

branch after the code is confirmed to meet the code

review requirements. Apart from that, GitHub Actions

also provides feedback during the CI/CD process in the

form of emails and stack tracks on the GitHub Actions

page.

Figure 6. New Development System Flowchart Design (A)

Figure 6 shows a flowchart illustrating the design of a

new system that incorporates Continuous Integration

and Continuous Deployment (CI/CD) practices. This

part of the design, referred to as Part A of the

development flow, represents a notable shift in

responsibilities between the team lead and GitHub

Actions. In this reimagined system architecture, GitHub

Actions assumes a pivotal role, effectively replacing the

traditional tasks performed by the team lead.

Specifically, GitHub Actions takes charge of pulling

remote repositories from the development branch,

executing unit tests and integration tests, and generating

comprehensive feedback. This feedback is

disseminated via email to the team lead, ensuring timely

notification of test outcomes, while detailed task logs

are accessible within the GitHub Actions menu for

comprehensive review and analysis.

The integration of CI/CD brings about significant

advantages, particularly in streamlining development

workflows and enhancing efficiency. With GitHub

Actions handling the code retrieval and testing

processes, team leads are relieved of the burden of

manual tasks performed on local machines.

Consequently, they can allocate more time and

resources toward application development and strategic

decision-making, fostering greater productivity and

innovation within the development team. Figure 7

below shows the continuation of development flow part

A, namely development flow part B.

Figure 7 provides a detailed illustration of four

processes highlighted in green, these activities are

processes that were initially handled by the team leader

and in the design were taken over by GitHub Actions.

These processes cover critical tasks such as accessing

the staging and production servers via SSH

connections, retrieving code from both the development

and production branches, executing the application

build process, and orchestrating deployment using the

process manager.

Figure 7. New Development System Flowchart Design (B)

The new role assumed by the team leader in this design

is confirming the merge after the code quality has been

checked, and receiving and monitoring feedback from

the GitHub Actions pipeline. The new responsibilities

completely reduce the burden and amount of manual

work on team leaders to carry out iterative work in the

application development process, which can also reduce

the possibility of human error in the process.

For the record, current development systems and new

designs already implement the DSP model, which

divides the development environment into 3

development environments [23]. Namely, development

is used by developers to develop and test new features,

in this case, local machines. Then the staging

environment is used to carry out testing and UAT by

stakeholders before the application reaches the end

user, and finally, the production environment is used to

run and distribute the application to the end user after

passing through the previous two environments.

2.5 New System Flow Implementation

In CI/CD implementations using GitHub Actions,

developers must create workflows that can be used to

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 373

define workflow names, task sequences, runner types,

and event triggers [24]. The workflow will be run every

time a certain event is executed on a certain branch

according to the configuration with YAML as a data

serialization language. As a solution to the CI/CD

implementation of Cloversy.id's RESTFul API system

development, 4 workflows are created including 2

workflows for continuous integration and 2 workflows

for continuous delivery. Details of workflow usage can

be seen in Figure 8.

Figure 8. CI/CD GitHub Actions Workflow Implementation

In Figure 8, three types of development environment

stages are depicted, represented by processes with a

blue background. Each of these environments

corresponds to a type of branch created on GitHub

following the DSP model. Additionally, the image

showcases four GitHub Actions workflows, symbolized

by processes with a yellow background. Two types of

events trigger these workflows: pull requests and merge

actions.

Whenever a developer initiates a pull request with the

developer branch as the source and targets the

development branch, the "CI Development Workflow"

is activated. Subsequently, if the pull request is

approved and the merge action is executed, the "CD

Staging Workflow" is triggered. Similarly, when a pull

request targeting the production branch is created, the

"CI Staging Workflow" is activated, followed by the

"CD Production Workflow" once the pull request is

merged. Detailed information regarding the

implementation of the "CI Development Workflow"

workflow can be found below.

ci-dev-workflow.yml

name: CI Development Workflow

on:

 pull_request:

 branches:

 - dev

jobs:

 test:

 runs-on: ubuntu-latest

 strategy:

 matrix:

 node-version: [14.x]

 steps:

 - uses: actions/checkout@v2

 - name: Use Node.js ${{ matrix.node-version }}

 uses: actions/setup-node@v2

 with:

 node-version: ${{ matrix.node-version }}

 - name: lint and test

 run: |

 echo "$GOOGLE_CLOUD_JSON" > src/config/google-

cloud.json

 echo "$FIREBASE_ADMIN_JSON" > src/config/firebase-

admin.json

 npm install

 npx eslint .

 npm run test

 env:

 CI: true

 (More env variable…)

The code snippet above outlines the configuration for

the CI Development workflow. This configuration

specifies that the workflow will be triggered whenever

a pull request is initiated with the dev branch as the

target. GitHub Actions will then execute a sequence of

commands to install dependencies and run linters and

tests within the Node.js environment, utilizing the

specified environment variables and pre-configuration

settings. Similarly, the same configuration is utilized in

the CI Staging Workflow, with the only distinction

being the target branch, which is changed to "prod". For

further insight into the implementation details of the CD

Staging Workflow, please refer to the following section.

cd-prod-workflow.yml

name: CD Production Workflow

on:

 push:

 branches:

 - prod

jobs:

 deploy:

 runs-on: ubuntu-20.04

 steps:

 - name: SSH and deploy app

 uses: appleboy/ssh-action@master

 with:

 host: ${{ secrets.SSH_HOST_PROD }}

 username: ${{ secrets.SSH_USERNAME }}

 password: ${{ secrets.SSH_PASSWORD }}

 port: ${{ secrets.SSH_PORT }}

 script: |

 cd cloversystore

 cd cloversy-store-api

 ${{ secrets.GH_PULL_SCRIPT }}

 npm install

 tsc

 pm2 restart cloversy-store-api

The code snippet provides insight into the CD Staging

workflow, which is triggered whenever alterations are

made to the prod branch, whether through direct pushes

as hotfixes or merge actions. This workflow is initiated

by establishing an SSH connection to the production

server using securely provided credentials.

Subsequently, it navigates to the project's working

directory, retrieves the latest code from the prod branch,

proceeds to install dependencies, performs compilation

and building processes, and finally, restarts the process

manager to effectively implement the recent changes.

The identical configuration is employed in the CD

Staging workflow, with the exception that the branch

configuration shifts from prod to dev, and the host

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 374

address transitions from the production server address

to the staging server address. All configurations are

encapsulated within files with the .yml extension and

are situated in the .github/workflows directory. GitHub

Actions automatically detects all workflows stored

within this directory.

3. Results and Discussions

To measure the influence that CI/CD implementation

has had on the development of RESTful APIs on

Cloversy.id, a series of trials were carried out to assess

the accumulated time required to pull and test the code

by the team leader (CI), and the time required to deploy

the code after declared production ready (CD). After

that, a certain accumulated time is compared with the

time required after CI/CD implementation. The results

of this series of tests are used as a basis for assessing the

impact of CI/CD implementation in terms of time

metrics. The results can be seen in Figure 9.

Figure 9. Continuous Integration Time Comparison

Figure 9 provides a comprehensive comparison of the

CI (Continuous Integration) process before and after its

implementation using GitHub Actions. The results,

based on 10 attempts, reveal significant improvements

in efficiency following the adoption of automation. On

average, the manual CI process, overseen by the team

leader, required 92 seconds to complete, while the

automated CI process using GitHub Actions reduced

the average time to just 59 seconds.

This comparison underscores the tangible benefits of CI

implementation with GitHub Actions, showcasing a

remarkable 35% reduction in time for tasks such as code

pulling, testing, and linting. By automating these

essential processes, GitHub Actions expedites the

development cycle, enabling faster iterations and

enhancing overall productivity. Moreover, Figure 10

offers a glimpse into the accumulated deployment

process time (CD) following the implementation of

CI/CD practices.

Figure 10 illustrates a comparison of the accumulated

time required for application deployment. During 10

trials, manual application deployment averaged 82

seconds, whereas application deployment with GitHub

Actions averaged 50 seconds. This demonstrates that

leveraging GitHub Actions for CD implementation

results in a 39% increase in deployment speed. In

addition to the time-based aspect, several supporting

factors are evaluated, including the list of workflow

execution results displayed in GitHub Actions, as

depicted in Figure 11.

Figure 10. Continuous Delivery Time Comparison

Figure 11. GitHub Actions Workflow History

Through the workflow history shown in Figure 11,

developers can effectively perform audits to check

whether the workflow is running according to the

requirements of the software development Each

workflow history item also displays useful information

such as the total time required for execution, workflow

execution status, target branch, pull request name and

description, and others that can be used to evaluate

workflow performance. Each workflow history item

also displays information that is useful for evaluating

workflow performance including logs that could help to

locate and trace errors through the execution stack.

CI/CD action logs are shown in Figure 12.

Figure 12 shows the execution logs of the CI/CD

workflow. If errors or warnings are found, logs can be

used as a tool to correct errors and prepare for the next

workflow execution. Apart from logs, there are also

email notifications sent by GitHub Actions which

provide an overview of the status of the workflow being

executed. An example of an email sent can be seen in

Figure 13.

0

30

60

90

120

1 2 3 4 5 6 7 8 9 10

T
im

e
(S

ec
o
n

d
s)

Attempt

Continuous Integration Accumulated Time

Manual GitHub Actions

0

30

60

90

120

1 2 3 4 5 6 7 8 9 10

T
im

e
(S

ec
o
n

d
s)

Attempt

Continuous Delivery Accumulated Time

Manual GitHub Actions

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 375

Figure 12. GitHub Actions Execution Logs

Figure 13. GitHub Actions Notification Email

The email sent as in Figure 13 is beneficial as a

communication tool in the application development

process. For example, an email notification reminds the

team leader that a new pull request has been created and

is waiting for confirmation for merging, or other cases

where an email notification notifies that for some

reason, the deployment process failed, so developers

can immediately follow up regarding the issue.

4. Conclusions

In conclusion, the successful implementation of the

CI/CD flow in Cloversy.id's RESTful API development

cycle has validated its efficacy in streamlining the

software delivery process. This new system leverages

CI/CD to automate numerous repetitive tasks

previously managed directly by team leaders. The

adoption of automated CI/CD flows with GitHub

Actions has demonstrated a substantial improvement,

achieving a 35% increase in speed for continuous

integration and a 39% enhancement for continuous

delivery compared to traditional manual methods led by

team leaders.

Moreover, the CI/CD implementation addresses various

facets of the current development process, including

integration with branching strategies, testing

procedures, and code reviews, thus bridging critical

gaps in the existing literature. Despite the automation,

team members continue to fulfill their respective roles

post-implementation of the CI/CD pipeline, ensuring

collaboration and accountability throughout the

development cycle. The adoption of CI/CD introduces

several advantageous features such as workflow

history, logs, and email notifications, all of which

contribute to improving the efficiency of the application

development cycle.

There is room for improvement that can be

implemented, such as using the conditional GitHub

Actions feature to handle exceptions to run fallback

tasks or forward notifications using integration with

third-party services. From a technical perspective,

improvements can be made to address more specific use

cases such as handling additional branches such as

hotfix branches, team structure mutation, infrastructure

transition, and others.

Acknowledgements

This research was carried out with the approval of the

owner and development team of Cloversy.id by

providing the necessary information to support

complete and assist researchers.

References

[1] L. Yuge and T. Badarch, “Research on Contemporary Software

Development Life Cycle Models,” Am. J. Comput. Sci.

Technol. Spec. Issue Adv. Comput. Sci. Futur. Technol., vol. 6,

no. 1, pp. 1–9, 2023, doi: 10.11648/j.ajcst.20230601.11.

[2] S. Kumar, “Reviewing Software Testing Models and

Optimization Techniques: An Analysis of Efficiency and

Advancement Needs,” J. Comput. Mech. Manag., vol. 2, no. 1,

2023, doi: 10.57159/gadl.jcmm.2.1.23041.

[3] N. Singh, “CI/CD Pipeline for Web Applications,” Int. J. Res.

Appl. Sci. Eng. Technol., vol. 11, no. 5, 2023, doi:

10.22214/ijraset.2023.52867.

[4] S. J. Malgund and Sowmyarani C N, “Automating

Deployments of The Latest Application Version Using CI-CD

Workflow,” Int. J. Eng. Appl. Sci. Technol., vol. 7, no. 5, pp.

99–103, 2022, doi:

https://doi.org/10.33564/ijeast.2022.v07i05.017.

[5] A. Mishra and Z. Otaiwi, “DevOps and software quality: A

systematic mapping,” Computer Science Review, vol. 38. 2020,

doi: 10.1016/j.cosrev.2020.100308.

[6] R. Parashar, “Path to Success with CICD Pipeline Delivery,”

Int. J. Res. Eng. Sci. Manag., vol. 4, no. 6, pp. 271–273, 2021.

[7] A. Alnafessah, A. U. Gias, R. Wang, L. Zhu, G. Casale, and A.

Filieri, “Quality-Aware DevOps Research: Where Do We

Stand?,” IEEE Access, vol. 9, pp. 44476–44489, 2021, doi:

10.1109/ACCESS.2021.3064867.

[8] S. Ferdian, T. Kandaga, A. Widjaja, H. Toba, R. Joshua, and J.

Narabel, “Continuous Integration and Continuous Delivery

Platform Development of Software Engineering and Software

Project Management in Higher Education,” J. Tek. Inform. dan

Sist. Inf., vol. 7, no. 1, 2021, doi: 10.28932/jutisi.v7i1.3254.

[9] J. Fairbanks, A. Tharigonda, and N. U. Eisty, “Analyzing the

Effects of CI/CD on Open Source Repositories in GitHub and

GitLab,” in 2023 IEEE/ACIS 21st International Conference on

Software Engineering Research, Management, and

Applications (SERA), 2022, pp. 176–181, doi:

10.1109/SERA57763.2023.10197778.

[10] E. Soares, G. Sizilio, J. Santos, D. A. da Costa, and U. Kulesza,

“The effects of continuous integration on software

development: a systematic literature review,” Empir. Softw.

Eng., vol. 27, no. 3, 2022, doi: 10.1007/s10664-021-10114-1.

[11] P. Rostami Mazrae, T. Mens, M. Golzadeh, and A. Decan, “On

the usage, co-usage and migration of CI/CD tools: A

qualitative analysis,” Empir. Softw. Eng., vol. 28, no. 2, 2023,

doi: 10.1007/s10664-022-10285-5.

[12] C. Singh, N. S. Gaba, M. Kaur, and B. Kaur, “Comparison of

different CI/CD Tools integrated with cloud platform,” 2019,

doi: 10.1109/CONFLUENCE.2019.8776985.

[13] GitHub, “Octoverse - The state of open source software,” 2022.

 Eric Prima Wijaya, Sandy Kosasi, David

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 376

https://octoverse.github.com/ (accessed Sep. 13, 2023).

[14] A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh, “On the

Use of GitHub Actions in Software Development

Repositories,” 2022, doi: 10.1109/ICSME55016.2022.00029.

[15] A. S.K, Amrathesh, and D. G. Raju M, “A review on

Continuous Integration, Delivery and Deployment using

Jenkins,” J. Univ. Shanghai Sci. Technol., vol. 23, no. 6, pp.

919–922, 2021, doi: https://doi.org/10.51201/jusst/21/05376.

[16] L. E. Lwakatare et al., “DevOps in practice: A multiple case

study of five companies,” Inf. Softw. Technol., vol. 114, 2019,

doi: 10.1016/j.infsof.2019.06.010.

[17] M. H. Tanzil, M. Sarker, G. Uddin, and A. Iqbal, “A mixed

method study of DevOps challenges,” Inf. Softw. Technol., vol.

161, 2023, doi: 10.1016/j.infsof.2023.107244.

[18] R. S. W. -, S. B. K. -, K. R. P. -, H. M. T. -, and R. M. R. -,

“Implementation of a Continuous Integration and Deployment

Pipeline for Containerized Applications in Amazon Web

Services Using Jenkins,” Int. J. Multidiscip. Res., vol. 5, no. 3,

2023, doi: 10.36948/ijfmr.2023.v05i03.3323.

[19] N. Kavya and P. Smitha, “Deploying and Setting up Ci/Cd

Pipeline for Web Development Project on AWS Using

Jenkins,” Int. J. Adv. Eng. Manag., vol. 4, no. 6, pp. 2325–

2332, 2022, doi: 10.35629/5252-040623252332.

[20] A. D. Widiyanto, B. Anindito, and M. N. Al Azam,

“Implementation of Docker and Continuous Integration /

Continuous Delivery for Management Information System

Development,” IJEEIT Int. J. Electr. Eng. Inf. Technol., vol. 3,

no. 2, 2020, doi: 10.29138/ijeeit.v3i2.1208.

[21] M. M. Alam, A. Arbaz, and S. H. Uddin, “Emerging

Continuous Integration Continuous Delivery (CI/CD) For

Small Teams,” Math. Stat. Eng. Appl., vol. 72, no. 1, pp. 1535–

1543, 2023, doi: https://doi.org/10.17762/msea.v72i1.2381.

[22] N. Railic and M. Savic, “Architecting Continuous Integration

and Continuous Deployment for Microservice Architecture,”

2021, doi: 10.1109/INFOTEH51037.2021.9400696.

[23] A. Hany Fawzy, K. Wassif, and H. Moussa, “Framework for

automatic detection of anomalies in DevOps,” J. King Saud

Univ. - Comput. Inf. Sci., vol. 35, no. 3, 2023, doi:

10.1016/j.jksuci.2023.02.010.

[24] P. Heller, Automating Workflows with GitHub Actions.

Birmingham: Packt Publishing Ltd, 2021.

