
 Received: 19-03-2024 | Accepted: 16-05-2024 | Published Online: 01-06-2024

346

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 3 (2024) 346 - 354 e-ISSN: 2580-0760

Comparative Analysis of Hybrid Model Performance Using Stacking and

Blending Techniques for Student Drop-Out Prediction in MOOC

Muhammad Ricky Perdana Putra1, Ema Utami2
1,2Magister of Informatics Engineering, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia

1muhammad.ricky@students.amikom.ac.id, 2ema.u@amikom.ac.id

Abstract

Despite being in high demand as a lifelong learner and academic material supplement, the implementation of Massive Open

Online Courses (MOOC) has problems, one of which is the dropout rate (DO) of students which reaches 93%. As one of the

solutions to this problem, Machine Learning can be utilized as a risk management and early warning system for students who

have the potential to drop out. The use of ensemble techniques to build models can improve performance, but previous research

has not reviewed the most optimal ensemble technique for this case study. As a form of contribution, this study will compare

the performance of models built from stacking and blending techniques. The algorithms used in the base model are KNN,

Decision Tree, and Naïve Bayes, while the meta-model uses XGBoost. These algorithms are used to build models with stacking

and blending techniques. The experimental results using stacking are 82.53% accuracy, 84.48% precision, 94.12% recall, and

89.04% F1-Score. Meanwhile, blending obtained 83.39% accuracy, 85.31% precision, 94.21% recall, and 89.54% F1-Score.

These results are supported by model testing using k-fold cross-validation and confusion matrix techniques which show the

same results. That is, blending is 0.86% higher than stacking so it can be concluded that blending has better performance than

stacking in the MOOC student dropout prediction case study.

Keywords: machine learning, classification, stacking, blending, MOOC

How to Cite: Muhammad Ricky Perdana Putra and Ema Utami, “Comparative Analysis of Hybrid Model Performance Using

Stacking and Blending Techniques for Student Drop Out Prediction In MOOC”, J. RESTI (Rekayasa Sist. Teknol. Inf.), vol. 8,

no. 3, pp. 346 - 354, Jun. 2024.

DOI: https://doi.org/10.29207/resti.v8i3.5760

1. Introduction

Massive Open Online Course (MOOC) was developed

to fulfil the needs of lifelong learners or as a supplement

to formal education learning [1]. Although the

enthusiasm of students is quite high, the reality of

MOOC implementation is not free from problems. One

of them is the dropout rate, which reaches 66% to 93%

[2], [3]. The causes vary, ranging from lack of social

support, motivation, and perseverance [4], difficulty

understanding the material, lack of interaction with the

instructor [5], lack of understanding of learning goals

and intentions [6] and lack of peer support [7] -[9].

The impact of students who drop out includes difficulty

getting adequate employment and income in the future,

thus worsening economic and social conditions [4],

while MOOC organisers can affect reputation,

rankings, and income [10]. Therefore, risk management

and early warning systems specifically for students who

have the potential to drop out are needed, one of which

is by utilising ML technology such as using

classification algorithms.

As a prediction system, ML can provide notifications to

learners and instructors on a regular basis. For the

learners, this can be used as motivation to continue

completing the course. As for the instructor, it can be

used as a basis for providing motivation and special

attention because it can reduce the potential for

dropouts by 14% [11]. In addition, for the course

organisers, the prediction results can be used to simplify

the learning path or adjust the material provided [12].

There are several classification algorithms that are

popular and used by previous researchers including

Logistic Regression (LR), K-Nearest Neighbor (KNN),

and Random Forest (RF) [2]. The research was

conducted by Zengxiao Chi, Shuo Zhang, and Lin

Shing. The dataset used from the HarvardX Platform

MOOC in the range of 2012 to 2013 with data totalling

416,921 rows and 21 features. After the pre-processing

https://doi.org/10.29207/resti.v8i3.5760

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 347

stage, 241,992 lines were filtered. Model testing was

done with 5-fold cross-validation. In this study, RF

obtained the highest accuracy value of 91.72%. Even

so, these results can still be improved.

One way to improve the performance of ML models is

ensemble learning. The ensemble is done by combining

models in the first layer called weak learners that

function as complex non-linear feature conversions and

the second layer called meta learners utilizes residues

from previous models [13]. There are four techniques

for building ensemble models including bootstrap

aggregating (bagging), boosting, stacking, and

blending. An example of a model built from bagging

techniques is Random Forest, while an example of

boosting is the Extreme Gradient Boosting (XGBoost)

algorithm [14].

Stacking and blending techniques are built from

multiple base models and one meta-model. The

difference between the two techniques lies in the

division of the dataset. If stacking uses a dataset that is

divided into two for training and testing, in blending the

training data is separated into ensemble and blender

[13], [14]. The ensemble data is used to train the base

model and tested with blender data. The results are

combined with blender data as new attributes trained on

the metamodel and then tested with testing data. This

makes blending not use overlapping data compared to

stacking which in fact stacks prediction results data

together for training and testing.

In the case study of dropout prediction in a massive

open online course (MOOC), the use of ensemble

algorithms built with stacking or blending techniques

can improve the performance of the prediction model.

One of the ensemble models proposed by Kumar et al.

is called Ensemble Deep Learning Network (EDLN)

[15]. The dataset used is KDD Cup 2015 which contains

student activity logs on XuetangX MOOC from China.

The data selected is the first five weeks. The results of

the study obtained an accuracy value of 97.4%. The

accuracy value is still not confirmed for complex data

during a one-course period.

Research conducted by Shou et al. by building a

Multiscale Full Convolutional Network and Variational

Information Bottlenecks (MFCN-VIB) [16]. The model

can overcome noise in student behaviour time series

data that may cause interference. The dataset used is the

same as previous research, namely KDD Cup 2015. The

results of this study are a precision value of 0.887, recall

0.960, F1-Score 0.922, and AUC 0.872. One of the

weaknesses of this research is that the model built is

quite complex so the execution time is longer, namely

133 seconds. In addition, the accuracy value is not

written.

Another ensemble model proposed by Fu et al. called

CLSA is a combination of Convolutional Neural

Network (CNN) and Bi Long Short-Term Memory

(LSTM) [17]. The dataset used is the same as previous

research, namely KDD Cup 2015 which has been pre-

processed so that 60 thousand activity log data from 12

thousand student data are randomly selected and 7

features are selected related to behavioural

characteristics in the first to fifth week. With CLSA, the

accuracy was increased by 2.8% from the basic model

to 87.6%.

Although the three studies above have concluded that

ensemble can improve model performance, they still do

not explain the most optimal ensemble technique to use

between stacking and blending. Therefore, this study

will conduct a comparative analysis of the performance

of ensemble algorithms with stacking and blending

techniques to determine the most optimal technique for

improving model performance. To get accurate results,

the datasets and algorithms used are made the same.

In order not to widen the research conducted, there are

several limitations, namely the type of data used is

single data and not time series data, hybrid models built

for academic research purposes and not used for

implementation in MOOCs and not for optimal learning

path customization. The research starts from a literature

study, model building is done with Google Colab using

Python programming language and supported by

libraries from SK-Learn, obtaining test results and

conducting descriptive analysis to determine the most

optimal ensemble technique.

2. Research Methods

This research compares the prediction performance of

hybrid models built with stacking and blending

techniques. In order to get an equal comparison, the

base learner algorithms used include KNN, Decision

Tree (DT), and Naïve Bayes. The meta-learner

algorithm used is Extreme Gradient Boosting

commonly abbreviated as XGBoost. An explanation of

the flow and reasons for selecting the four algorithms

will be explained in the next paragraph below.

The dataset used in this study is the same as the previous

three studies, namely KDD Cup 2015. The dataset was

uploaded by contributor Anas Nofal on Kaggle.com and

can be downloaded for free

(https://www.kaggle.com/datasets/anasnofal/mooc-

data-xuetangx) and processed into frequency per

activity log. The raw data

(http://moocdata.cn/data/user-activity) is in JSON

(JavaScript Object Notation) format, while the data that

has been processed based on frequency is presented in

tabulations.

The class distribution in the training data is 137,237 DO

classes and 43,476 non-DO classes. The percentage

comparison is 75.95% and 24.05%. Meanwhile, the

class distribution in the test data is 33,896 DO classes

and 11,033 non-DO classes. The percentage

comparison is 75.44% and 24.56%. This is in

accordance with the results of previous research [2][3].

Visually, the class distribution on the training and test

data is presented in Figure 1 and Figure 2.

https://www.kaggle.com/datasets/anasnofal/mooc-data-xuetangx
https://www.kaggle.com/datasets/anasnofal/mooc-data-xuetangx
http://moocdata.cn/data/user-activity

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 348

Figure 1. Training Data Class Distribution

The research flow begins with a literature study aimed

at finding research gaps or practical problems related to

the case used as the object of research. Furthermore,

collecting datasets from the site previously described.

The pre-processing stage carried out is (1) ensuring data

in the form of numerical numbers, (2) replacing empty

values (null) to 0, (3) feature selection, and (4) data

scaling which aims to optimize the potential for

increasing data accuracy [18]. The type of scaling

performed is Standard Scaler with the aim of making

the average zero and variance one [19].

Figure 2. Testing Data Class Distribution

In the feature selection sub-stage, was done manually

by selecting features related to user activity logs only

and 22 features were successfully selected. The manual

feature selection method can be further optimized by

utilizing feature weighting techniques or genetic

algorithms so that only strong features are selected. This

can be used as a topic for further research. Then, to find

out the correlation between features, it is visualized

with a heatmap as in Figure 3.

Figure 3. Feature Correlation Heatmap

After pre-processing, data splitting is done. The

stacking technique does not require data splitting

anymore because it only uses training data and test data.

Meanwhile, the blending technique requires splitting

the training data with a ratio of 60:40 so that it becomes

ensemble data totalling 108,427 and blender data

totalling 72,286. The class distribution on the ensemble

data is 82,515 DO classes and 25,912 non-DO classes.

And then, the class distribution on the blender data is

54,722 DO classes and 17,564 non-DO classes.

Visually, the class distribution on the training and test

data is presented in Figure 4 and Figure 5.

The ready data will be subjected to data training and

testing processes with three algorithms in the first layer

including KNN, Decision Tree, and Naïve Bayes. The

stacking technique performs training and testing using

training data and test data. While the blending technique

conducts training with ensemble data and testing with

137237

43476

0

20000

40000

60000

80000

100000

120000

140000

160000

DO No DO

C
o

u
n

t
Data Training

33896

11033

0

5000

10000

15000

20000

25000

30000

35000

40000

DO No DO

C
o

u
n

t

Data Test

 Click About 1,00 0,48 0,37 0,66 0,27 0,40 0,01 0,25 0,16 0,07 0,03 0,43 0,33 0,23 0,21 0,23 0,09 0,02 0,09 0,06 0,18 0,05

 Click Courseware 0,48 1,00 0,36 0,68 0,52 0,87 0,01 0,21 0,17 0,08 0,04 0,85 0,63 0,49 0,47 0,49 0,26 0,05 0,20 0,11 0,37 0,10

 Click Forum 0,37 0,36 1,00 0,55 0,34 0,32 0,02 0,57 0,38 0,25 0,21 0,28 0,23 0,19 0,19 0,22 0,11 0,03 0,12 0,03 0,17 0,02

 Click Info 0,66 0,68 0,55 1,00 0,53 0,60 0,01 0,30 0,24 0,11 0,07 0,57 0,45 0,37 0,38 0,41 0,20 0,04 0,16 0,11 0,30 0,06

 Click Progress 0,27 0,52 0,34 0,53 1,00 0,45 0,01 0,16 0,16 0,05 0,03 0,41 0,33 0,27 0,44 0,46 0,27 0,04 0,20 0,12 0,25 0,05

 Close Courseware 0,40 0,87 0,32 0,60 0,45 1,00 0,01 0,22 0,19 0,09 0,05 0,85 0,62 0,52 0,49 0,49 0,27 0,07 0,19 0,09 0,40 0,12

 Close Forum 0,01 0,01 0,02 0,01 0,01 0,01 1,00 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,02 0,00 0,03 0,00 0,00 0,00 0,01 0,00

 Create Comment 0,25 0,21 0,57 0,30 0,16 0,22 0,01 1,00 0,38 0,38 0,24 0,20 0,15 0,12 0,12 0,16 0,05 0,02 0,09 0,00 0,12 0,01

 Create Thread 0,16 0,17 0,38 0,24 0,16 0,19 0,01 0,38 1,00 0,16 0,24 0,18 0,13 0,12 0,14 0,15 0,08 0,03 0,07 0,02 0,11 0,02

 Delete Comment 0,07 0,08 0,25 0,11 0,05 0,09 0,00 0,38 0,16 1,00 0,51 0,07 0,05 0,04 0,04 0,05 0,02 0,01 0,03 0,00 0,04 0,00

 Delete Thread 0,03 0,04 0,21 0,07 0,03 0,05 0,00 0,24 0,24 0,51 1,00 0,04 0,03 0,03 0,03 0,03 0,02 0,01 0,01 0,00 0,03 0,00

 Load Video 0,43 0,85 0,28 0,57 0,41 0,85 0,01 0,20 0,18 0,07 0,04 1,00 0,68 0,59 0,50 0,51 0,27 0,06 0,18 0,10 0,45 0,11

 Pause Video 0,33 0,63 0,23 0,45 0,33 0,62 0,01 0,15 0,13 0,05 0,03 0,68 1,00 0,97 0,38 0,37 0,24 0,05 0,16 0,10 0,64 0,06

 Play Video 0,23 0,49 0,19 0,37 0,27 0,52 0,01 0,12 0,12 0,04 0,03 0,59 0,97 1,00 0,35 0,33 0,22 0,05 0,15 0,09 0,66 0,06

 Problem Check 0,21 0,47 0,19 0,38 0,44 0,49 0,02 0,12 0,14 0,04 0,03 0,50 0,38 0,35 1,00 0,86 0,77 0,09 0,17 0,14 0,33 0,05

 Problem Check Correct 0,23 0,49 0,22 0,41 0,46 0,49 0,00 0,16 0,15 0,05 0,03 0,51 0,37 0,33 0,86 1,00 0,52 0,08 0,29 0,15 0,30 0,05

 Problem Check Incorrect 0,09 0,26 0,11 0,20 0,27 0,27 0,03 0,05 0,08 0,02 0,02 0,27 0,24 0,22 0,77 0,52 1,00 0,10 0,15 0,13 0,23 0,02

 Problem Get 0,02 0,05 0,03 0,04 0,04 0,07 0,00 0,02 0,03 0,01 0,01 0,06 0,05 0,05 0,09 0,08 0,10 1,00 0,04 0,01 0,04 0,00

 Problem Save 0,09 0,20 0,12 0,16 0,20 0,19 0,00 0,09 0,07 0,03 0,01 0,18 0,16 0,15 0,17 0,29 0,15 0,04 1,00 0,13 0,15 0,01

 Reset Problem 0,06 0,11 0,03 0,11 0,12 0,09 0,00 0,00 0,02 0,00 0,00 0,10 0,10 0,09 0,14 0,15 0,13 0,01 0,13 1,00 0,07 0,01

 Seek Video 0,18 0,37 0,17 0,30 0,25 0,40 0,01 0,12 0,11 0,04 0,03 0,45 0,64 0,66 0,33 0,30 0,23 0,04 0,15 0,07 1,00 0,04

 Stop Video 0,05 0,10 0,02 0,06 0,05 0,12 0,00 0,01 0,02 0,00 0,00 0,11 0,06 0,06 0,05 0,05 0,02 0,00 0,01 0,01 0,04 1,00 C
lic

k
 A

b
o

u
t

 C
lic

k
 C

o
u

rse
w

a
re

 C
lic

k
 F

o
ru

m

 C
lic

k
 In

fo

 C
lic

k
 P

ro
g

ress

 C
lo

se
 C

o
u

rse
w

a
re

 C
lo

se
 F

o
ru

m

 C
rea

te
 C

o
m

m
e
n

t

 C
rea

te
 T

h
re

a
d

 D
e
le

te
 C

o
m

m
e
n

t

 D
e
le

te
 T

h
re

a
d

 L
o

a
d

 V
id

e
o

 P
a
u

se
 V

id
e
o

 P
la

y
 V

id
e
o

 P
ro

b
le

m
 C

h
e
c
k

 P
ro

b
le

m
 C

h
e
c
k

 C
o

rre
c
t

 P
ro

b
le

m
 C

h
e
c
k

 In
co

rre
c
t

 P
ro

b
le

m
 G

e
t

 P
ro

b
le

m
 S

a
v

e

 R
ese

t P
ro

b
le

m

 S
e
e
k

 V
id

e
o

 S
to

p
 V

id
e
o

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 349

blender data and testing data. In stacking the test results

are collected into one new data frame and in blending

the test results are used as new features in the blender

data and testing data.

Figure 4. Ensemble Data Class Distribution

Figure 5. Blender Data Class Distribution

KNN was chosen because it was widely used by

previous researchers such as Nithya and Umarani [20]

and Chi et al. [2]. The advantages of KKN are the

flexibility of the k value that can be changed according

to certain needs or conditions, for example, based on

mean error, suitable for binary classification, and

effective on data that is complex enough to produce

more accurate predictions [21]. The value of k in the

KNN algorithm is determined based on the results of

pre-research using the dataset presented in graph form

in Figure 6, showing that k=9 has the lowest mean error

value.

Figure 6. Error Rate k Value

KNN aims to find the closest distance or the highest

similarity value. The stages in building the KNN model

are (1) determining the value of k, (2) calculating the

Euclidean distance with the formula in Formula 1, (3)

determining the closest distance with the minimum

distance in K, (4) the nearest neighbor label and the

dominant label are used to predict the new data class. In

addition, KNN prediction can be determined from the

similarity formula written in Formula 2.

𝐷 = √(𝑋1 − 𝑌1)2 + (𝑋2 − 𝑌2)2 (1)

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑇, 𝑆) =
∑ 𝑓 (𝑇𝑖, 𝑆𝑖) 𝑥 𝑤𝑖

𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (2)

DT as the second base model was chosen because it can

find unexpected data patterns, is suitable for

classification [22], produces acceptable accuracy

values, and can handle numeric data [23]. Therefore, in

the pre-processing stage, all data is ensured to be

numeric in order to produce maximum accuracy in DT.

Previous studies that applied DT are Park and Yoo [24],

and Moreno-Marcos et al. [8].

There are three components in a decision tree including

roots, branches, and leaves. The feature used as the root

or root node is determined through the gain formula in

Formula 3. To find the gain value, it is necessary to

know the entropy through the formula in Formula 4.

After all attributes become branches, the leaves can be

determined whose values are classification labels.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = ∑ − 𝑝𝑖 ∗ log2𝑝𝑖𝑛
𝑖=1 (3)

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) − ∑
|𝑆𝑖|

|𝑆|

𝑛

𝑖=1
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑖) (4)

Similar to the other two base model algorithms, Naïve

Bayes functions as a non-linear feature converter. Some

of the advantages of Naïve Bayes are simplicity, fast

training and execution time, and good performance

[17][18]. The Naïve Bayes algorithm is processed based

on the equation proposed by Thomas Bayes and known

as Bayes Theorem with the formula written in Formula

5 and can determine the probability value of the target

class.

𝑃 (𝐻|𝑋) =
𝑃 (𝑋|𝐻) 𝑃(𝐻)

𝑃(𝑋)
 (5)

The notation in Bayes Theorem is divided into two

variables, X as the sample data of the unknown class

and C as the hypothesis that X is the class data. P(X|C)

is the probability based on the conditions in the

hypothesis, P(X) is the probability of the observed

sample data, and P(C) is the probability of the

hypothesis C. The largest probability will be chosen as

the prediction result. Previous research using Naïve

Bayes is Zheng et al. [25].

The second layer uses the XGBoost algorithm. New

frame data in stacking is used as training data and

testing is done using testing data. In addition, in

blending, blender data that has been added with features

is used as training data and testing data that has been

added with features is used as test data. Then, the test

results are presented in tabulated form for easy reading

and understanding.

The selection of the XGBoost algorithm is used as a

meta-learner to utilize the previous model residue in the

form of base model prediction results. XGBoost is an

82515

25912

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

DO No DO

C
o

u
n

t

Data Ensemble

54722

17564

0

10000

20000

30000

40000

50000

60000

DO No DO

C
o

u
n

t

Data Blender

0,229

0,254

0,193
0,201

0,180 0,184
0,176 0,177

0,172

0,16

0,18

0,2

0,22

0,24

0,26

1 2 3 4 5 6 7 8 9

Error Rate K Value

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 350

algorithm that applies the concept of Gradient Boosting

Decision Tree (GBDT) [26] while improving

performance by adjusting iterative learning features to

reduce the loss function [27]. The use of XGBoost was

conducted by Wunnasri et al. [28] which is intended for

the first phase of the model as a classification algorithm.

The advantage of XGBoost is that the computational

process is 10 times faster and the accuracy value is

higher than Random Forest [29]. The prediction

concept in XGBoost utilizes a decision tree. Formula 6

is a differentiable loss function to measure whether the

model that has been built matches the training data and

Formula 7 determines the complexity of the model [30].

As the complexity of the model increases, the

corresponding score will decrease in value.

𝛾1 = ∑ 𝑓𝑘 (𝑋𝑖), 𝑓𝑘 ∈ 𝐹
𝐾

𝑘
 (6)

𝑜𝑏𝑗(𝜃) = ∑ 𝑙 (𝑦𝑖 , 𝛾1) +
𝑛

𝑖=0
∑ Ω (𝑓𝑘)

𝐾

𝑘
 (7)

To validate the prediction results of the model that has

been built, k-fold cross-validation and confusion matrix

techniques are performed. To perform validation

testing, all datasets that have been split will be

combined into one and then processed or will be split

again based on the iteration of the k-fold. Each k-fold

iteration is calculated for accuracy, precision, recall,

and F1-Score. These results will be compared and

analyzed to produce a conclusion.

The research flow is designed and structured to get

comparable results by making the same treatment,

starting from the dataset used, pre-processing, the

algorithm used, and the test validation technique. The

difference is the separation of datasets, the training for

the second layer model, namely stacking, uses the test

results from the first layer which are stacked while

blending uses the test results from the first layer to be

used as additional features. Visually, the research flow

is presented in Figure 7.

Figure 7. Research Flow

3. Results and Discussions

First, a hybrid model was built with the stacking

technique. Training 180,713 data with KNN, Decision

Tree, and Naïve Bayes algorithms and testing was done

with 44,929 data. The k-fold value chosen is five which

means the data will be divided into five subsets, one

subset is used as testing and the other is used as training.

For each iteration, the confusion matrix will be

calculated. In addition, the execution time is also

calculated to determine the prediction speed.

The test results of the first three layers of algorithms,

namely KNN, get an accuracy value of 82.43%,

precision of 85.10%, recall of 92.99%, and F1-Score of

88.88%. Decision Tree results are 76.97% accuracy,

84.25% precision, 85.44% recall, and 84.84% F1-

Score. Then, the results of Naïve Bayes are accuracy

81.08%, precision 82.47%, recall 95.14%, and F1-

Score 88.35%. Furthermore, k-fold cross-validation

and confusion matrix testing are presented in Table 1.

KNN has the flexibility to determine the k value as the

nearest neighbor circumference. The greater the value

of k, the more neighbors there are so that it makes

predictions more accurate, especially if the data

classification is binary because the label is determined

based on the majority of labels. However, prediction

using KNN has the disadvantage of requiring a fairly

long execution time on average of 213.00 seconds so

the KNN model is suitable for predictions that require

high accuracy and ignore execution time.

In addition, Naïve Bayes gets the fastest average

execution time which is less than one second to be

precise 0.29. Although the accuracy value obtained is

not as good as KNN. Then, the DT algorithm gets the

lowest accuracy value because it is unable to handle the

complexity of the attributes used. The more branches

that are built, the more complex the decision. So, DT is

more suitable for data that has fewer attributes and

according to Ang Ji and David Levinson's research

bootstrap aggregating (bagging) techniques can

overcome these problems [31]. One implementation of

the bagging technique is Random Forest which was

introduced by Leo Breiman in 2001.

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 351

Table 1. Stacking Technique Base Model Testing Results

Model Test Variable Iteration Mean

1 2 3 4 5

KNN Accuracy 82,94 82,64 82,60 82,93 82,79 82,78

Precision 85,51 85,07 85,35 85,68 85,40 85,40

Recall 93,93 93,31 93,08 93,10 93,29 93,23

F1-Score 89,26 89,00 89,05 89,24 89,17 89,14

Execution Time 222,29 216,17 212,03 206,55 207,95 213,00

Decision

Tree

Accuracy 77,06 76,94 76,89 77,44 77,04 77,07

Precision 84,42 84,19 84,49 84,87 84,62 84,52

Recall 85,58 85,39 85,23 85,58 85,28 85,41

F1-Score 85,00 84,79 84,86 85,22 84,95 84,96

Execution Time 3,46 2,70 3,20 2,36 2,24 2,79

Naïve Bayes Accuracy 81,38 80,86 80,96 81,58 81,08 81,17

Precision 82,71 82,16 82,44 82,80 82,39 82,50

Recall 95,43 95,23 95,22 95,63 95,51 95,41

F1-Score 88,62 88,22 88,37 88,75 88,47 88,49

Execution Time 0,29 0,27 0,30 0,28 0,30 0,29

Next, meta-model building with XGBoost. The

XGBoost library has been developed by the Distributed

Machine Learning Community (DMLC). Residual data

collected from the previous three base models are

combined into one data frame for retraining with

XGBoost. The test results show the accuracy value of

the stacking model is 82.53%, precision 84.48%, recall

94.12%, and F1-Score 89.04%. Then, the results of

testing the stacking model with k-fold cross-validation

and confusion matrix techniques are shown in Table 2.

Table 2. Stacking Technique Hybrid Model Testing Results

Model Test Variable
Iteration

Mean
1 2 3 4 5

Ensemble

Stacking

Accuracy 83,15 82,70 82,65 83,17 82,80 82,89

Precision 84,93 83,93 84,64 85,05 85,87 84,88

Recall 94,59 95,25 94,28 94,45 92,60 94,23

F1-Score 89,50 89,23 89,20 89,51 89,11 89,31

Execution Time 211,84 232,16 212,32 212,15 211,59 216,01

Utilization of the previous residue makes XGBoost get

an average value at a k-fold of 82.89%. While the

average accumulation on the base model is 80.34% it

can be concluded that the hybrid model built with the

stacking technique can improve performance by 2.55%.

However, in terms of execution time, XGBoost takes

quite a long time, which is an average of 216.01

seconds. This is due to the complexity of the XGBoost

algorithm and can be reviewed for further research

regarding the most optimal and fast algorithm to be used

as a metamodel.

Second, the next experiment is to build a model with the

blending technique. Slightly different from stacking,

blending does not use the base model test results as

training data on the meta-model but the test results will

be added to the blender data and testing data as new

attributes and will be trained on the meta-model so that

initially 22 features become 25 features. The large

amount of data and features used can affect

performance, but the blending technique can overcome

this by separating the training data in each layer so that

it does not accumulate like stacking.

The amount of training data or ensemble in the base

model is 108,427 and the test data or blender is 72,286.

After training and testing data, KNN produces an

accuracy of 82.65%, precision of 85.27%, recall of

93.19%, and F1-Score of 89.05%. Decision Tree

obtained an accuracy value of 76.90%, precision of

84.28%, recall of 85.41%, and F1-Score 84.84%. Then,

Naïve Bayes gets an accuracy value of 81.19%,

precision of 82.61%, recall of 95.19%, and F1-Score of

88.46%. The difference in general, the average

execution time on blending is faster because the amount

of data used is less. The complete results of k-fold cross-

validation and confusion matrix testing are presented in

Table 3.

The data pattern in these results is the same as the base

model stacking test. KNN gets the highest score in

terms of accuracy. Compared to stacking, KNN on

blending gets a higher accuracy value of 0.20% and the

execution time is faster. Then, the Decision Tree gets

the lowest accuracy value compared to the other two

algorithms and there is an increase in the accumulated

accuracy value of 0.24%. The same thing happens to

Naïve Bayes, which is an increase of 0.12%. Here Naïve

Bayes is the algorithm with the fastest execution time

which only takes 0.27 seconds to do prediction. As

explained earlier, the results are not put together in the

frame data as in the stacking technique, but the results

are put together with blender data and testing data as

new features named 'knn_predictions', 'dt_predictions',

'nb_predictions'. Previously, the features used were 22

features, then three new features were added so that

there were 25 features. The assumption of adding these

new features is that there is an expected performance

improvement when tested with k-fold cross-validation

and confusion matrix.

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 352

Table 3. Blending Technique Base Model Testing Results

Model Test Variable Iteration Mean

1 2 3 4 5

KNN

Accuracy 82,74 82,64 82,79 83,07 82,78 82,80

Precision 85,28 85,26 85,39 85,81 85,40 85,43

Recall 93,30 93,18 93.28 93.27 93,28 93,26

F1-Score 89,11 89,04 89,16 89,39 89,17 89,17

Execution Time 183,42 218,82 188,79 164,11 160,06 183,04

Decision

Tree

Accuracy 77,11 77,08 77,37 77,53 77,45 77,31

Precision 84,40 84,49 84,62 85,12 84,76 84,68

Recall 85,57 85,40 85,77 85,56 85,72 85,60

F1-Score 84,98 84,94 85,19 85,34 85,24 85,14

Execution Time 3,04 2,57 2,16 1,86 1,88 2,30

Naïve Bayes Accuracy 81,17 81,19 81,14 81,78 81,17 81,29

Precision 82,59 82,58 82,53 83,31 82,52 82,71

Recall 91,18 95,25 95,31 95,24 95,42 95,28

F1-Score 88,44 88,46 88,46 88,88 88,50 88,55

Execution Time 0,19 0,19 0,21 0,24 0,21 0,21

After training using blender data, then testing using test

data. The following are the results of testing the

blending technique, namely accuracy 83.39%, precision

85.31%, recall 94.21%, and F1-Score 89.54%.

Compared to stacking, there is an increase of 0.86%.

The difference as well as the improvement occurred due

to the dataset and mechanism in the meta-model. There

are fewer datasets in blending so the complexity is

lower. The construction of the meta-model from

XGBoost which utilizes blender data with new features

for training and testing data for testing is more effective

than stacking which uses test data for training as well as

testing on the meta model. Furthermore, the test results

using k-fold cross-validation and confusion matrix are

presented in Table 4.

Table 4. Blending Technique Hybrid Model Testing Results

Model Test Variable
Iteration

Mean
1 2 3 4 5

Ensemble

Blending

Accuracy 83,60 83,56 83,38 83,90 83,46 83,58

Precision 85,63 85,44 85,46 85,81 85,46 85,56

Recall 94,22 94,20 94,14 94,44 94,27 94,25

F1-Score 89,72 89,61 89,59 89,92 89,65 89,70

Execution Time 365,19 334,87 369,51 391,92 370,49 366,40

Based on testing on k-fold cross-validation, the

difference in the highest accuracy value in stacking and

blending is 0.88%. This proves that the hybrid model

built with blending has a better performance value than

stacking. However, in terms of execution time, stacking

is faster than blending with a difference of 134.41

seconds. This is because the features used for training

are fewer in stacking which is only three features while

blending is 25 features.

Then, in other confusion matrix values such as

precision, recall, and F1-Score, blending is higher than

stacking. Precision gives an idea of how the model can

predict the positive class correctly among all positive

predictions. Recall, also called sensitivity, is an

evaluation to describe how well a model can correctly

identify the positive class. Finally, the F1-Score reflects

the balance between precision and sensitivity. In other

words, F1-Score gives an idea of how good the model

is at predicting true positives and true negatives.

In general, the results of this study are in line with the

research results of previous studies that ensemble can

improve the performance value of hybrid models.

Blending has better precision, recall, and F1-Score

compared to the MFCN-VIB model proposed by Shou

et al. and claimed to be able to overcome noise [16].

However, in the variable execution time, MFCN-VIB is

faster with a considerable difference of 203.14 seconds.

Another difference is in the type of data used, MFCN-

VIB uses time series data while blending uses a single

time series data.

The CLSA model proposed by Fu et al. and is a

combination of CNN and Bi-LSTM algorithms [17] has

a lower difference of 1.75% with blending, namely

CLSA getting 87.4%. The dataset used is also different

because CLSA only used 60 thousand data and selected

seven features related to the characteristics of students

in the first week to the fifth week. Meanwhile, stacking

and blending used all the data in KDD Cup 2015. The

number of features used is different and the complexity

of the hybrid model built is also different.

Finally, research was conducted by Kumar et al. with an

ensemble model called EDLN [15]. The dataset used

was only the first five weeks of the course and the

amount of data was not written. The accuracy of the

model is 97.4%. These results are influenced by the

amount of data used and cannot be confirmed for the

same results on complex data and over a specific period.

In comparison, in this research, the blending achieved

an accuracy of 89.35% and was built with all the data

used in the 2015 KDD Cup with a total of 225k data,

making it more complex.

Despite getting good results, this research still has

weaknesses including the hybrid model of the blending

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 353

technique still has the longest execution time and there

is no testing based on the Area Under Curve (AUC)

which can visualize all possible classification

thresholds [32]. Future research can experiment with

finding the best combination of algorithms that can

reduce the execution time to be built in hybrid with

blending techniques or apply metaheuristic type

optimization techniques.

4. Conclusions

The results prove that ensemble or hybrid models can

improve accuracy. This is in line with the results of the

three studies listed in the previous section. However,

there are some things that differ such as the amount and

shape of the data as well as the complexity or

combination of algorithms chosen to build the model.

Building a hybrid model with stacking gets an accuracy

value of 82.53% while blending gets an accuracy value

of 83.39%. This means that blending gets 0.86% higher

results in the case study of dropout students in MOOCs

with data classification in the form of binary, single data

and not time series.

In addition, as a result of the additional lines of code in

the hybrid model, the model execution time becomes

longer. This can be a gap for further research to

improvise the model so that the execution time is faster.

In addition, related to the related features used, can be

reviewed and selected again to ensure the correlation

between features is strong, such as using genetic

algorithms. Then, it can use metaheuristic optimization

techniques such as Particle Swarm Optimization (PSO),

Ant Colony, or Komodo Mlipir Algorithm (KMA).

The results of this research are expected to provide

inspiration and reference for similar research, namely

dropout prediction in MOOCs using ensemble

algorithms. In addition, the research results can be

applied to the real world as an early warning system that

sends regular notifications so as to reduce the potential

for students to drop out. The information can be utilized

by teachers to provide intensive guidance and for the

MOOC system to determine a dynamic learning path so

that the course can still be completed by students.

References

[1] L. Ma dan C. S. Lee, “Drivers and barriers to MOOC adoption:

perspectives from adopters and non-adopters,” Online Inf.

Rev., vol. 44, no. 3, hal. 671–684, 2020, doi: 10.1108/OIR-06-

2019-0203.

[2] Z. Chi, S. Zhang, dan L. Shi, “Analysis and Prediction of

MOOC Learners’ Dropout Behavior,” Appl. Sci., vol. 13, no.

2, hal. 1–17, 2023, doi: 10.3390/app13021068.

[3] M. Şahin, “A Comparative Analysis of Dropout Prediction in

Massive Open Online Courses,” Arab. J. Sci. Eng., vol. 46, no.

2, hal. 1845–1861, 2021, doi: 10.1007/s13369-020-05127-9.

[4] F. Agrusti, G. Bonavolontà, dan M. Mezzini, “University

dropout prediction through educational data mining

techniques: A systematic review,” J. E-Learning Knowl. Soc.,

vol. 15, no. 3, hal. 161–182, 2019, doi: 10.20368/1971-

8829/1135017.

[5] J. Chen, J. Feng, X. Sun, N. Wu, Z. Yang, dan S. Chen,

“MOOC Dropout Prediction Using a Hybrid Algorithm Based

on Decision Tree and Extreme Learning Machine,” Math.

Probl. Eng., vol. 2019, 2019, doi: 10.1155/2019/8404653.

[6] K. Coussement, M. Phan, A. De Caigny, D. F. Benoit, dan A.

Raes, “Predicting student dropout in subscription-based online

learning environments: The beneficial impact of the logit leaf

model,” Decis. Support Syst., vol. 135, no. December 2019,

hal. 113325, 2020, doi: 10.1016/j.dss.2020.113325.

[7] A. Alamri et al., “Predicting MOOCs dropout using only two

easily obtainable features from the first week’s activities,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 11528 LNCS, hal. 163–

173, 2019, doi: 10.1007/978-3-030-22244-4_20.

[8] P. M. Moreno-Marcos, P. J. Muñoz-Merino, J. Maldonado-

Mahauad, M. Pérez-Sanagustín, C. Alario-Hoyos, dan C.

Delgado Kloos, “Temporal analysis for dropout prediction

using self-regulated learning strategies in self-paced MOOCs,”

Comput. Educ., vol. 145, hal. 103728, 2020, doi:

10.1016/j.compedu.2019.103728.

[9] C. Jin, “MOOC student dropout prediction model based on

learning behaviour features and parameter optimization,”

Interact. Learn. Environ., vol. 31, no. 2, hal. 714–732, 2020,

doi: 10.1080/10494820.2020.1802300.

[10] L. J. Rodríguez-Muñiz, A. B. Bernardo, M. Esteban, dan I.

Díaz, “Dropout and transfer paths: What are the risky profiles

when analyzing university persistence with machine learning

techniques?” PLoS One, vol. 14, no. 6, hal. 1–20, 2019, doi:

10.1371/journal.pone.0218796.

[11] Y. Mourdi, M. Sadgal, H. El Kabtane, dan H. E. A. El

Abdallaoui, “A Multi-Layers Perceptron for predicting weekly

learner commitment in MOOCs,” J. Phys. Conf. Ser., vol.

1743, no. 1, 2021, doi: 10.1088/1742-6596/1743/1/012027.

[12] J. Swacha dan K. Muszyńska, “Predicting Dropout in

Programming MOOCs through Demographic Insights,”

Electron., vol. 12, no. 22, 2023, doi:

10.3390/electronics12224674.

[13] J. Niyogisubizo, L. Liao, E. Nziyumva, E. Murwanashyaka,

dan P. C. Nshimyumukiza, “Predicting student’s dropout in

university classes using two-layer ensemble machine learning

approach: A novel stacked generalization,” Comput. Educ.

Artif. Intell., vol. 3, no. November 2021, hal. 100066, 2022,

doi: 10.1016/j.caeai.2022.100066.

[14] J. Melvin dan A. Soraya, “Analisis Perbandingan Algoritma

XGBoost dan Algoritma Random Forest Ensemble Learning

pada Klasifikasi Keputusan Kredit,” J. Ris. Rumpun Mat. dan

Ilmu Pengetah. Alam, vol. 2, no. 2, hal. 87–103, 2023.

[15] G. Kumar, A. Singh, dan A. Sharma, “Ensemble Deep

Learning Network Model for Dropout Prediction in MOOCs,”

Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 2, hal. 187–196,

2023, doi: 10.32985/ijeces.14.2.8.

[16] Z. Shou, P. Chen, H. Wen, J. Liu, dan H. Zhang, “MOOC

Dropout Prediction Based on Multidimensional Time-Series

Data,” Math. Probl. Eng., vol. 2022, 2022, doi:

10.1155/2022/2213292.

[17] Q. Fu, Z. Gao, J. Zhou, dan Y. Zheng, “CLSA: A novel deep

learning model for MOOC dropout prediction,” Comput.

Electr. Eng., vol. 94, no. July, hal. 107315, 2021, doi:

10.1016/j.compeleceng.2021.107315.

[18] M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, dan Z.

Siddique, “Effect of Data Scaling Methods on Machine

Learning Algorithms and Model Performance,” hal. 5–9, 2021.

[19] A. Ambarwari, Q. Jafar Adrian, dan Y. Herdiyeni, “Analysis

of the Effect of Data Scaling on the Performance of the

Machine Learning Algorithm for Plant Identification,” J.

RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1,

hal. 117–122, 2020, doi: 10.29207/resti.v4i1.1517.

[20] S. Nithya dan S. Umarani, “MOOC Dropout Prediction using

FIAR-ANN Model based on Learner Behavioral Features,” Int.

J. Adv. Comput. Sci. Appl., vol. 13, no. 9, hal. 607–617, 2022,

doi: 10.14569/IJACSA.2022.0130972.

[21] A. Putri et al., “Komparasi Algoritma K-NN, Naive Bayes dan

SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir,”

MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no.

1, hal. 20–26, 2023, doi: 10.57152/malcom.v3i1.610.

[22] Z. Saputra, D. Sartika, dan M. H. Irfani, “Prediksi Calon

Mahasiswa Penerima KIP Pada Universitas Indo Global

Mandiri menggunakan Algoritma Decision Tree,” vol. 4, no. 3,

hal. 231–240, 2024.

[23] Reza Fauzy, Riki Winanjaya, dan Susiani, “Analisis Tingkat

 Muhammad Ricky Perdana Putra, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)

This is an open access article under the CC BY-4.0 license 354

Kepuasan Pelanggan dengan Menerapkan Algoritma C4.5,”

Bull. Comput. Sci. Res., vol. 2, no. 2, hal. 41–46, 2022, doi:

10.47065/bulletincsr.v2i2.162.

[24] H. S. Park dan S. J. Yoo, “Early Dropout Prediction in Online

Learning of University using Machine Learning,” Int. J.

Informatics Vis., vol. 5, no. 4, hal. 347–353, 2021, doi:

10.30630/JOIV.5.4.732.

[25] Y. Zheng, Z. Gao, Y. Wang, dan Q. Fu, “MOOC Dropout

Prediction Using FWTS-CNN Model Based on Fused Feature

Weighting and Time Series,” IEEE Access, vol. 8, hal.

225324–225335, 2020, doi: 10.1109/ACCESS.2020.3045157.

[26] B. Huang dan C. Wang, “Research on Data Analysis of

Efficient Innovation and Entrepreneurship Practice Teaching

Based on LightGBM Classification Algorithm,” Int. J.

Comput. Intell. Syst., vol. 16, no. 1, 2023, doi: 10.1007/s44196-

023-00324-4.

[27] D.- Andriansyah dan E. W. Fridayanthie, “Optimization of

Support Vector Machine and XGBoost Methods Using Feature

Selection to Improve Classification Performance,” J.

Informatics Telecommun. Eng., vol. 6, no. 2, hal. 484–493,

2023, doi: 10.31289/jite.v6i2.8373.

[28] W. Wunnasri, P. Musikawan, dan C. So-In, “A Two-Phase

Ensemble-Based Method for Predicting Learners’ Grade in

MOOCs,” Appl. Sci., vol. 13, no. 3, 2023, doi:

10.3390/app13031492.

[29] S. Y. J. Prasetyo, Y. B. Christianto, dan K. D. Hartomo,

“Analisis Data Citra Landsat 8 OLI Sebagai Indeks Prediksi

Kekeringan Menggunakan Machine Learning di Wilayah

Kabupaten Boyolali dan Purworejo,” Indones. J. Model.

Comput., vol. 2, no. 2, hal. 25–36, 2019, [Daring]. Tersedia

pada: https://ejournal.uksw.edu/icm/article/view/2954

[30] I. M. . Karo, “Implementasi Metode XGBoost dan Feature

Importance untuk Klasifikasi pada Kebakaran Hutan dan

Lahan,” J. Softw. Eng. Inf. Commun. Technol., vol. 1, no. 1,

hal. 11–18, 2020.

[31] A. N. G. Ji dan D. Levinson, “Injury Severity Prediction From

Two-Vehicle Crash,” vol. 1, no. April, hal. 217–226, 2020.

[32] K. Kristiawan dan A. Widjaja, “Perbandingan Algoritma

Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel,”

J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, hal. 35–46, 2021,

doi: 10.28932/jutisi.v7i1.3182.

