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Abstract  

Sulawesi is a region in Indonesia known for its significant seismic activity, and its history of impactful earthquakes makes it 

an area of crucial importance for in-depth analysis. This study analyses earthquake occurrence data in the Sulawesi region 

from 2019 to 2023 using clustering methods with the DBSCAN algorithm. The utilization of the DBSCAN algorithm was chosen 

for its ability to cluster data based on spatial density, well-suited for analyzing the spatial patterns of earthquakes. DBSCAN 

is known for its effectiveness in identifying spatial clusters, especially in handling data with undefined density patterns. The 

primary aim of this research is to identify spatial earthquake occurrence patterns, classify regions with similar earthquake 

occurrence rates, describe the characteristics of the resulting spatial clusters, and identify seismic gap areas. The results of 

analysis and clustering using the DBSCAN algorithm have identified clusters with earthquake depth characteristics, which are 

expected to make a significant contribution to mapping and understanding earthquake vulnerability and distribution in this 

region. These findings can aid in more effective disaster mitigation planning, support sustainable development efforts, and 

enhance earthquake preparedness and response in Sulawesi. This study contributes to a better understanding of earthquake 

patterns and potential seismic gaps in Sulawesi, which is crucial for developing improved risk mitigation strategies and 

supporting sustainable development policies. 
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1. Introduction  

The Sulawesi region in Indonesia has a significant 

seismic history, with a series of earthquakes that can 

have serious impacts on life and infrastructure. 

Studying earthquake history over some time is crucial 

for understanding earthquake patterns, assessing 

potential risks, and contributing to disaster mitigation 

efforts [1]. 

Sulawesi Island is one of the islands located in 

Indonesia and is part of the Pacific Ring of Fire. This 

island has high geological complexity and is considered 

one of the regions with significant tectonic fault activity 

in Indonesia [2]. Research on active tectonic faults in 

Sulawesi Island is important for understanding and 

mitigating the risk of earthquake-related disasters and 

potential tsunamis. Some of the active faults that serve 

as earthquake source zones include the Palu-Koro Fault 

and Waianae Fault in western Sulawesi. Additionally, 

the Matano Fault and Lawanopo Fault are in eastern 

Sulawesi, and the Gorontalo Fault is in northern 

Sulawesi [3].  

This research is a crucial step in evaluating seismic 

activity patterns in the Sulawesi region. By utilizing 

clustering techniques, we aim to identify spatial and 

temporal patterns of earthquake events. These patterns 

may indicate areas with low activity or seismic gaps 

within densely seismic regions. Through a deeper 

understanding of the earthquake activity patterns 

discovered, this study can provide valuable insights into 

the potential existence of seismic gap areas in Sulawesi. 

Previous research has also addressed earthquake 

datasets from the period 2018 to 2020, obtained from 

the BMKG repository website for the entire Indonesian 

region. Using the DBSCAN algorithm, this research 

formed four clusters with four noise points and achieved 

a Silhouette Coefficient Score of 0.35 [4]. 

Several previous studies have demonstrated that using 

the DBSCAN algorithm can yield a Silhouette Score of 
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0.81091 and a Gamma Index of 0.98104, indicating the 

reliability of the DBSCAN algorithm in processing 

earthquake data. However, this study processed the 

dataset for the entire Indonesian region in 2020. Other 

studies have also processed datasets sourced from the 

USGS for the Indonesian region from 2012 to 2021. By 

applying various filters based on parameters such as 

magnitude value and depth, these studies resulted in a 

Silhouette Score of 0.73 [5]. 

Several studies have also described earthquake data 

processing using the DBSCAN clustering method in the 

West Java region in 2021, achieving a Silhouette 

Coefficient Score of 0.713 [6].  

In the northern Sulawesi region, earthquake data 

analysis has been conducted using agglomerative 

clustering methods [7].  

In the Bali region, the DBSCAN method has been 

utilized to process earthquake data and generate 

mappings of earthquake potential zones with a fairly 

good cluster validity level [8]. 

Not only in Indonesia but earthquake data analysis in 

Greece has also been conducted in previous research 

using a new clustering method called MAP-DBSCAN. 

This method, which refers to the DBSCAN method, was 

used to group seismic zones in Greece during the period 

from 2012 to 2019 [9]. 

Previous studies have highlighted the reliability of the 

DBSCAN algorithm in earthquake data analysis, with 

several research noting high Silhouette Score and 

Gamma Index values. However, the focus of these 

studies often extends beyond the Sulawesi region, such 

as research utilizing the 2020 dataset for the entire 

Indonesian region. Additionally, although there are 

studies involving Indonesia, including West Java, that 

employ the DBSCAN algorithm, their analysis tends to 

be limited to shorter periods. Hence, there is a gap in the 

adequately researched analysis of earthquake data in the 

Sulawesi region from 2019 to 2023 using clustering 

methods with the DBSCAN algorithm. 

This research aims to investigate seismic patterns in the 

Sulawesi region over the past four years using 

clustering methods with the DBSCAN algorithm. The 

main objectives of this study are to identify crustal 

movement patterns, pinpoint areas vulnerable to 

earthquakes (seismic gaps), and measure seismicity 

levels in the area [10].  

Additionally, the research aims to apply clustering 

methods with the DBSCAN algorithm to categorize 

earthquake data and provide a better understanding of 

earthquake-prone areas in Sulawesi. Consequently, this 

study is expected to significantly contribute to 

earthquake risk mitigation efforts and disaster 

preparedness strategy development in the Sulawesi 

region [11]. 

2. Research Methods 

The Meteorology, Climatology and Geophysics 

Agency (BMKG) is the authorized institution in 

Indonesia for monitoring earthquake activity. We have 

also had discussions with several colleagues at BMKG 

regarding this research.  

For the workflow of this research, the overview is 

provided in the form of a flowchart. This is to facilitate 

researchers in carrying out the research stages. A 

research workflow is illustrated in Figure 1.  

 

Figure 1. Research Workflow 
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2.1 Data collection 

The first step is data collection. The dataset for this 

study consists of earthquake occurrences in the 

Sulawesi region from January 2019 to December 2023, 

obtained from the public earthquake repository website 

owned by BMKG, totalling 10,255 records.  

The earthquake dataset from the BMKG repository 

website has 12 columns including: (1). No, (2). Event 

ID, (3). Date time, (4). Latitude, (5). Longitude, (6). 

Magnitude, (7). Mag Type (8). Depth (km), (9). Phase 

Count, (10). Azimuth Gap, (11). Location, (12). 

Agency. 

2.2 Data pre-processing 

The second step is data pre-processing, which is carried 

out to merge datasets, identify and handle anomalies in 

the collected dataset [12]. Activities in this step include 

data cleaning, where the process removes duplicate data 

based on the "Event ID" column in the dataset. 

Data transformation is also performed in this data pre-

processing step, which involves renumbering the “No” 

column of the collected and merged dataset. 

2.3 Exploratory data analysis 

The third step is Exploratory Data Analysis (EDA), 

conducted to identify patterns in the dataset, examine 

the statistics of the dataset after performing data pre-

processing [13], and form initial hypotheses that can be 

tested further. Table 1 shows the statistics of the 

collected dataset after performing data pre-processing. 

EDA also involves visualizing data through graphs and 

plots to facilitate understanding and analysis. By 

performing EDA, we can gain critical preliminary 

insights before conducting more complex statistical 

analysis or modelling [14].  

Table 1. Shows the statistics of the collected dataset 

after performing data pre-processing.  

A descriptive analysis of 10,238 earthquake events 

indicates that the average magnitude is 121.85041, with 

relatively small variation. Earthquake depths range 

from 0.813944 km to 6.778839 km, with an average 

depth of 3.237469 km. The data distribution shows that 

most earthquakes occur at shallow depths, providing 

crucial insights for further seismic analysis. 

Table 1. Statistic of dataset after data pre-processing 

 No Latitude Longitude Magnitude Depth (km) Phase Count Azimuth Gap 

Count 10238.000 10238.00 10238.00 10238.00 10238.00 10238.00 10238.00 

Mean 5119.5000 1.099820 121.850410 3.237469 38.328482 24.492772 117.350120 

STD 2955.6000 1.582566 1.668430 0.747337 53.154834 28.628435 57.348734 

Min 1.0000 -7.532882 117.953980 0.813944  1.000000 4.000000 8.606781 

25% 2560.2500 -2.253999 120.438528 2.707554 10.000000 11.000000 72.962211 

50% 5119.5000 -0.950472 121.942909 3.132503 10.000000 17.000000 103.618873 

75% 7678.7500 0.052527 122.940958 3.665022 37.000000 28.000000 151.649754 

Max 10238.0000 2.907121 125.857842 6.778839 298.00000 465.00000 348.699799 

In the exploratory data analysis process, we obtained 

information about the distribution of earthquake 

occurrences each month during the period from 2019 to 

2023. It illustrates significant seismic activity in April 

2019, as shown in Figure 2. 

 

Figure 2. Earthquake distribution graph per month 

The number of earthquake occurrences in the Sulawesi 

region exhibits a fluctuating pattern, with a noticeable 

increase in April 2019, followed by a range of 

approximately 100 to 200 events per month. 

The data pre-processing provides information on the 

maximum, minimum, and mean values of several 

variables. However, we find the information from the 

Magnitude and Depth variables particularly interesting, 

as shown in Figure 3.  

 
Figure 3. Graph of magnitude and depth variables 

From the earthquake dataset, we can see that the 

average magnitude of earthquakes occurring in the 

Sulawesi region is 3.24 M (Magnitude), with an average 

depth of 38.33 km (Kilometers). This indicates that 

earthquakes in this region are generally of low to 

moderate strength but are characterized by their shallow 

depth. Shallow earthquakes can have a stronger impact 

on the Earth's surface because their epicentre is closer 

to the surface. This increases the risk of damage to 

buildings, infrastructure, and the potential for injury to 

residents. Therefore, despite their relatively low to 

moderate magnitudes, shallow earthquakes in the 

Sulawesi region can still significantly impact the local 

community and environment [15]. 
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2.4 Tunning 

To determine the optimal values for epsilon and 

minimum samples, a grid search method is conducted. 

Grid search is a systematic approach used to determine 

the optimal hyperparameters for machine learning 

algorithms, including DBSCAN clustering. In 

DBSCAN, the critical parameters are epsilon (eps), 

which defines the maximum distance between points in 

a cluster, and the minimum samples required to form a 

cluster [16].  

Algorithm 1 demonstrates the grid search algorithm. 

This method calculates the average silhouette score 

across a range of epsilon parameters from 0.01 to 0.2 

and a range of minimum samples from 4 to 10. 

Specifically, the epsilon values are tested with a step 

size of 0.01. This means that the algorithm evaluates 

epsilon values such as 0.01, 0.02, and 0.03, and 

continues incrementally up to 0.19, facilitating a 

detailed exploration within the specified range. Such 

granularity ensures thorough evaluation, potentially 

leading to the identification of the optimal epsilon 

value. The minimum sample values are tested as 

integers within this range, chosen based on empirical 

rules tailored to the data's dimensionality.  

Algorithm 1: grid search algorithm 

Input: Dataset X, range of ε values 
(eps_range), range of min_samples values 
(min_samples_range) 
Output: Optimal ε (best_eps), optimal 
min_samples (best_min_samples), best 
evaluation score (best_score) 

Initialize: 

 best_eps = None 
 best_min_samples = None 

 
best_score = -∞ (assuming a higher score is 
better, e.g., Silhouette Score) 

For each ε in eps_range: 

 For each min_samples in min_samples_range: 

 
Perform DBSCAN clustering with current ε 
and min_samples 

 
labels = DBSCAN(eps=ε, 
min_samples=min_samples).fit_predict(X) 

 
If the number of unique clusters in 
labels > 1: 

 
Calculate evaluation score for the 
current clustering (e.g., Silhouette 
Score) 

 
current_score = evaluate_clustering(X, 
labels) 

 If current_score > best_score: 

 best_score = current_score 
 best_eps = ε 
 best_min_samples = min_samples 

Return best_eps, best_min_samples, best_score 

Function evaluate_clustering(X, labels): 

 
// This function computes the evaluation 
metric, e.g., Silhouette Score 

 return Silhouette Score of the clustering 

By defining a range of values for these parameters, grid 

search iterates through each combination, applying 

DBSCAN to the dataset and evaluating the clustering 

quality using metrics such as the Silhouette Score. The 

combination of eps and minimum samples that yields 

the highest evaluation score is selected as the best 

parameter set, ensuring effective clustering.  

This method provides a structured approach to 

parameter tuning, enhancing the robustness and 

accuracy of the clustering results [17]. The optimal 

values obtained were an epsilon of 0.06 and a minimum 

sample size of 9, resulting in a silhouette score of -

0.06097. 

2.5 Clustering 

Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) is a popular clustering algorithm 

used to group similar data points. It's known for its 

ability to find clusters of irregular shapes and identify 

data points that don't belong to any cluster (noise or 

outliers) in a dataset [18]. DBSCAN achieves this by 

considering how closely data points are packed together 

(points with many nearby neighbors) while marking 

points that lie alone in low-density regions (noise). It 

requires two parameters: epsilon (ε), which defines the 

maximum distance between two points to be considered 

neighbors, and the minimum number of points (min Pts) 

required to form a dense region [19].  

The algorithm uses a distance metric, denoted as 

𝑑(𝑝, 𝑞), which is the distance between points 𝑝 and 𝑞, 

to determine the proximity of points. Points within the 

ε distance from a core point (a point with at least min 

Pts neighbors) are included in the same cluster. Points 

that do not meet this criterion are considered noise. 

Formula 1 illustrates the DBSCAN method. 

𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖 − 𝑞𝑖)
2𝑛

𝑖=1              ( 1 ) 

Using these parameters (epsilon = 0.06 and minimum 

samples = 9) for DBSCAN clustering, we obtained 65 

clusters. 

2.6 Evaluation 

The Silhouette method is a technique used to evaluate 

the quality of clustering by measuring how similar each 

data point is to its cluster compared to other clusters. 

Silhouette values range from -1 to 1, where a value 

close to 1 indicates that the data point is well-matched 

to its cluster and poorly matched to neighboring 

clusters. A value of 0 indicates that the data point is on 

or very close to the decision boundary between two 

neighboring clusters. Negative values indicate that the 

data point might have been assigned to the wrong 

cluster [20]. Formula 2 is the Silhouette calculation 

formula. 

𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)𝑥2

𝑚𝑎𝑥
                            ( 2 ) 

Where 𝑎(𝑖) is the mean distance between the data point 

𝑖 and all other points in the same cluster, and 𝑏(𝑖) 
represents the mean distance between data point 𝑖 and 

all points in the nearest cluster (excluding 𝑖 ). 

The Davies-Bouldin Index (DBI) is a metric used to 

evaluate the performance of a clustering algorithm by 

assessing the compactness and separation of the clusters 

formed. It is calculated as the average similarity ratio of 

each cluster with its most similar cluster. Lower DBI 
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values indicate better clustering performance. 

Specifically, for each cluster 𝑖, its similarity with 

another cluster 𝑗 is measured by the ratio of the sum of 

the average distance of all points in the clusters to their 

respective centroids (𝑆𝑖 and 𝑆𝑗) and the distance 

between the centroids of the clusters (𝑀𝑖𝑗) [21]. 

Formula 3 presents the Davies Bouldin Index formula. 

𝐷𝐵𝐼 =
1

𝑘
∑ 𝑚𝑎𝑥𝑗≠𝑖
𝑘
𝑖=1 (

𝑆𝑖+𝑆𝑗

𝑀𝑖𝑗
)                 ( 3 ) 

Where 𝑘 is the number of clusters, 𝑆𝑖 is the average 

distance of all points in clusters 𝑖 to the centroid of the 

cluster 𝑖, and 𝑀𝑖𝑗 is the distance between the centroid of 

the cluster 𝑖 and 𝑗. 

The Calinski-Harabasz Index, also known as the 

Variance Ratio Criterion, is a metric used to evaluate 

the quality of clustering algorithms by assessing the 

ratio of the sum of between-cluster dispersion and 

within-cluster dispersion. The higher the Calinski-

Harabasz Index, the better the defined clusters are [22]. 

Formula 4 is Calinski-Harabasz Index formula. 

𝐶𝐻𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑟(𝐵𝑘) (𝑘−1)⁄

𝑇𝑟(𝑊𝑘) (𝑛−1)⁄
                 ( 4 ) 

Where 𝑇𝑟(𝐵𝑘) is the trace of the between-cluster 

dispersion matrix, 𝑇𝑟(𝑊𝑘) is the trace of the within-

cluster dispersion matrix, 𝑛 is the total number of 

points, and 𝑘 is the number of clusters.  

The silhouette score of -0.06097 suggests that the 

clustering may not be well-defined, as negative values 

typically indicate that clusters overlap or are not well-

separated.  

The Davies-Bouldin Index (DBI) of 2.4648, which 

measures the average similarity ratio of each cluster 

with its most similar cluster, further implies that the 

clusters are not very distinct; lower values are 

preferable for DBI.   

Additionally, the Calinski-Harabasz Index, which 

evaluates the variance ratio between clusters and within 

clusters, is 138.3464. This value can be considered 

good. While higher values of this index generally 

indicate better-defined clusters, it is crucial to interpret 

the value within the context of the dataset and the 

clustering algorithm used. A higher CH Index suggests 

that the clusters are well-separated from each other and 

that the points within each cluster are compactly 

grouped. For DBSCAN, this index is influenced by 

several factors, particularly the parameters epsilon (ε) 

and minimum samples (min samples), which determine 

the density criteria for forming clusters [23]. 

Using various clustering evaluation metrics helps us 

ensure a more complete and comprehensive 

understanding of the quality of the generated clusters. 

These metrics enable us to identify issues or weaknesses 

in the clustering results. This approach provides a solid 

foundation for further improvement and optimization.  

Although the evaluation results were not ideal, we 

proceeded with an analysis based on the identified 

clusters. With a total of 65 clusters, we conducted 

further investigation to discern spatial and temporal 

patterns among the earthquakes within each cluster. 

This analysis aims to enhance our understanding of 

earthquake distribution and characteristics across 

different parts of Sulawesi.  

These insights could potentially inform disaster risk 

mitigation strategies and enhance infrastructure safety 

measures in the future. While further evaluation is 

necessary to refine cluster separation and clarity, the 

information gleaned from this clustering process 

remains valuable for our research efforts.  

2.7 Analysis 

The data collection process began with monthly data, 

which was then combined into annual datasets and 

subsequently merged into a single dataset. During data 

pre-processing, duplicate entries were removed based 

on event ID. The data was then processed using the 

DBSCAN algorithm. The compiled dataset identified 

10,238 earthquake events in the Sulawesi region during 

the period from 2019 to 2023. 

The DBSCAN clustering results indicate the formation 

of 65 clusters, The clustering also resulted in a 

significant amount of noise, with 3,517 data points not 

assigned to any cluster. Overall, these metrics suggest 

that the chosen parameters for DBSCAN did not yield a 

highly effective clustering, as evidenced by overlapping 

clusters and a high amount of noise.  

The cluster patterns generated prompted us to attempt 

an analysis of the formed clusters, leading to 

conclusions regarding the clusters and the distribution 

of earthquakes in the Sulawesi region.  

However, the visualization results of our analysis reveal 

the cluster patterns formed from the dataset, which has 

been processed using the DBSCAN algorithm. 

3. Results and Discussions 

We used the DBSCAN algorithm to identify clusters in 

an earthquake dataset. The Silhouette Score (-0.06097), 

Davies-Bouldin Index (DBI) (2.4648), and Calinski-

Harabasz Index (138.3464) were used to evaluate these 

clusters. The Silhouette Score indicates some overlap 

between clusters, while the DBI suggests that the 

clusters are not well-separated. However, the Calinski-

Harabasz Index indicates some identifiable structure in 

the data. Despite the complexity of seismic data, where 

clear separation is often challenging, this study remains 

informative. Our main goal is to identify seismic gaps, 

or areas with low seismic activity, which can still be 

effectively achieved despite overlapping clusters. 

Domain knowledge in seismology and geology further 

supports the interpretation of these results. Even though 

the clustering results may not show perfectly distinct 

clusters, the extracted information remains valuable for 
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analyzing seismic gaps and can guide further studies or 

disaster mitigation efforts. 

We applied the DBSCAN clustering algorithm to 

earthquake data in the Sulawesi region for the period 

from 2019 to 2023. Using the resulting parameters from 

the grid search method with a value of epsilon = 0.06 

and a minimum sample size of 9 on a dataset consisting 

of 10,238 records, we identified 65 clusters and detected 

3,517 noise points. These results are illustrated in 

Figure 4. 

 

Figure 4. Result of clustering 

From these results, we observe that the distribution of 

earthquake epicentres tends to be more numerous and 

spread out from the central region to the northern 

region. 

3.1 Results 

We employ distinct colour coding for each earthquake 

cluster in our visualization, thereby facilitating the 

identification of their locations and distributions. The 

red lines depicted in the visualization represent fault 

lines, providing geographic context and aiding in the 

comprehension of the relationship between earthquake 

clusters and tectonic activity in the region. 

The identified clusters reveal distinct patterns of 

seismic activity across the Sulawesi region. High-

density clusters indicate areas of increased tectonic 

stress, potentially linked with active faults. The 

variation in cluster density across the region may 

suggest different tectonic processes or varying levels of 

stress accumulation. 

Interestingly, this clustering analysis also highlights 

several areas with lower seismic activity, which may 

correspond to seismic gaps. These gaps are crucial as 

they could be zones where stress is accumulating, 

potentially leading to significant earthquakes in the 

future. Identifying seismic gaps is essential for 

earthquake prediction and seismic risk mitigation. The 

visualization of 65 clusters without noise points is 

shown in Figure 5. 

 

Figure 5. Cluster without noise 

 

Figure 6. Top 6 Highest Cluster 

From the 65 clusters formed, we can also observe areas 

with different density levels. We attempted to filter out 

six clusters with relatively high density, as shown in 

Figure 6. In this figure, information about the cluster 
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centres is displayed, with different colours indicating 

the cluster with the highest density. The variation in 

cluster density across this region may indicate different 

tectonic processes or varying levels of stress 

accumulation. 

Cluster 6 is the largest cluster, with its centre located in 

the Molucca Sea. This cluster exhibits a relatively high 

average earthquake magnitude of 3.38 and an average 

depth of 83.82 kilometres. The presence of Cluster 6 

indicates significant seismic activity in the region, 

particularly in the vicinity of the Manado and Gorontalo 

Faults.  

Earthquakes with an average focal depth of 83.82 

kilometres are generally categorized as deep-focus 

earthquakes. These earthquakes typically occur in 

subduction zones beneath tectonic plates, capable of 

affecting deep structures of the Earth while causing 

relatively limited surface impacts. Despite their 

potentially significant energy release, deep-focus 

earthquakes often do not cause substantial surface 

damage, although they can trigger tsunamis if they 

occur under the ocean. Buildings and infrastructure near 

the earthquake epicentre remain vulnerable to damage, 

depending on the distance and geological 

characteristics of the earthquake [24].  

The information graph for the six largest clusters is 

shown in Figure 7. 

 

Figure 7. Top 6 Cluster Graph Mean of Magnitude and Depth 

This information indicates that clusters with relatively 

high density exhibit significant seismic activity, with an 

average earthquake magnitude of 3.37 M (Magnitude), 

and the average depth of earthquake occurrences in 

those clusters is approximately 83.82 km. Table 

information average depth, magnitude, and the number 

of points for the top 6 clusters are shown in Table 2. 

Based on the information from Table 2, the top six 

clusters exhibit significant variations in seismic activity 

across the Sulawesi region. Cluster No. 6 stands out 

with the highest number of seismic points, totalling 

1289, at an average depth of approximately 83.82 km 

and an average magnitude of 3.38. In contrast, Cluster 

No. 23 shows a notable number of seismic points (709), 

with an average depth of 12.37 km and an average 

magnitude of 3.34. Cluster No. 0 exhibits the deepest 

average depth, reaching 129.67 km, with 618 seismic 

points and an average magnitude of 3.03. This cluster is 

located around the Southeastern Sea of Marisa, 

Gorontalo Province, indicating a high potential for 

significant tectonic activity. 

Table 2. Top 6 Cluster Information Table 

No 
Cluster 

No 

Number 

of Points 

Mean 

Depth (km) 

Mean 

Magnitude 

1 6 1289 83.824670 3.379104 

2 23 709 12.372355 3.339736 

3 12 699 11.167382 2.827994 

4 0 618 129.671521 3.031118 

5 3 595 10.455462 2.911827 

6 1 555 10.477477 2.799943 

Meanwhile, other clusters are distributed around Butu 

Pembunian Mount (Cluster 1), Poso (Cluster 3), 

Faruhumfenai Nature Reserve (Cluster 12), and the 

western sea of Bangkurung Island (Cluster 23), each 

exhibiting unique characteristics in their seismic 

activity. This information provides valuable insights for 

further understanding the potential earthquake risks and 

seismic risk management in the surrounding areas. 

3.2 Discussion 

An analysis of earthquake depths in Clusters 6 and 0 

reveals crucial insights into their potential impacts. 

Cluster 0, exhibiting the deepest average depth of 

129.67 km, suggests the presence of deep-focus 

earthquakes. Deep-focus earthquakes generally cause 

less surface damage compared to shallow ones due to 

the dissipation of seismic energy over a greater volume 

of rock. However, they can be felt over larger areas and 

may indicate significant tectonic activities at depth, 

which could be precursors to more substantial seismic 

events [25]. 

Therefore, understanding these depth-related 

characteristics is vital for assessing the potential 

earthquake risks in the Sulawesi region and developing 

effective seismic risk management strategies. These 

insights underscore the importance of continuous 

monitoring and analysis to anticipate and mitigate the 

impacts of seismic activities. 

According to several studies, seismic gaps are segments 

of tectonic faults that have not experienced significant 

earthquakes for a prolonged period, despite surrounding 

areas being seismically active. These regions are 

considered to have a high potential for large future 

earthquakes due to the continuous accumulation of 

tectonic stress [26]. The identification of seismic gaps 

is crucial for earthquake prediction and seismic risk 

assessment [27]. 

Identifying high-density seismic clusters can provide 

local authorities and policymakers with crucial 

information about the most at-risk areas. By focusing 

preparedness efforts on these regions, it is possible to 

enhance community resilience and mitigate the 

potential impacts of future earthquakes. Additionally, 

recognizing seismic gaps can guide further geological 
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investigations to better understand and monitor these 

critical areas [28]. 

A significant concentration of earthquakes is observed 

in the southeastern region of Kotamubago, North 

Sulawesi Province. Notably, substantial earthquake 

activity has been identified in the vicinity of the 

Molucca Sea. 

However, several small clusters have formed 

southeastward and near the North Sulawesi subduction 

zone. The North Sulawesi subduction zone is an area 

where the Pacific Plate subducts beneath the Eurasian 

Plate, creating complex tectonic conditions that often 

lead to earthquakes and volcanic activity in the region  

[29]. 

The interaction between these plates influences the 

geological and seismic characteristics, enhancing our 

understanding of earthquake hazards in this area. Figure 

8 shows the distribution of clusters and noise in North 

Sulawesi. 

 

Figure 8. Cluster in North Sulawesi 

Although there are no clusters formed in the North 

Sulawesi region, this area exhibits significant seismic 

activity. The clustering results indicate that earthquakes 

occur scattered rather than centred at a single point. 

Therefore, we believe that areas not yet identified as 

epicentres have a high potential to become future 

epicentres. 

In the Gorontalo province area, small clusters are 

observable with two major clusters identified, 

surrounding the city of Gorontalo, which is bordered by 

small clusters, potentially rendering Gorontalo as a 

seismic gap area based on the clustering pattern as 

shown in Figure 9. 

The surrounding existing clusters suggest that the city 

of Gorontalo itself has the potential to become a new 

cluster in the future. This highlights the possibility that 

Gorontalo is currently a seismic gap area but also a 

potential future hotspot for seismic activity. 

 

Figure 9. Cluster in Gorontalo 

Central Sulawesi Province encompasses a vast area. 

After the earthquake in 2018 that struck Palu City, we 

pinpointed relatively dense seismic activity around the 

vicinity of Palu, with eight identified clusters formed.  

This high density of clusters can be attributed to the 

active Palu-Koro fault, a major fault line that runs 

through Central Sulawesi. The Palu-Koro fault is a 

significant tectonic boundary where the Australian and 

Eurasian plates interact, leading to frequent and intense 

seismic activity [30]. The clustering pattern in Central 

Sulawesi Province helps identify potential seismic gap 

areas. Notably, Poso, Ampana, and Morowali appear to 

be located between three clusters exhibiting significant 

seismic activity. This suggests these regions could be 

seismic gaps.  

 

Figure 10. Central Sulawesi cluster 

Additionally, the Toli-Toli and Buol areas may also 

become future seismic hotspots due to their proximity 

to smaller clusters. Figure 10 illustrates the distribution 
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of clusters in Central Sulawesi. Given the paramount 

importance of mitigating earthquake disasters posed by 

Palu-Koro Fault activities, effective mitigation 

measures are essential. These measures can include 

strengthening building structures, enhancing early 

warning systems, and educating the public on pre-

earthquake, during-earthquake, and post-earthquake 

actions. Recent research suggests that risk mapping and 

probabilistic analysis of past seismic activity can be 

instrumental in designing more effective mitigation 

strategies. Therefore, a thorough understanding of the 

Palu-Koro Fault dynamics and the implementation of 

appropriate mitigation measures are crucial steps 

towards reducing the impact of future earthquake 

disasters [31]. In West Sulawesi province, there is an 

indication of seismic gap potential in the Mamuju area. 

Figure 11 displays the cluster formation in the West 

Sulawesi area. 

 

Figure 11. Cluster in West Sulawesi 

The distribution of earthquakes in the western province 

forms small clusters, with epicentres and clusters 

tending to spread towards the Central Sulawesi border. 

We believe this is due to seismic activity along the Palu-

Koro fault in Central Sulawesi [32]. However, the small 

clusters formed in West Sulawesi Province strongly 

indicate seismic gap areas within this province. Many 

small areas are surrounded by these earthquake clusters. 

Seismic activities in Southeast Sulawesi province 

appear significant in the clustering pattern around 

Kendari and Kolaka cities. In this region, earthquake 

epicentres during the period 2019-2023 show 

dispersion but do not form many clusters. The 

dispersion of earthquake epicentres in the Southeast 

Sulawesi region is evident in Figure 12. 

 

Figure 12. Cluster in Southeast Sulawesi 

Earthquake epicentres are quite spread out towards the 

north in Southeast Sulawesi, resulting in a few clusters 

forming in this region. However, this area includes 

small islands where, according to clustering data from 

2019-2023, no earthquake clusters have formed. The 

identified clusters and epicentres in this region tend to 

be located towards the north, near Central Sulawesi 

Province. 

  

Figure 13. Cluster in South Sulawesi 

Five clusters have been identified in South Sulawesi 

province, with the largest cluster located in the 
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Morowali area near the border with Central Sulawesi 

province. The clustering pattern and dispersion of 

earthquake epicentres in the South Sulawesi region are 

shown in Figure 13. 

Around the city of Makassar, earthquake clusters may 

not have formed, but the epicentres in South Sulawesi 

Province tend to be more numerous in the western 

region and towards the north, near the Central Sulawesi 

border. However, upon closer examination, earthquake 

epicentres are also spread throughout this southern 

province, although clusters may not have formed yet. 

Analyzing the clustering patterns annually from the 

Sulawesi earthquake dataset spanning 2019 to 2023 

provides profound insights into the evolving seismic 

dynamics over time. Tracking how earthquakes 

organize into clusters each year enables the 

identification of significant spatial distribution trends. 

For instance, the formation of clusters can indicate areas 

in Sulawesi prone to intensive seismic activity, whereas 

regions lacking clusters may highlight potentially 

seismically quiet or undetected areas. 

The identification of annual clustering patterns 

indicates an increase in earthquake epicentres or 

distribution between central and northern Sulawesi. 

Each year, Central Sulawesi consistently shows a 

significant level of clustering. Figure 14 illustrates the 

variations in clustering patterns across Sulawesi over 

the years. 

 

Figure 14. Cluster pattern per year 

Based on the table summarizing earthquake data from 

2019 to 2023, the number of earthquakes fluctuated 

each year, reaching peaks of 2275 in 2019 and 2267 in 

2023, with a low of 1732 in 2020. The total number of 

clusters varied, peaking at 17 in both 2020 and 2023, 

and reaching a low of 12 in 2019. Noise (non-clustered 

events) showed an increasing trend, with the highest 

level recorded in 2023 (1454) and the lowest in 2019 

(1168). The average earthquake magnitude slightly 

decreased from 3.3 in 2019 and 2020 to 3.1 in 2023, 

while the average earthquake depth steadily increased 

from 28.06 km in 2019 to 44.81 km in 2023. The 

silhouette score, which measures clustering quality, 

consistently remained negative, indicating poor 

clustering quality, with the lowest score recorded in 

2020 (-0.30644) and the highest in 2019 (-0.09022). 

Overall, despite the increase in the number of 

earthquakes and noise, the average magnitude slightly 

decreased, and earthquake depth increased. The poor 

clustering quality throughout the period is likely due to 

the wide distribution of earthquakes and significant 

variations in depth, which reduce the uniformity and 

cohesion of the clusters formed [33]. Table 3 shows the 

information on clusters per year. 

Table 3. Information of cluster per year 

Year 
Total of 

Earthquake 

Total of 

Cluster 

Total of 

Noise 

Mean 

Magnitude 

Mean Depth 

(km) 

Silhouette 

Score 

2019 2275 12 1168 3.3 28.06 -0.09022 

2020 1732 17 1210 3.3 36.41 -0.30644 

2021 2193 16 1336 3.2 40.00 -0.15401 

2022 1771 15 1141 3.2 43.01 -0.25860 

2023 2267 17 1454 3.1 44.81 -0.29070 

The analysis of the data reveals a notable increase in the 

average earthquake depth from 2019 to 2023. While the 

average magnitude remained stable between 3.1 and 

3.3, the depth steadily rose from 28.06 km in 2019 to 

44.81 km by 2023. This upward trend suggests a shift 

in seismic behaviour, with earthquakes occurring at 

deeper levels. Understanding these changes is crucial 

for effective disaster risk mitigation and safeguarding 

infrastructure in the future. 

4. Conclusions 

The analysis of Sulawesi earthquake data from 2019 to 

2023 using the DBSCAN method (epsilon: 0.06, 

minimum sample size: 9) identified 65 earthquake 

clusters, mostly shallow. Significant areas of potential 

seismic gaps include Manado, Gorontalo, and Buol. 

Evaluation metrics show room for improvement: the 

Silhouette Score is -0.06097, the Davies-Bouldin Index 

is 2.4648, and the Calinski-Harabasz Index is 138.3464, 

indicating moderate cluster quality. These results 
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suggest the need for further refinement to achieve better 

cluster separation. Future research should focus on fine-

tuning the DBSCAN parameters (epsilon and minimum 

sample size) to improve cluster identification. 

Analyzing earthquake characteristics based on depth, 

especially shallow earthquakes (20 km to 50 km depth), 

is crucial due to their potential for significant damage. 

Additionally, studying the annual increase in 

earthquake clusters and developing disaster 

preparedness strategies will be important. Fine-tuning 

clustering parameters based on local geological 

characteristics and earthquake distribution patterns will 

be essential for obtaining more precise and reliable 

results in future studies. 
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