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Abstract  

This study investigates the intricate relationship between electricity consumption in smart office environments, temporal 

elements such as time, and external factors such as weather conditions. Using a data set that encompasses electrical 

consumption statistics, temporal data, and weather conditions, the research employs preprocessing, visualization, and feature 

engineering techniques. The predictive model for electric energy usage is constructed using deep learning architectures, 

including Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit 

(GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU). Evaluation metrics reveal that the LSTM model outperforms others, 

achieving minimal Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The 

study acknowledges the limitations of the data set, particularly when comparing electricity usage during work hours and 

outside working hours in a residential context. Future research aims to address these limitations, considering detailed 

meteorological data, missing data imputation, and real-time applications for broader applicability. The ultimate goal is to 

develop a predictive model that serves as a valuable tool for improving energy management in smart office settings, optimizing 

electricity usage, and contributing to long-term firm profitability. 
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1. Introduction  

The corporation has experienced substantial expansion 

in its business operations, resulting in a notable 

influence on its work culture [1]. Consequently, the 

organization must diligently pursue its adaptation 

methods to achieve consistent profitability [2]. 

Improving operational cost efficiency will be a major 

focus to reduce expenses and maximize net profit [3]. 

The efficiency of business operational costs is achieved 

through a decrease in electrical energy consumption in 

office buildings [4]. According to a survey conducted 

by MEMR-UNDP, offices rank among the highest 

energy-consuming buildings, with shopping complexes 

and hotels the only ones surpassing them in energy 

consumption, as illustrated in Table 1. Office buildings 

rely primarily on electricity as their main energy source 

[5]. Essentially, when the cost of using electrical energy 

increases, the costs of operations also increase, resulting 

in decreased organization profitability [6].  

Therefore, accurate forecasting of energy usage is vital 

for businesses. Avoiding unnecessary expenses will 

result in a reduction in operational costs and an 

optimization of the supply of electrical energy [7]. 

Research by Bunn and Farmer [8] indicates that a 1% 

increase in errors when estimating electrical loads can 

lead to an annual increase in operational expenses of 

almost $13 million. This suggests that even small 

inaccuracies in the forecast can significantly affect the 

operating costs of a company [9]. 

Table 1. EBTKE & UNDP Survey Results 2019 [5] 

Types of Office Buildings Energy Consumption Intensity 

Large Building 160 kWh/m2/year 
Medium-sized Building 202 kWh/m2/year 

Forecasting electricity use in office buildings presents 

substantial difficulties due to a multitude of 

unpredictable variables that have a significant influence 

[10]. Prediction error is highly influenced by external 

factors such as weather patterns, work holidays, 
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employee behavior, and other similar elements [11]. 

When exploring the external factors of the prediction of 

electricity use, the research community agrees on the 

need for a comprehensive understanding of weather-

related influences.  

Studies by Chenghong Wang et al. emphasize the 

critical role of weather-dependent factors in shaping 

energy consumption patterns [12]. These external 

influences, often deemed unpredictable, require 

sophisticated modeling approaches that can assimilate 

the complex interplay of variables. To address this, 

emerging methodologies, including machine learning 

algorithms and deep learning models, have been 

increasingly used to improve the accuracy of electricity 

usage predictions [13]. 

The emergence of the smart office concept is in sync 

with the prediction of electrical consumption influenced 

by the weather factors mentioned above [14]. This 

alignment is essential because the concept of a smart 

office is driven by the imperative need to design 

workspaces that take advantage of architecture centered 

on computing and communication technology [15]. The 

term "high-level architecture smart office" (Figure 1) in 

recent advances refers to a framework that delineates 

the structure and incorporation of intelligent technology 

in the contemporary office setting [16]. By 

incorporating components of this idea, smart office 

architecture produces a productive, comfortable, and 

secure workspace that enhances employee productivity 

and operational efficiency [17].  

In particular, in this context, historical data successfully 

stored in the smart office system can be utilized to gain 

in-depth insights, providing valuable information to 

refine and optimize predictions of electricity 

consumption [18]. 
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Figure 1. The High-Level Architecture of a Smart Office [16] 

Previous research focused primarily on forecasting 

electricity use by examining intrinsic factors within 

residential or industrial structures. However, there have 

only been a limited number of investigations that have 

examined the use of exterior circumstances in buildings 

as a factor that can influence power usage [19] - [23].  

Consequently, this study aims to gather past data on 

electricity usage and external weather conditions to 

examine this particular factor. The previous data will be 

utilized to forecast office power consumption and offer 

suggestions for optimizing usage. The novelty of this 

research lies in its comprehensive exploration of the 

relationship between electricity consumption, temporal 

dynamics, and external factors, offering a unique 

perspective on optimizing energy efficiency in smart 

office settings.  

The study not only identifies existing challenges but 

also introduces innovative methodologies through the 

application of advanced deep learning architectures, 

significantly contributing to the evolving field of smart 

office energy management. The model is intended to 

serve as a suggestion system for decision-makers in 

smart offices, allowing them to supervise, improve, and 

strategize for more effective energy use. By 

implementing this approach, organizations can save 

operational expenses and optimize their earnings. 

2. Research Methods 

The authors propose a framework to forecast the 

electrical energy consumption of smart office buildings 

using four deep learning architectures (LSTM, Bi-

LSTM, GRU, and Bi-GRU). Figure 2 shows a flow 

chart to demonstrate the working approach. 
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Define Deep Learning Architecture
LSTM, Bi-LSTM, GRU, Bi-GRU

Evaluating The Model Performance
MSE, RMSE, MAE

 

Figure 2. Research Method Flow Chart 

The flow chart illustrates the different phases involved 

in the construction of the suggested prediction model. 

To achieve greater precision in predicting electricity 

consumption, especially when taking into account 

external factors such as weather, it is crucial to have a 

comprehensive understanding of time series data 

preprocessing and feature engineering throughout the 

building of the prediction model [24]. The prediction 

model construction process can only be launched at that 

point. 

2.1 Data Identification  

The author of this study seeks precise data that 

accurately represent the electricity use of an office 

building, as well as the corresponding weather 

conditions in the surrounding area. To achieve this 

objective, the trials use historical secondary datasets to 

create predictive models for electricity consumption in 

smart office systems.  
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This dataset consists of time series data obtained from 

an experimental investigation of power usage in a 

solitary student residence located in the Aarhus 

Municipality, Denmark [25]. The data source combines 

historical records of electrical energy usage with 

weather data acquired from the Danish Meteorological 

Institute (DMI) [26]. The dataset spans a broad time 

range, specifically from November 1, 2018, to 

November 1, 2021, and includes measurements 

recorded at hourly intervals.  

During this period of time, the authors presented 

meticulous observations of energy consumption, 

allowing analysis of extended patterns, daily 

fluctuations, and seasonal variations in electricity 

consumption over the previous three years. The authors 

have a valuable dataset that covers a whole year and 

includes hourly intervals. This information allows them 

to gather information and create a forecast model for 

electric energy use. The model is based on external 

weather factors that affect the office building [27].  

The dataset consists of various columns containing 

different types of information. The "Datetime" column 

records the date and time, while the "kWh" column 

records the hourly consumption levels over 3 years. The 

dataset contains data on the day of the week, month, and 

whether it is a weekend or not, along with historical 

weather conditions. Table 2 presents the descriptions, 

units, and meanings of the variables. The dataset 

consists of 26,328 rows and 18 columns. To create a 

model, the date-time variable will be used as an index 

on the time series dataset. The variable kwh will be the 

label, while the other columns will serve as features for 

the prediction model. 

Table 2. Dataset Variable Description 

Variables Units Description 

DateTime - Information about date and 
time 

kWh kWh Amount of energy consumption 

hour hour Hours of a day 
day_of_month Date Day of the month 

day_of_week day Day of the week 

month month Month 

is_weekend - Weekend (Saturday & Sunday) 

or non-weekend 

pressure_at_sea hPa Atmospheric pressure at sea 
surface 

precip_dur_past10

min 

minute Duration of rainfall in the last 

10 minutes 
Wind_dir degree. Arah angin rata-rata 

wind_speed m/s Average Wind Speed 

temp_dew °C Temperatures of dew 
pressure. hPa Atmosphere Pressure 

visib_mean_last10

min 

m Average visibility in 10 

minutes 
temp_dry °C Dry air temperature. 

humidity % Relative humidity of air 

cloud_cover % Percentage of sky covered by 
clouds 

visibility m Visibility 

2.2 Data Pre-processing 

Data preprocessing is an essential initial step in data 

analysis and machine learning. Data preparation is a 

series of methods to ensure the cleanliness, organization 

and preparation of data for analysis or modeling [28]. In 

this regard, the authors describe the data preprocessing 

techniques used on the electricity consumption dataset 

to analyze its correlation with meteorological 

conditions as an external component.   During the pre-

processing stage before evaluating the developed 

prediction model, the author used Python 3 

programming on the Google Collaboratory platform to 

simplify the experimentation process.  

The initial stage in the data preprocessing phase is to 

validate the structure of the dataset and acquire 

descriptive statistics to examine the distribution of 

values among the variables in the dataset. Once the 

empty values in the dataset have been identified, they 

are filled using interpolation techniques [29]. Ensuring 

that there are no empty values is essential, as they can 

have a detrimental effect on the integrity of the data and 

the accuracy of the analysis. To elucidate the linear 

interpolation technique, consult Formula 1. 

𝑋𝑖 =  𝑋𝑖−1 + 
(𝑋𝑖+1− (𝑋𝑖−1)

2
               (1) 

𝑋𝑖  denotes the missing value𝑋𝑖−1 represents the value 

before it, and 𝑋𝑖+1 indicate the value after it. The 

application of the linear interpolation technique helps to 

estimate the missing values based on the pattern of the 

preceding and subsequent data. 

Upon identifying variable values with mismatched data 

types, a data type amendment will be conducted. The 

'DateTime' variable in the dataset is currently of type 

'object'. To facilitate data extraction, it will be converted 

to a date-time data type. The 'DateTime' variable is not 

employed as a feature or label in the process of 

constructing the model. Instead, it serves as an indexing 

dataset to enhance the efficiency of analyzing time-

series data processing. It is important to note that time 

data is still included as a predictive feature in the 

dataset, including variables for hours, days, and months, 

as well as weekend and weekday information.  

Visualizing the data is the final step in the data pre-

processing phase, which is essential for the feature 

engineering stage.   Visualization plays a vital role in 

examining attributes and structure and uncovering 

latent data patterns [30]. 

2.3. Feature Engineering 

Feature engineering is the process of developing, 

altering, or choosing features from a dataset to be used 

as inputs for a prediction model. The objective is to 

improve the performance of the model and extract more 

pertinent information from the available data [31]. 

Feature engineering encompasses a variety of tasks, 

including combining features, modifying the volume or 
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shape of the feature distribution, generating new 

features using additional information, and choosing the 

most relevant and significant features [32].  

The objective of this method is to reduce the number of 

dimensions in the data, streamline prediction models, 

and address the problem of unreliable information or 

excessive noise. Using feature engineering techniques, 

it is expected that the quality and representation of the 

data would be improved, leading to more accurate and 

relevant results from the prediction models [33].  

The feature engineering part of this research study 

involves several activities, such as normalizing the data 

on the selected features, building a time series dataset 

by incorporating the lag of those selected features, and 

ultimately splitting the dataset into testing and training 

data. 

2.3.1 Data Normalization 

Normalization is a crucial technique in data processing 

that aims to standardize the scales of all characteristics, 

leading to improved model performance [34]. We 

employed the StandardScaler approach to standardize 

the data. The StandardScaler method calculates the z 

score for each feature, which represents the number of 

standard deviations from the mean. Formula 2 

represents the mathematical equation for normalizing 

data using the Z-score, specifically through the 

StandardScaler technique. 

𝑧 =  
𝑥 − 𝜇

𝜎
                         (2) 

The normalized value (z-score) of the data, denoted as 

𝑧, is calculated by subtracting the average value 𝜇 of the 

feature from each data point 𝑥, and then dividing the 

result by the standard deviation 𝜎 of the feature. 

2.3.2 Creating a Time Series Dataset with Lags 

The author utilizes the notion of lag generation to create 

a dataset while creating their time series model. The 

dataset is created by including previous feature values 

as inputs, while the target value is projected as future 

data [35]. Let 𝑥𝑡 denote the value of a feature at time 𝑡 

in the time series data. To generate a delay of duration 

𝑝, the data sequence is arranged according to the 

structure illustrated in Formula 3. 

(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡−𝑝, 𝑥𝑡−𝑝+1, … , 𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡)           (3) 

The input characteristics utilized for the forecasting of 

future values consist of 

(𝑥𝑡−𝑝, 𝑥𝑡−𝑝+1, … , 𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡), where 𝑥𝑡  represents 

the goal value to be predicted. In this particular case, the 

value of 𝑝 = 24 is determined using the previous 24 

hours of characteristics as input to predict the next kWh 

value in the data sequence or lag. The goal figure for 

kWh is derived from the data row that immediately 

follows the 24-hour sequence. Thoroughly choosing the 

lag length (𝑝) is of utmost importance, relying on a 

comprehensive comprehension of the data and 

prediction goals. Too short of a lag length may not 

adequately capture significant patterns in the data, 

whereas an excessively long lag length may mask 

crucial information regarding trends and variations in 

the time-series data. Therefore, the determination of the 

appropriate lag duration is a crucial step in the 

construction of time series models [36]. 

2.3.3 Dataset Splitting 

Partitioning the dataset into training and testing data is 

a critical step in the creation of machine learning 

models. This guarantees the model's capacity to 

generalize and generate precise predictions on 

unfamiliar inputs. When there is a dataset with 𝑁 total 

samples, separating the datasets involves using a simple 

mathematical method to distribute a specific proportion 

[37]. Usually, a training dataset is assigned 70-80% of 

the total data, while the remaining 20-30% are 

designated for testing. Formulas 4 and 5 specify the 

essential mathematical steps to divide the dataset. 

𝑁𝑡𝑟𝑎𝑖𝑛 =  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑁             (4) 

𝑁𝑡𝑒𝑠𝑡 =  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 × 𝑁             (5) 

𝑁𝑡𝑟𝑎𝑖𝑛  refers to the quantity of training data that has 

been selected, whereas 𝑁𝑡𝑒𝑠𝑡  denotes the number of test 

data that have been chosen. The dataset is divided into 

two pieces based on a preset ratio using the algorithm 

given above. This guarantees sufficient data to 

efficiently train the model and acquire unbiased data to 

evaluate its performance. Choosing the optimal ratio of 

training to testing data is essential. Inadequate 

proportions of training data might result in inadequate 

learning of the model, resulting in decreased accuracy. 

On the contrary, if the proportion of data used is too 

small, the model cannot be adequately tested, which 

hinders its ability to accurately quantify performance 

[38]. 

2.4 Deep Learning Model 

The author uses a deep learning approach to examine 

complex patterns in time series data [39], [40] when 

forecasting electricity usage in smart office 

environments.   The author employs four types of deep 

learning architecture in this approach: LSTM (long 

short-term memory), Bi-LSTM (bidirectional long-

short-term memory), GRU (gated recurrent unit), and 

Bi-GRU (bidirectional gated recurrent unit). 

2.4.1 LSTM 

LSTM, an abbreviation for long, short-term memory, is 

a specific kind of Recurrent Neural Network (RNN) that 

is specifically engineered to preserve and capture long-

term dependencies within datasets. LSTMs are highly 

proficient at capturing intricate and enduring patterns in 

the prediction of time series [41]. LSTM employs 

gating mechanisms to retain information for a 

prolonged duration and discard it when it becomes 



 Zikri Wahyuzi, Ahmad Luthfi, Dhomas Hatta Fudholi 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 104 

 

 

 

irrelevant. This effectively solves the problem of the 

vanishing gradient that is frequently encountered in 

conventional RNNs. The LSTM model incorporates 

many types of gates to control the flow of information. 

The input gate,,, forget gate and output gate are referred 

to as such [42]. 

The input gate (𝑖𝑡) controls the quantity of fresh data 

stored in the memory cells. The forget gate (𝑓𝑡) controls 

the extent to which information from previous memory 

cells should be retained or discarded. The cell gate (𝑔𝑡) 

produces a novel candidate value that is received by the 

memory cell. The extent to which memory cell values 

are integrated into the network output is determined by 

the output gate (𝑜𝑡).  

The updating of memory cells (𝑐𝑡) is accomplished 

through the utilization of input, forget, and cell gates. 

The output (ℎ𝑡)  is obtained by multiplying the value of 

the memory cell by the gate output. The aforementioned 

formulas in Figure 3 involve the following variables: 𝑥𝑡 

represents the input at time 𝑡, ℎ𝑡  represents the output at 

time 𝑡, 𝑐𝑡  represents the cell value at time 𝑡, 𝜎 denotes 

the sigmoid function, tanh denotes the hyperbolic 

tangent function and represents the element-wise 

multiplication operation [43]. 

 

Figure 3. LSTM Architecture 

2.4.2 GRU 

GRU, or Gated Recurrent Unit, is a form of Recurrent 

Neural Network (RNN) that shares similarities with 

LSTM (Long Short-Term Memory) but has a more 

straightforward architecture. This model is also 

efficient at addressing time series problems and reduces 

computing costs compared to LSTM [44]. The GRU 

provides a harmonious blend of complexity and 

efficiency. GRU is frequently used when there is a 

requirement for LSTM performance, but at reduced 

computational expense. GRU uses gate mechanisms, 

such as gate reset and gate update, to regulate the flow 

of information within memory cells [45]. 

As depicted in Figure 4, The reset gate (𝑟𝑡) determines 

the extent to which the information from the previous 

cell should be deleted. Gate updates (𝑧𝑡) determine the 

quantity of fresh information to be stored in memory 

cells. The candidate value (ĥ𝑡)  is computed by utilizing 

the reset gate (𝑟𝑡) to merge the information from the 

input and the previous information ((ℎ𝑡−1). Next, the 

value of the memory cell (ℎ𝑡) is modified by including 

the gate update (𝑧𝑡) and the candidate value (ĥ_t) [46]. 

 

Figure 4. GRU Architecture 

2.4.3 Bidirectional RNN (Bi-LSTM & Bi-GRU) 

A Bi-RNN, short for Bidirectional Recurrent Neural 

Network, is a specific kind of neural network design 

that handles input in two directions: forward (from the 

beginning to the finish) and backward (from the end to 

the beginning), as shown in Figure 5. There are two 

primary categories of Bi-RNNs: Bi-LSTM 

(Bidirectional Long-Short-Term Memory) and Bi-GRU 

(Bidirectional Gated Recurrent Unit) [47]. Bi-LSTM is 

a kind of LSTM that can analyze data from past and 

future time steps.  

The Bi-LSTM model employs two sets of Long Short-

Term Memory (LSTM) units: one that processes data in 

a forward direction and another that processes data in a 

backward direction. The results of these two Long-

Short-Term Memory (LSTM) models are merged to 

generate the outcome [48]. Bi-GRU is a composite of 

two GRUs that operate in opposing directions, with one 

moving forward and the other moving backward. 

Similarly to Bi-LSTM, the outputs of these two GRUs 

are merged to obtain the final result [49]. 

 

Figure 5. Bi-RNN Architecture 

Using Bi-RNN, the model is capable of understanding 

the intricate connections between these parameters, 

which allows for more precise and reliable predictions 

[50]. In the context of this research, Bi-RNN can be 

utilized to discover energy consumption patterns that 

are associated with historical weather conditions and 

future weather forecasts. This can help optimize energy 

use. 

2.5 Model Evaluation 

When examining predictive models, the three primary 

metrics commonly used are the mean squared error 

(MSE), the root mean squared error (RMSE), and the 

mean absolute error (MAE). These metrics indicate the 

proximity between the model's predictions and the 
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actual values in the data.  The MSE, RMSE, and MAE 

metrics offer useful information on model performance. 

A comprehensive understanding of the merits and 

limitations of each statistic will facilitate a more precise 

evaluation of the developed model [51].  

The mean squared error is a statistical measure that 

calculates the average of the squared discrepancies 

between expected and actual values within a dataset, as 

shown in Formula 6. A model's predictive accuracy 

improves as the Mean Squared Error (MSE) decreases. 

This leads to a more severe penalty for substantial 

disparities, which guarantees that values that deviate 

significantly from the true value have a substantial 

influence on the model evaluation [52]. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖

𝑛
𝑖=1 − ŷ𝑖)

2              (6) 

The root mean square error (RMSE), as shown in 

Formula 7, is the square root of the mean squared error 

(MSE). The term "deviation" refers to the difference 

between the expected and true values measured in the 

same units as the variable being measured. RMSE is a 

more clear and easily accessible computation because it 

involves taking the square root of MSE [53]. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖

𝑛
𝑖=1 − ŷ𝑖)

2             (7) 

In contrast, the mean absolute error (MAE) is a statistic 

that computes the average absolute discrepancy 

between the projected and actual values. MAE offers 

insight into the extent of the average discrepancy 

between the predictions and the actual values. Contrary 

to the mean squared error (MSE) [54], MAE does not 

attach greater importance to larger discrepancies 

between predicted and actual values. Formula 8 

represents the mathematical expression for the Mean 

Squared Error (MSE). 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖

𝑛
𝑖=1 − ŷ𝑖|              (8) 

In the three mathematical equations to evaluate the 

matrix above, 𝑛 represents the number of samples, 𝑦𝑖  

represents the true value, and ŷ𝑖 represents the predicted 

value. 

3. Results and Discussions 

The author uses data analysis and deep learning-based 

prediction models to forecast the use of smart offices' 

electrical energy in external weather conditions. 

3.1 Smart Office Electricity Consumption Analysis 

The energy consumption data set and the external 

meteorological conditions data will initially be shown 

to facilitate understanding of the data pattern, thus 

improving the accuracy of the prediction model. This 

includes graphical representations of electricity use on 

an hourly basis (Figure 6), daily basis (Figure 7), 

weekly basis (Figure 8), and monthly basis (Figure 9).  

The graph illustrates that there is a peak in electricity 

use at the beginning and end of each year, followed by 

a gradual fall in the middle of the year. Furthermore, 

when considering the four seasons in the dataset, there 

is a gradual increase in electricity consumption during 

the winter months, culminating in its highest point 

during spring. After spring, the power demand 

decreases as summer begins and persists until fall. 

 

Figure 6. Electricity Consumption / Hour 

 

Figure 7. Electricity Consumption / Day 

 

Figure 8. Electricity Consumption/Week 

To assess whether electricity use exceeds the monthly 

average or falls within the usual range, a trend analysis 

was performed using a moving average (refer to Figure 

10). 

 

Figure 9. Seasonal Analysis by Plotting Monthly Averages 
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Figure 10. Trend Analysis Using a 30-Day Moving Average 

Additionally, a study is conducted to compare 

electricity consumption patterns on weekdays 

(Monday–Friday) and weekends (Saturday and 

Sunday). The findings, depicted in Figures 11 and 12, 

suggest that electricity use is higher during the week 

compared to weekends. 

 

Figure 11. Comparative Analysis of Monthly Average Electricity 

Consumption on Weekdays & Weekend 

Figures 13 and 14 provide a comparative examination 

of electricity usage during working hours (9:00 am to 

5:00 p.m.) and outside of working hours. The statistics 

indicated that the use of electricity during business 

hours was lower compared to non-business hours. 

However, it is crucial to acknowledge the presence of 

constraints within the data set. It is important to note 

that the data was collected from studies carried out in a 

residential setting, rather than an office, and therefore 

may not provide an accurate representation of energy 

usage in an office environment. 

 

Figure 12. Comparative Analysis of Electricity Consumption on 

Weekdays & Weekends 

Future research should focus on conducting 

experiments to create an intelligent office system that 

can accurately measure electricity use during regular 

working hours (Monday through Friday, 09:00-17:00). 

The system must have sufficient sophistication to 

precisely monitor the use of office electricity without 

the need for human involvement. 

 

Figure 13. Comparative Analysis of Electricity Consumption During 

Working Hours 09:00-17:00 & Outside Working Hours 

 

Figure 14. Comparative analysis of monthly average electricity 

consumption during working hours from 09:00-17:00 & outside 

working hours 

3.2 Smart Office Electric Energy Consumption 

Prediction Model 

When data analysis is performed on the dataset, the 

subsequent task involves employing a deep learning 

architecture to construct a system that predicts the usage 

of electricity. The data analysis findings demonstrate 

discernible patterns in electrical energy use that exhibit 

a strong association with external weather conditions 

and temporal elements that affect office buildings.  

The researchers constructed a prediction model using 

deep learning architectures such as LSTM, Bi-LSTM, 

GRU, and Bi-GRU, which have a reliable history of 

properly forecasting time series data. This model 

effectively forecasts electrical energy usage with a high 

level of precision. The comparison graph in Figures 15 

through 18 illustrates the actual and anticipated 

electricity usage figures at specific times for the test 

data sets. Consequently, this graph comparison 

provides a concise summary of the results obtained 

from the predictive model for electrical energy 
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consumption in smart office buildings, including 

external weather and time factors. 

 

Figure 15. Comparison of Real Data & LSTM Prediction Results 

 

Figure 16. Comparison of Real Data & Bi-LSTM Prediction Results 

 

Figure 17. Comparison of Real Data & GRU Prediction Results 

When generating an electric energy consumption 

forecasting model utilizing four distinct deep learning 

architectures, LSTM, GRU, Bi-LSTM, and Bi-GRU, 

we also analyze the model performance through 

analysis of the Mean Squared Error (MSE) graph. The 

MSE graphs for each of the four architectures provide 

useful information about the effectiveness of the model 

in the training data. 

 

Figure 18. Comparison of Real Data & Bi-GRU Prediction Results 

The MSE graph in Figure 19, which shows the LSTM 

training data, indicates a steady drop in the MSE value 

from Epoch 1 to Epoch 50, but with a slight increase 

beyond Epoch 30. However, the graph indicates the 

reliability of the LSTM model in understanding the 

patterns of electricity use. 

 

Figure 19. MSE Chart of LSTM Training Data 

 

Figure 20. MSE Graph of GRU Training Data 

Furthermore, Figure 20's MSE graph exhibiting GRU 

training data is similarly characterized by a reasonably 

continuous decline in the number of epochs. However, 

a slight fluctuation occurred faster than the LSTM at 

roughly epoch 28, however, the ensuing trend of decline 

remained obvious. Furthermore, unlike the MSE graph 

results of the two earlier architectures, the Bi-LSTM 

exhibited large volatility at the beginning, as shown in 

Figure 21, especially around epochs 11 and 18, strongly 

signaling overfitting.  

Meanwhile, both the Bi-GRU MSE graph and the 

LSTM MSE graph exhibit a constant fall, but the Bi-

GRU Training Data MSE graph shows a little 

fluctuation around epoch 28 that is faster than that of 

LSTM.  

However, the pattern of deterioration is continuing, as 

indicated in Figure 22. Based on the evaluation findings 

shown in the four MSE graphs, it can be noticed that the 

LSTM, Bi-GRU and GRU architectures can effectively 

develop models for predicting electric energy usage. 

The models show great accuracy and stability in 

training data, making them a viable alternative to 

construct an efficient and precise prediction system of 

electric energy consumption. 
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Figure 21. MSE Graph of Bi-LSTM Training Data 

 

Figure 22. MSE Graph of Bi-GRU Training Data 

Based on the findings reported in Table 3, it can be 

observed that the use of different deep learning 

architectures provides different outcomes in forecasting 

the utilization of electrical energy in smart office 

buildings. However, despite that LSTM presents the 

lowest MSE value (0.03783) compared to other 

architectures, it should be noted that this lead is not 

necessarily proportional to the complexity of the 

utilized architecture.  

With an RMSE score of 0.19450 and an MAE of 

0.13871, the LSTM model successfully made extremely 

accurate predictions. In comparison, the Bi-GRU model 

produced a remarkable performance with an MSE value 

of 0.04021, RMSE of 0.20054, and MAE of 0.13184. 

Despite having a lower complexity than LSTM, Bi-

GRU was able to offer accurate forecasts. Similarly, the 

GRU and Bi-LSTM models also demonstrated good 

prediction results, although with slightly lower 

accuracy levels than LSTM and Bi-GRU. 

Table 3. Results of the Evaluation Matrix 

Evaluation 

Matrix 

LSTM GRU Bi-LSTM Bi-GRU 

MSE 0.03783 0.04305 0.04910 0.04021 

RMSE 0.19450 0.20749 0.22159 0.20054 

MAE 0.13871 0.14242 0.14826 0.13184 

4. Conclusions 

This study examines the correlation between electricity 

consumption in smart offices, environmental elements 

such as time and weather, and energy usage in office 

buildings. The dataset comprises electrical 

consumption statistics, temporal data, and weather 

condition data. The first step consisted of pre-

processing and visualizing the data, followed by feature 

engineering. This involved normalizing the data and 

generating time series data with lags to enhance 

accuracy. Construct a predictive model for the use of 

electrical energy in external factors with the structures 

of the deep learning model LSTM, Bi-LSTM, GRU, 

and Bi-GRU.  

The development of four prediction models 

demonstrates the efficient processing of time-series 

data on office power use using the RNN architecture, 

taking into account aspects such as time and weather. 

The matrix assessment results of the four deep learning 

models demonstrate that the LSTM model outperforms 

the Bi-LSTM, GRU, and Bi-GRU models. The LSTM 

prediction model achieves the minimum values for 

matrix evaluation metrics, namely MSE (0.03783), 

RMSE (0.19450), and MAE (0.13871). The limitations 

of the data set hinder the precision of analyzing 

electricity usage comparisons between working hours 

and outside of working hours. This is because the 

dataset is based on a private home experiment rather 

than actual measurements obtained at an office.  

Therefore, the author intends to conduct additional 

experiments to create an advanced office system that 

can directly quantify electricity usage during normal 

office hours (Monday–Friday, 9 a.m.–5 p.m.). The 

objective of this study is to develop a predictive model 

for electricity use, which can be used as a valuable 

suggestion system to improve energy management in 

smart office settings. Using this methodology, offices 

can optimize their electricity usage and consequently 

reduce operational costs, resulting in improved long-

term firm profitability. 

For improvements in the quality and application of the 

electric energy consumption prediction model in smart 

offices, we offer many steps for future research 

endeavors. First, a more detailed examination of 

external weather components and time variables can be 

performed by acquiring comprehensive meteorological 

data, including metrics such as wind speed, humidity, 

and precipitation. An in-depth investigation of these 

aspects will lead to a better understanding of trends in 

electrical energy consumption. Furthermore, utilizing 

approaches such as missing data imputation and 

anomaly detection can strengthen the integrity of the 

dataset, hence enhancing prediction accuracy. Finally, 

it is necessary to design real-time applications that take 

advantage of these predictive models. This program 

should give users immediate prediction information and 

enable them to dynamically regulate energy 

consumption according to the prediction outcomes.  

Additionally, it is necessary to test the model in multiple 

scenarios and locales, taking into account variances in 

weather conditions and trends in energy consumption. 

These tests will help identify the benefits and 

drawbacks of the model in a wider context, ensuring the 

dependability and relevance of the model in various 

real-world scenarios. This methodology will enable 

future research to have a greater impact on achieving 
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energy-efficient and sustainable management in 

smart office systems. 
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