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Abstract  

Remote Sensing Scene Classification (RSSC) is the discrete categorization of remote sensing images into various classes of 

scene categories based on their image content. RSSC plays an important role in many fields, such as agriculture, land mapping, 

and identification of disaster-prone areas. Therefore, a reliable and accurate RSSC algorithm is required to ensure the 

accuracy of land identification. Many existing studies in recent years have used deep learning methods, especially CNN 

combined with attention modules to solve this problem. This study focuses on solving the RSSC problem by proposing a deep 

learning-based method (CNN) with a ConvNeXt-Tiny model integrated with the Efficient Channel Attention Module (ECANet) 

and label smoothing regularization (LSR). The ConvNeXt-Tiny model shows that a persistent superior outperforms the ‘large’ 

model in convinced metrics. ConvNeXt-Tiny model also has a huge advantage in high-precision positioning and higher 

classification accuracy and localization precision in a variety of complicated scenarios of remote sensing scene recognition. 

Experiments in this study also aim to prove that the integration of the attention module and LSR in the basic CNN network can 

improve accuracy because the attention module can strengthen important features and weaken features that are less useful for 

classification. The experimental results proved that the integration of ECANet and LSR in the ConvNeXt-Tiny base network 

obtained a higher accuracy of 0.38% in the UC-Merced dataset, 0.7% in the AID, and 0.4% in the WHU-RS19 dataset than 

the ConvNeXt-Tiny model without ECANet and LSR. The ConvNeXt-Tiny model with ECANet integration and LSR obtained 

an Accuracy of 99.00±0.41% in the UC-Merced dataset, 95.08±0.20% in AID, and 99.50±0.31% in the WHU-RS19 dataset. 
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1. Introduction  

Remote sensing has become a very useful tool in 

monitoring and analyzing the Earth's environment. 

With the help of increasingly sophisticated satellite and 

aerial sensors, high-resolution images that provide an 

in-depth picture of the Earth's surface can be easily 

accessed. One important aspect of remote sensing 

applications is Remote Sensing Scene Classification 

(RSSC), a complex process that includes automatic 

identification and categorization of different types of 

land cover. The utilization of RSSC in the real world is 

for example for regional mapping, disaster vulnerability 

detection, environmental and vegetation mapping, and 

geospatial object detection [1]. 

The field of RSSC research began in the 1970s with the 

birth of digital image processing techniques. During 

this time, remote sensing imagery was acquired with the 

first Landsat satellites, with low resolution. Processing 

and analysis of remote sensing imagery at this time was 

also still limited to the pixel and sub-pixel levels. As the 

resolution of satellite-generated imagery increased, the 

research paradigm shifted to analyzing objects in 

imagery for classification purposes. This change 

occurred in the early 2000s. Around the beginning of 

the 2010s, researchers began to realize that the 

increasing resolution of satellite imagery meant that one 

image could contain several objects from different 

classes, making the classification process at the pixel 

and object level inadequate. This led to research that 

https://doi.org/10.29207/resti.v8i3.5731
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attempted to classify remote sensing imagery based on 

its global context, or in other words, the scene. 

Like most pre-deep learning image classification 

processes, traditional RSSC methods use a combination 

of handcrafted features and guided machine learning 

classifiers. Low-level handcrafted features that have 

been used include Histogram of Oriented Gradient 

(HoG) [2], Local Binary Pattern (LBP) [3], colour 

histogram, Scale-Invariant Feature Transform (SIFT) 

[4], and Gray-Level Co-occurrence Matrix (GLCM) 

[5]. Some research also employs unsupervised learning 

methods such as k-means clustering, Principal 

Component Analysis (PCA), and Autoencoder. 

Various state-of-the-art CNN architectures have been 

widely used in RSSC research such as AlexNet, 

VGG16, VGG19, GoogLeNet, and ResNet50. CNN 

models are used as feature extractors and use weight 

initializations that have been previously trained on 

ImageNet datasets. Some methods only use transfer 

learning (e.g. using InceptionV3 [6]), while others 

perform fine-tuning. Later, Attention Mechanisms were 

added to the basic CNN network to increase the 

importance of meaningful features as discriminators for 

classification. Some of the attention mechanism 

modules used include CBAM [7], VGG-VD16 with 

Self-Attention [8], Multiscale Attention Network 

(MSA-Network) [9], Efficient Channel Attention 

(ECANet) [10], and Enhanced Attention Network 

(EAM) [11]. 

According to [12], there are several problems in RSSC, 

namely: High semantic variance, in the sense that there 

are many types/classes of remote sensing images, which 

are grouped based on the appearance of the earth's 

surface, such as agricultural areas, highways, airports, 

settlements, rivers/seas, etc; Low inter-class variance, 

i.e. the degree of similarity of some classes to others, is 

quite high (e.g. forest and agricultural areas); High 

intra-class variance. It was caused by the image 

acquisition process that varies in scale and angle; Noise 

caused by differences in atmospheric conditions during 

the image acquisition process (e.g. clouds). 

An example of a case of high intra-class variance is 

shown in Figure 1. In the top row, we can see the 

variation in the size of the factory building caused by 

the difference in image acquisition altitude in the 

‘industrial’ class. While in the bottom row, there are 

various types of soil in the ‘herbaceous crop’ class. 

 

Figure 1. Example of high intra-class variance. 

An example of a case of low inter-class variance is 

shown in Figure 2. ‘Annual crop’ (top row) and 

‘permanent crop’ (bottom row) classes have similar rice 

field structures/patterns. 

 

Figure 2. Example of low inter-class variance. 

State-of-the-art deep learning architectures continue to 

evolve. One of the latest deep learning architectures is 

ConvNeXt [13], which is a modernization of the ResNet 

architecture.  ConvNeXt is developed using the 

techniques used in Vision Transformer so that its 

accuracy is improved over the original ResNet model. 

This research will experiment with the RSSC using the 

ConvNeXt model integrated with Efficient Attention 

Network (ECANet) [14] and label smoothing 

regularization. The accuracy of the RSSC task is 

projected to improve with the combination of cutting-

edge deep learning models, attention mechanisms, and 

label smoothing. 

2. Research Methods 

2.1 System Architecture 

The ConvNeXt-Tiny model used follows the 

architecture described in [13]. One ConvNeXt block 

consists of: A depthwise convolution layer with a kernel 

size of 7×7 and channels 𝑛 channels, which match the 

input feature channels; Layer Normalization (LN) 

layer; A 1×1 convolution layer with several channels 

equal to 4𝑛, activated with GELU; 1×1 convolution 

layer with the number of channels equal to 𝑛. The 

outcomes of this process will be summed pointwise 

with the original input features. 

The illustration of the ConvNeXt blocks is shown in 

Figure 3. The overall ConvNeXt-Tiny architecture 

consists of four stages: the first stage consists of 3 

cycles of ConvNeXt blocks, the second stage of 3 

cycles, the third stage of 9 cycles, and the fourth stage 

of 3 cycles. At the beginning of each stage before 

entering the ConvNeXt blocks, a downsampling 

process is added which reduces the length and width of 

the input features to half and doubles the number of 

channels. This process is illustrated in Figure 4. The 

effort to “modernize” the standard ResNet model into 

ConvNeXt is not limited to modification of its 

architecture, but also improving the training technique 

by using 300 epoch and AdamW optimizer. 

Researchers also use a few data augmentation 

techniques beyond standard techniques such as MixUp, 

CutMix, and RandAugment. Stochastic Depth and 

Label Smoothing regularization techniques are also 

incorporated, resulting in competitive performance on 
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standard image classification tasks (ImageNet). In this 

experiment, we will use the ConvNext-Tiny model with 

pre-trained weights. 

 

Figure 3. ConvNeXt Block Architecture 

 

Figure 4. Downsampling process before the ConvNeXt stage 

The development of the Attention Mechanism is based 

on human characteristics/habits in viewing information, 

especially in the context of images. When viewing 

information, humans will usually only focus on 

observing the important parts, such as separating the 

foreground from the background. Attention Mechanism 

is very useful for object classification and detection 

problems, as it can corroborate the features that are 

important in such contexts by learning the images. 

The earliest literature on Channel Attention is the 

Squeeze-and-Excitation Network (SE-Net) [15]. 

Although the SE-Net architecture is very simple, adding 

it to existing CNNs won the ImageNet competition in 

2017. At its core, SE-Net consists of two consecutives 

Fully Connected (FC or Dense) with two types of 

activation functions, ReLU in the first FC and sigmoid 

in the second FC. The input for the block FC is Global 

Average Pooling (GAP) based on the channels of the 

feature map. Then, the operation result of the block FC 

is channel-based multiplied over the initial feature map. 

This is the final result of the SE-Net and can be 

considered as the importance weighting for each 

channel. 

ECANet is an attention mechanism architecture that is 

a modification of SE-Net. Researchers argue that one of 

the weaknesses of SE-Net is that the dimensionality 

reduction process after Global Average Pooling (GAP), 

although reducing complexity, removes 

correspondence information or relationships between 

channels. In this study, they devise a model which 

consists of one Fully Connected layer after GAP named 

SE-Var3, so that it learns the correspondence between 

one channel and all other channels. This model 

produced higher Top-1 and Top-5 accuracy than vanilla 

SE-Net. SE-Var3 was further modified to reduce its 

complexity by not considering the correspondence of 

one channel to all other channels, but only to the 𝑘 

neighboring channels. This operation can be easily done 

using one-dimensional convolution. The results of the 

1D convolution are then activated using sigmoid and are 

multiplied elementwise with the initial feature map 𝜒. 

The entire process of the calculation of ECANet can be 

expressed as in Formula 1. 

𝑭ECA(𝜒) = 𝜎(Conv1D𝑘(GAP(𝜒))) ⊗ 𝜒            (1) 

The next question is how to determine the optimal value 

of 𝑘. Here they propose Formula 2, which is formulated 

based on the assumption that the number of channels 𝐶 

or tensor dimensions input to the GAP is usually a 

power of two. Meanwhile, the values of the 𝛾 and 𝑏 are 

obtained through experiments (𝛾 = 2 and 𝑏 = 1). 

ECANet produces higher accuracy than SE-Net and 

CBAM [15] and also has a smaller complexity and 

number of parameters. 

𝑘 = 𝜓(𝐶) = |
log2(𝐶)

𝛾
+

𝑏

𝛾
|
odd

             (2) 

In essence, we embed the ECANet module into the 

existing backbone CNN, and during the training the 

weights of the Conv1D𝑘 layer is learned. The weights 

Conv1D𝑘 of represents the importance degree of each 

neighboring channel. With this, we could direct the 

backbone network to give more focus to high-

importance channels. The diagram of the ECANet 

Module is shown in Figure 5. 

 

Figure 5. Diagram of ECANet Module 

Label Smoothing Regularization (LSR) is a method 

utilized in machine learning, particularly in 

classification tasks, to enhance model generalization 

and mitigate overfitting. In the usual setup, where 

models predict probabilities for each class, label 

smoothing diverges by assigning a small probability to 

incorrect classes during training. This method was first 

introduced in the paper on Inception architecture [16], 

and the idea to use LSR for RSSC tasks was inspired by 

[17]. 

The main idea behind the LSR is to not make the model 

too confident because of the one-hot encoding of the 

input. The ‘crisp’ encoding like this would ignore every 

other class (which is not the target class of the sample) 

during the calculation of the cross-entropy loss 

function. Meanwhile, in the case of RSSC, a scene 

image probably consists of multiple objects of different 

classes, where the class of the most dominant object 

becomes the assigned label of the image. LSR will re-

label the encoding of the input with Formula 3.  

𝑦𝑖 = {
1 − 𝜀; 𝑖 = 𝑐

𝜀

𝑘−1
; 𝑖 ≠ 𝑐               (3) 

𝑖 denotes the class number, 𝑦𝑖 is the ground-truth label 

of class 𝑖, 𝑐 is the target class, 𝑘 is the total number of 
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classes, and 𝜀 is the smoothing factor. We will use 𝜀 =
0.1 in this experiment. This formula allocates a softened 

probability to both the true class and other classes. The 

addition of LSR is expected to make the model more 

robust and have anti-noise ability. 

Inspired by the research by [7], in this experiment, 

ECANet is integrated after each stage of ConvNeXt-

Tiny. The integration of ECANet after the ConvNeXt-

Tiny stage enhances the features and removes repetitive 

or redundant information. Research [18] argues that 

attention to the channel and or spatial aspects after each 

stage is important because the length and width of the 

features at the end of the stage are reduced to half of the 

beginning of the stage, as well as the number of 

channels being doubled. Weighting each channel and or 

spatial position of the feature will enhance the feature 

more effectively so that the next stage of ConvNeXt can 

learn better input features.  

Figure 6 shows the illustration of the ConvNeXt-Tiny 

architecture integrated with ECANet, where ECANet is 

inserted after each stage. We will use that architecture 

in this experiment. 

 
Figure 6. ConvNeXt-Tiny integration with ECANet. 

2.2 Dataset 

This study uses three public datasets namely UC-

Merced [19], Aerial Image Dataset (AID) [20], and 

WHU-RS19 [21]. The characteristic comparisons of 

each dataset are shown in Table 1. Augmentation in 

remote sensing scene classification is important to 

address one of the main problems of high intra-class 

variance. The augmentation methods applied in this 

experiment are rotation, translation, zoom, and random 

brightness changes. Augmentation by rotation is 

performed according to the characteristics of the remote 

sensing image dataset which is taken in various 

directions and from different heights. Translation is 

done to obtain a new viewpoint of the image. Zooming 

is done to obtain variations in image resolution. 

Meanwhile, changing the brightness level is done to 

obtain variations in the illumination of a remote sensing 

image, or it can also be considered as simulating various 

weather conditions and image acquisition times. 

Table 1. Comparison between datasets 

Category UC-Merced AID WHU-RS19 

Year Released 2010 2016 2012 

Number of 

Class 

21 30 19 

Number of 

Images per 

Class 

100 Varied, 200-

420. 10000 in 

total. 

Varied, 50-60 

Image Size 256×256 600×600 600×600 

Pixel 

Resolution 

1 foot 0.5-8 meter At least 0.5 

meter 

Acquisition 

Source 

USGS (US 

images only) 

Google Earth 

(compiled 

from various 

sources) 

Google Earth 

(compiled 

from various 

sources) 

Two augmentations are performed in AID, while in 

WHU-RS19 three augmentations are performed, and 

four in UC-Merced. This consideration is based on the 

number of images in both datasets, where AID has a 

much larger number of original images. The dataset 

would be very large and slower to train the model if we 

performed too many augmentations. UC-Merced has 

one more augmented image per image than WHU-RS19 

because it has a larger number of images per class. 

Hence, more augmentation is necessary to capture more 

variances in the dataset. Rotation augmentation 

performed is in the range of -30° to 30°, translation on 

the x-axis and y-axis with a range of 5 to 40 pixels, and 

zoom in the range of 1 to 1.15 times. Brightness 

augmentation is performed in the range of -30 to 30 

levels.   

2.3 Experiment Settings and Evaluation Method 

Experiments on the three datasets described were 

conducted using different training-testing ratios 

according to the ratios widely used in various studies 

for these datasets. For UC-Merced, a ratio of 80:20 was 

used [22], AID 50:50 [17], and 80:20 for WHU-RS19 

[23]. In this research, the cross-validation technique is 

used in training the model. The goal is to produce more 

stable accuracy, avoid overfitting, produce better 

generalization, and be able to estimate model 

performance more accurately. The UC Merced and 

WHU-RS19 datasets use 5-fold cross-validation, while 

AID uses 2-fold cross-validation. The division of data 

in k-fold cross-validation uses the Stratified K-Fold 

method from the Scikit-Learn Library so that the ratio 

of each class in each fold is the same as the ratio of each 

class in the overall dataset. 

This research will compare the performance of the 

ConvNeXt-Tiny that is not integrated with ECANet 

(Model A), ConvNeXt-Tiny integrated with ECANet 

(Model B), and ConvNeXt-Tiny integrated with 

ECANet and using Label Smoothing Regularization 
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(Model C) on the task of RSSC. In the Results and 

Discussions section, we will only discuss and analyze 

the results of models A and C. Model B is only used as 

an ablation study, meaning that we prove that the label 

smoothing regularization (in Model C) does indeed 

improve the accuracy of Model B. The performance of 

each trained model is evaluated using the classification 

Accuracy and confusion matrix (CM) metrics. The 

source code is written in Python 3.10.12, and the deep 

learning framework used is Keras 2.13.1 on top of 

Tensorflow 2.13.0 runs on NVIDIA Tesla GPU. The 

hyperparameter settings for each dataset are shown in 

Table 2. 

Table 2 A hyperparameter was used in this experiment. 

Hyperparameter UC-Merced AID WHU-RS19 

Image size 256×256 256×256 256×256 

Batch size 32 24 24 

Optimizer Adam Adam Adam 

Number of 

epochs 

25 25 50 

Loss function Categorical 

cross-

entropy 

Categorical 

cross-

entropy 

Categorical 

cross-

entropy 

3. Results and Discussions 

3.1 Results on UC-Merced 

As explained in Section 2, experiments on the UC-

Merced dataset used 5-fold cross-validation with 80% 

training and 20% testing data. The amount of training 

data for each fold is 8400, and the testing data is 420. 

The amount of training data is 20 times more than the 

testing data because the original images in the training 

set are augmented 4 times. The original images in the 

testing set are not augmented. Testing accuracy for each 

fold is shown in  

Table 3. 

Table 3 Test Set Accuracy of all models on UC-Merced* 

Fold Number Model A Model B Model C 

1 99.286 99.286 99.524 

2 99.048 98.571 99.286 

3 98.571 99.524 99.048 

4 98.333 98.810 98.810 

5 97.857 97.857 98.333 

Mean 98.619 98.810 99.000 

Standard 

Deviation 

0.509 0.583 0.410 

*) X. Wang, “Improving Bag-of-Deep-Visual-Words Model via Combining 

Deep Features With Feature Difference Vectors,” IEEE Access, vol. 10, pp. 

35824–35834, 2022, doi: 10.1109/ACCESS.2022.3163256. 

Table 3 shows that the ConvNeXt-Tiny model 

integrated with ECANet (Model B and C) could 

improve the performance of the ConvNeXt-Tiny model 

without ECANet (Model A). The addition of label 

smoothing regularization makes it even more robust. 

Model A gets 100% accuracy on 10 classes out of 21. 

However, it has the lowest accuracy for the 'dense 

residential' class with only 89%. Some images in this 

class were classified as 'mobile-home park', 'medium 

residential', 'buildings', and 'storage tanks'. This is due 

to a similar characteristic between these classes. The 

'dense residential', 'medium residential', and 'building' 

classes all have dominant objects in the form of 

buildings, which can confuse the classifier. The 

misclassification to ‘storage tanks’ occurs because the 

shape of residential buildings in the image is similar to 

the warehouse buildings that usually accompany 

storage tanks. Some of the misclassified images from 

this model are shown in Error! Reference source not 

found.. 

 

Figure 7 Some misclassified images of Model A in the UC Merced 

dataset. 

Model C can improve the accuracy of the UC-Merced 

dataset, especially in the 'dense residential' class. The 

model was able to increase the accuracy of the 'dense 

residential' class by 8%. In this model, there are no more 

misclassifications that put the 'dense residential' class 

image into the 'mobile-home park' and 'storage tanks' 

classes. Model C gets 100% accuracy on 11 classes out 

of 21. This model got the lowest accuracy in the 

‘medium residential’ class with only 94%. The problem 

of high intra-class variance also causes the model to 

misclassify green-coloured rivers as forests. Some of 

the misclassified images from this model are shown in 

Figure 8. 

 

Figure 8 Some misclassified images of Model C in the UC Merced 

dataset. 

Model A produced an average accuracy of 

98.62±0.51%. The Confusion Matrix for this model is 

shown in Figure 9. Model C produced an average 
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accuracy of 99.00±0.41%. The Confusion Matrix for 

this model is shown in Figure 10. 

 

Figure 9 Confusion Matrix of Model A on UC-Merced dataset (in percentages). 

 

Figure 10 Confusion Matrix of Model C on UC-Merced dataset (in percentages). 
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3.2 Results on AID 

Experiments on the AID dataset used 2-fold cross-

validation with 50% training and 50% testing data. The 

amount of training data for each fold is 15000, and the 

testing data is 5000. The amount of training data is 3 

times that of testing data because the original images in 

the training set are augmented twice, while the original 

images in the testing set are not augmented. The testing 

accuracy values (in per cent) at each fold are shown in 

Table 4.  

Table 4 Test Set Accuracy of all models on AID* 

Fold Number Model A Model B Model C 

1 94.58 95.06 95.28 

2 94.12 94.58 94.88 

Mean 94.35 94.82 95.08 

Standard 

Deviation 

0.23 0.24 0.20 

*) G.-S. Xia et al., “AID: A Benchmark Data Set for Performance Evaluation 

of Aerial Scene Classification,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 55, pp. 3965–3981, Feb. 2017, doi: 

10.1109/TGRS.2017.2685945. 

AID has the highest number of classes and images 

compared to the other two tested datasets, making it the 

most challenging for classification. The amount of 

training and testing data used in training on this dataset 

was also the highest compared to the other two datasets. 

Despite this, the accuracy is still low, hovering around 

94%-95%, while in the other two datasets it has touched 

99%. This is mainly due to the low variance between 

classes, causing the visual appearance of a scene in a 

particular class to be similar to that of a scene in another 

class. For example, an image of a large commercial 

area, when taken from a high altitude, will appear like a 

collection of small buildings, akin to a dense residential 

area. Model A produced an average accuracy of 

94.35±0.23%. Some of the misclassified images using 

this model are shown in Figure 11, and the Confusion 

Matrix for this model is shown in Figure 13. 

 

Figure 11 Some misclassified images of Model A in AID 

The accuracy for each class in both models did not 

touch 100%, with the maximum accuracy in Model A 

being 99.76% in the 'viaduct' class, and the minimum 

accuracy at 75.33% in the 'school' class. The high intra-

class variance of the ‘school’ class makes its appearance 

quite similar to ‘commercial’, ‘industrial’, and ‘church’.  

In Model C, the maximum accuracy is also achieved in 

the 'viaduct' class of 99.76% and the minimum is in the 

'resort' class of 79.31%. In this model, 10.69% of 

‘resort’ images are predicted as ‘park’. The accuracy of 

Model C is 0.73% higher than Model A, meaning that it 

could reduce 73 misclassification errors produced in 

Model A. 

The Model C produced an average accuracy of 

95.08±0.20%. Some of the misclassified images using 

this model are shown in Figure 12, and the Confusion 

Matrix for this model is shown in Figure 14. 

 

Figure 12 Some misclassified images of Model C in AID 

3.3 Results on WHU-RS19 

Experiments on the WHU-RS19 dataset used 5-fold 

cross-validation with 80% training and 20% testing 

data. The amount of training data for each fold is 3216, 

and the testing data is 201. The amount of training data 

is 16 times more than the testing data because the 

original images in the training set are augmented 3 

times. The testing accuracy values (in per cent) at each 

fold are shown in Table 5. 

Table 5 Test Set Accuracy of all models on WHU-RS19* 

Fold Number Model A Model B Model C 

1 99.005 99.502 99.502 

2 99.502 99.005 100.000 

3 99.502 99.502 99.502 

4 98.010 98.01 99.005 

5 99.502 98.507 99.502 

Mean 99.104 98.905 99.502 

Standard 

Deviation 

0.580 0.580 0.315 

*) Y. Yang and S. Newsam, “Bag-Of-Visual-Words and Spatial Extensions for 

Land-Use Classification,” in ACM SIGSPATIAL International Conference on 

Advances in Geographic Information Systems (ACM GIS), 2010. 

The WHU-RS19 dataset has its own challenges, namely 

the small amount of testing data (201), causing the 

misclassification of just one image to cause a decrease 

in accuracy by approximately 0.5%. The accuracy of 

Model B in Fold 5 is one per cent lower than Model A, 

resulting in a lower mean accuracy. Among the three 

datasets used in this experiment, this is the only 

occurrence where Model B obtained lower mean 

accuracy than Model A. Model C obtained 100% 

accuracy in fold 2, contributing to the high mean 

accuracy produced by this model.  
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Figure 13 Confusion Matrix of Model A on AID (in percentages) 

 

Figure 14 Confusion Matrix of Model C on AID (in percentages)
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In Model A, the most misclassifications occurred in the 

'Forest' class which was predicted as 'Mountain', 'Port' 

which was predicted as 'Airport', and 'Residential' 

which was predicted as 'Commercial'. The 

characteristics of 'residential' and 'commercial' scenes, 

which consist of buildings, make some images quite 

difficult to distinguish. Meanwhile, the 

misclassification of 'Forest' as 'Mountain' is caused by 

some images of mountain scenes having dense and 

green vegetation. Some of the misclassified images 

using this model are shown in Figure 15. 

 

Figure 15 Some misclassified images of Model A in the WHU-RS19 

dataset. 

Model A produces an average accuracy of 

99.10±0.58%. The Confusion Matrix for this model is 

shown in Figure 18. 

The misclassification of the image of class ‘Forest’ into 

‘Mountain’ and ‘Residential’ into ‘Commercial’ is still 

prevalent in Model C. But overall, the mean accuracy 

of Model C is higher than Model A. Misclassification 

of class ‘Beach’ into ‘Desert’ and ‘Airport’ into ‘Port’ 

does not occur anymore. Model C also reduces the 

number of misclassifications for the 'Railway Station' 

class. Some of the misclassified images using this 

model are shown in Figure 16. 

 

Figure 16 Misclassified images of Model C in the WHU-RS19 

dataset. 

Model C produced an average accuracy of 

99.50±0.31%. The Confusion Matrix for this model is 

shown in Figure 19. 

3.4 Discussions 

This experiment shows that the integration of ECANet 

module after each stage of ConvNeXt-Tiny, equipped 

with label smoothing regularization (LSR) can improve 

the ability to learn basic CNN (ConvNeXt-Tiny) 

features by giving more attention to important features 

and reducing the importance of unimportant features. 

This is demonstrated by the Accuracy value obtained by 

the ECANet-integrated ConvNeXt-Tiny model with 

LSR (Model C) which is higher by 0.38% on the UC-

Merced dataset, 0.73% on the AID dataset, and 0.4% on 

the WHU-RS19 dataset compared to the ConvNeXt-

Tiny model which is not integrated with ECANet 

(Model A). We also do the ablation study via Model B, 

which consists of ConvNeXt-Tiny backbone with 

integration of ECANet but not using LSR. In this 

experiment, Model B has a slightly lower mean 

accuracy (0.2%, 0.26%, and 0.6%) than Model C, which 

proves that the addition of LSR plays a role in 

improving accuracy. The summary of our experiment is 

shown in Figure 17. 

 
Figure 17 Overall Accuracy of Model A, B, and C on UC-Merced, 

AID, and WHU-RS19 datasets. 

Our proposed model is a new architecture integrating 

attention mechanism with backbone CNN models, in 

this case, state-of-the-art models. In this section, we 

also show how our accuracy compares with other 

literature for each dataset. The comparisons in UC-

Merced, AID, and WHU-RS19 are shown in Table 6,  

, and Table 8, respectively.  

Table 6 Comparison of Accuracy in UC Merced with Other 

Literature 

Model Accuracy (%) 

Compact Deep Color Features [24] 97.40±0.62 

ResNet-50+EAM [11] 98.98±0.37 

VGG-VD16+SAFF [8] 97.02±0.78 

ResNet-101+CBAM [15] 98.71±0.46 

EfficientNetV2L [25] 97.38 

VGG-VD16+MICP+multi-size [26] 98.70±0.43 

InceptionV3 (Transfer Learning) [6] 98.30 

RSCNet [17] 99.05 

Model C (ours) 99.00±0.41 
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Figure 18  Confusion Matrix of Model A on WHU-RS19 dataset (in percentages) 

 

Figure 19 Confusion Matrix of Model C on WHU-RS19 dataset (in percentages) 
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In this paper, we will emphasize the comparison of this 

model with other models that also use ECANet to solve 

the problem of RSSC. The first is [10], which integrated 

the ECA module in each residual block of ResNet34 

and obtained an accuracy improvement of 0.75% over 

the base model in AID (as shown in Error! Not a valid 

bookmark self-reference.). They also proved that 

ECANet can produce higher accuracy than SENet and 

CBAM. However, overall, our proposed model, which 

only adds ECANet after each stage instead of at each 

smallest unit block, can obtain higher accuracy 

(95.08%) than this model. 

Table 7 Comparison of Accuracy in AID with Other Literature 

Model Accuracy (%) 

VGG-VD16+SAFF [8] 93.83±0.28 

VGG16-CapsNet [27] 94.74±0.17 

Compact Deep Color Features [24] 94.30±0.24 

VGG-VD16+MICP [26] 94.94±0.34 

ResNet34 Standard [10] 93.35 

ECA-ResNet34 Standard [10] 94.10 

Model C (ours) 95.08±0.20 

Table 8 Comparison of Accuracy in WHU-RS19 with Other 

Literature 

Model Accuracy (%) 

EfficientNetB3+Attention2 [28] 99.47±0.20 

Model C (ours) 99.50±0.31 

The second model is RSCNet [17], which uses the basic 

ShuffleNet network. There is only one ECANet module 

added which is after the Conv5 block before the last 

GAP and Fully Connected layers. This model obtained 

slightly higher accuracy (99.05% on UC-Merced, 

shown in Table 6) than our proposed model, but it was 

trained with a very large number of epochs (200) and a 

fsmall batch size (16). In other words, it can be 

concluded that our proposed model is a trade-off 

between accuracy, complexity, and training time. 

Model C obtained high Accuracy values of over 99% 

on the UC-Merced and WHU-RS19 datasets, while 

only 95% on the AID dataset. This shows that the 

proposed model is only able to achieve high Accuracy 

on small-sized datasets (UC-Merced and WHU-RS). It 

still struggles to achieve high Accuracy on large 

datasets, which have higher semantic variance and 

intra-class variance, and lower inter-class variance. 

Many solutions can be proposed to address this 

problem. From the model perspective, the model can be 

modified so that ECANet is inserted after each 

ConvNeXt block, rather than after each ConvNeXt 

stage which we used in this experiment. It should 

further improve the model's ability to reduce 

unimportant features from the feature map. However, it 

will also increase the training time. 

From the data perspective, more image augmentation 

can be done to address the issue of high intra-class 

variance and low inter-class variance. There are cutting-

edge image augmentation algorithms such as Cutout, 

CutMix and MixUp that can be employed to increase 

the accuracy of the RSSC model. For datasets with large 

image sizes such as AID, we could also consider using 

larger image sizes as input to CNN (e.g. 299×299), to 

dampen the effect of interpolation during the resize 

process. 

4. Conclusions 

Experiments have been conducted to perform Remote 

Sensing Scene Classification (RSSC) using the 

ConvNeXt-Tiny CNN deep learning model integrated 

with an Efficient Channel Attention (ECANet) Module 

and label smoothing regularization (LSR). ECANet is 

placed after each stage in ConvNeXt-Tiny so that in 

total four ECANets are added. We used the ImageNet 

pre-trained weights for the ConvNeXt-Tiny backbone. 

The activation function used to perform the final 

classification was softmax. The model was trained and 

tested on three datasets: UC-Merced, AID, and WHU-

RS19. It has been shown that integrating ECANet in 

ConvNeXt-Tiny with LSR has increased the accuracy 

of the model in the RSSC task. The ConvNeXt-Tiny 

model with ECANet integration and LSR obtained an 

Accuracy of 99.00±0.41% in UC-Merced, 

95.08±0.20% in AID, and 99.50±0.31% in the WHU-

RS19, which are 0.38%, 0.73%, and 0.4% higher than 

its ConvNeXt-Tiny without ECANet and LSR 

counterpart, respectively. The model still has 

drawbacks in addressing low inter-class and high inter-

class variance in large datasets, so we propose to 

optimize the model and perform more image 

augmentation in future research. 
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