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Abstract  

Skin cancer, which causes approximately 10 million deaths annually worldwide, is projected to see a rapid increase in cases 

if early diagnosis is not achieved. Traditional diagnostic methods, relying visual examination and histopathology, are often 

subjective and time-consuming. Recent advancements in Convolutional Neural Networks (CNN) have shown promise in 

automating and enhancing the accuracy of image analysis for the early detection of skin cancer. Current CNN approaches 

have leveraged transfer learning and hybrid models to improve performance. Nonetheless, the potential for overfitting remains, 

and there is still room for enhancing model accuracy. This study investigates the potential of pre-trained CNN models—such 

as DenseNet-201, InceptionV3, MobileNet, ResNet50, and VGG16—by modifying these models to improve their ability to 

differentiate between malignant and benign skin lesions. Additionally, a hybrid model approach is introduced, concatenating 

extracted features from various modified pre-trained CNN architectures and processing them through machine learning 

classifiers. The modifications and evaluations revealed that the proposed models surpassed the performance of state-of-the-

art CNN models on ISBI 2016 datasets. The enhanced models achieved an impressive accuracy rate of 94.20%, marking a 

significant improvement over traditional CNN models and underscoring the potential of advanced CNN techniques in 

improving skin cancer diagnosis outcomes. 
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1. Introduction  

Skin cancer is one of the main causes of mortality on 

the global level, and up to 10 million people die 

worldwide because of it, as the WHO states. If a 

preliminary diagnosis is not made, skin cancer is 

expected to increase rapidly in the next 20 years [1]. It 

is fifth among the most diagnosed types of cancer [2]. 

The unusual growth of skin cells causes tumors that 

may be benign (the cells divide in an orderly manner, 

but do not disturb surrounding cells) or malignant (as 

their growth becomes abnormal and uncontrollable, 

these cells spread beyond the tumor to other parts of the 

body). 

Every year, melanoma, one of the deadliest skin cancer 

classes, is responsible for the deaths of more than 

55,500 people worldwide [3]. Melanoma poses the 

highest risk, although it accounts for only 5% of all 

cases of skin cancer. It is responsible for most of these 

skin cancer deaths, around 80% [4]. For a patient with 

melanoma with an incurable stage of the disease, the 5-

year survival rate is very low, less than 20% [5]. 

Melanoma is a cancer in which early identification can 

really make a difference, and the survival rate can be as 

high as 95% if the diagnosis is made early [6]. 

In the past, the diagnosis of skin cancer was largely 

based on visual assessment of the lesions by 

experienced dermatologists and histopathological 

examinations. This process is not only subjective to 

individual bias and variations, but is also quite 

exhaustive, leading to hours of diagnosis and then 

treatment [7]. However, with recent advancements in 

deep learning, in particular Convolutional Neural 

Networks (CNN), which is a subset of deep learning, 

the possibility of changing the way skin cancer is 

diagnosed using automated image analysis has become 

a reality.  

https://doi.org/10.29207/resti.v8i4.5857
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Over time, artificial intelligence (AI) algorithms can 

now pick features and patterns in skin images that are 

malignant or benign with performance that is at least on 

par with that of human dermatologists. Clinicians can 

use dermoscopy combined with AI-based image 

analysis and standard histopathology to identify skin 

cancer at the preliminary stage, immediately start the 

appropriate treatment, and significantly improve the 

results [8]. Furthermore, intelligent imaging analytics 

complement clinical expertise, shortening and refining 

the analytical stages of diagnosis, and decreasing the 

work of a clinician. This revolutionary innovation that 

practically opened the door for the integration of AI in 

the field brings us to the dawn of a new era where life-

changing technology is set to reduce the oncogenic rates 

of skin cancer across the world. 

Many medical image databases are small and labeled, 

making it difficult to obtain large labeled datasets. The 

demand for a greater computing force is another 

drawback in effectively training CNN structures for 

medical image categorization [9]. Considering these 

challenges, incorporating pre-trained CNN models has 

been deemed a reasonable solution. These networks 

were previously trained and used huge images 

databases such as ImageNet, which contain ubiquitous 

properties that can be transferred to defined tasks 

through transfer learning (TL) [8]. When these prior 

constructs are aligned along with domain knowledge, 

investigators can build accurate classifiers without the 

need for relatively large observed samples. It is highly 

recommended to combine generalization ability with 

discriminative features estimated during the initial 

training stage to improve the performance of medical 

visual recognition systems that are characterized by 

relatively small amounts of training data and limited 

computational resources. 

In their scoping review, Morid et al. identified 102 

relevant studies on the implementation of TL in medical 

image examination. Emphasis on the general 

implementation of TL in medical image processing and 

the particular CNN configurations in various medical 

imaging applications. The study also found gaps that 

include the lack of a common valuation metric model 

and methodologies to increase the generalizability of 

TL modes in a variety of studies. The study also 

highlighted some of the limitations; for example, there 

were no clear measures to standardize the assessment 

criteria and methods that would help increase the 

consistency of TL strategies in previous studies [8]. 

In the study conducted by Medhat et al., a detailed 

comparative analysis of various deep CNN, including 

AlexNet, MobileNet V2, and ResNet50, was 

undertaken to evaluate their effectiveness in identifying 

skin cancer from dermatological images captured using 

a smartphone. The research highlighted that among 

these models, the architecture that achieved the highest 

diagnostic accuracy was based on a pre-trained AlexNet 

network. This superior performance was attributed to 

the application of TL techniques, which leveraged the 

pre-existing knowledge of the AlexNet model, and the 

use of basic data augmentation methods to enhance the 

training dataset. This combination proved to be 

particularly effective in improving the model's ability to 

accurately classify skin cancer in the images [10]. 

Therefore, there is still more potential to improve 

performance, which could be realized through more 

complex model fine-tuning approaches and better 

methods of augmentation. However, some comparative 

work completed using dermoscopy and external 

validation with other clinical centers would provide 

more robust data on these findings in other samples 

used in the current study. Extending the analysis in 

these directions may help improve the effectiveness of 

these applications in providing a generalized, accurate 

and reliable diagnosis of skin cancer using AI [10], [11], 

[12]. 

Some researchers like Venugopal et al. proposed a 

modified model in the EfficientNets family. The 

extracted features are passed through a classification 

layer model consisting of a pair of fully connected 

layers, the first containing 512 neurons and the second 

containing 256 neurons, as well as the output class 

layers for the classification of skin cancer [12]. This 

study did not fine-tune the pretrained models or even 

state the augmentation functions used in the data. 

Consequently, fine-tuning and detailed methods of data 

augmentation may affect the model in a way that alters 

the performance of the algorithm in improving overall 

efficiency and generalization on new datasets. 

Similarly, Faghihi et al. used the preserved ImageNet 

weight of the VGG16 and VGG19 architectures to 

classify skin cancer. This study also modified the model 

by adding three initial layers of the pretrained AlexNet 

network [11] . However, this study did not perform any 

data augmentation. This points to the possibilities for 

future research to improve gender parity in data 

augmentation comprehensiveness. 

Another study evaluated the influence of ML affecting 

CNN architecture for the distinction of benign and 

malignant breast lesions. CNN was used as feature 

extractor by Keerthana et al., who further put forward 

the following forms of hybrid CNN as comparative 

study. Their findings indicated that when the specified 

hybrid models from pre-trained CNN and ML are 

appropriately determined, the classification accuracy 

can be markedly increased. Unfortunately, due to the 

lack of detailed description of the training methodology 

used by the authors, the replicability of the study and 

the further improvement of the modeling used by the 

authors are somewhat constrained [12]. 

DenseNet-201, InceptionV3, MobileNet, ResNet50, 

and VGG16 to their superior performance in research 

conducted were selected in this study due to their 

superior performance as hybrid model with ML 

including Support vector machine (SVM), k-nearest 

neighbor (KNN), and decision tree [12]. In this research 

Random forest (RF) is chosen over decision tree due to 
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its greater robustness and reliability [13]. All those pre-

trained model also proven realiable for identifying skin 

cancer [8], [10], [11], [12], [14]. 

The primary contributions of this paper to the field of 

skin cancer identification using pre-trained CNN 

models are as follows. First, it modifies traditional 

pretrained CNN architectures, including DenseNet-201, 

InceptionV3, MobileNet, ResNet50, and VGG16, by 

adding additional layers to improve their performance. 

Second, this study examines whether these modified 

traditional pre-trained CNN models can also refine their 

performance as feature extractors, with the extracted 

features then given into ML classifiers such as SVM, 

KNN, and RF. To ensure the difference model 

performance are due to the models themselves and not 

due to variations in other factors, this study utilized 

consistent hyperparameters for all models because 

hyperparameters determine model's architecture and 

have a direct impact on model’s ability to learn [15]. 

Finally, this research undertakes a series of experiments 

to explore whether modifications to pre-trained CNN 

models can further enhance their performance when 

combined, particularly through the process of 

concatenating extracted features and feeding them into 

ML classifiers. Specifically, the study examines the 

potential improvements that can be achieved by 

hybridizing traditional pre-trained CNN models with 

additional techniques. By concatenating the features 

extracted by these CNN models and then using these 

combined features as inputs for various ML classifiers, 

the researchers aim to refine and optimize the 

classification process. The results of these experiments 

demonstrate that hybrid modified models, particularly 

the combination of MobileNet and VGG16 with a RF 

classifier, achieve a notably high accuracy rate of 

94.20%. This finding indicates that the hybrid models 

perform optimally, significantly enhancing the 

diagnostic accuracy compared to the traditional pre-

trained CNN models used alone. 

2. Research Methods 

Pre-trained CNN along with traditional ML classifiers 

fulfill a pivotal role in refining the accuracy of skin 

cancer classification. Initially, we implemented a 

comparative evaluation of various traditional pre-

trained CNN with their modified models using the ISBI 

2016 dataset to classify skin cancer lesions. Second, we 

used the extracted features from these pre-trained CNN 

with their modified models to train ML classifiers such 

as SVM, KNN, and RF, and then evaluated their 

performance. Finally, this study compared these hybrid 

models as feature extractors for ML classifiers. 

2.1 Pre-trained CNN models 

The proposed modified CNN model is implemented by 

adding a set of fully connected layers to a pre-trained 

CNN model using a TL process for identifying skin 

cancer in dermoscopic images. CNN training 

performance is improved with the TL technique, and 

image features are extracted more efficiently than CNN 

training from scratch [16]. The proposed CNN is 

created by adding layers to DenseNet201, InceptionV3, 

MobileNet, ResNet50, and VGG16. DenseNet-201, 

proposed by Huang et al. [17], is used because of its 

densely connected convolutional layers, which 

facilitate feature reuse, leading to efficient parameter 

usage and improved feature propagation in deep 

networks.  

MobileNet, as introduced by Howard et al. [18], is 

chosen due to its lightweight architecture, making it 

suitable for mobile and embedded applications, while 

still achieving competitive accuracy in image 

classification tasks. InceptionV3, developed by 

Szegedy et al. [19], is used for its inception modules, 

which allow for the extraction of multiscale features 

through parallel convolutions, improving the model's 

capability to capture intricate features in the input data. 

ResNet-50, proposed by He et al. [20], is used due to its 

residual learning framework, which facilitates deep 

neural network training by reducing the problem of 

vanishing gradient, resulting in improved performance 

in image recognition tasks. VGG-16, introduced by 

Simonyan and Zisserman [21], employs its simplicity 

and effectiveness, with its uniform architecture 

consisting of small convolutional filters that facilitate 

deeper network architectures and yield strong 

performance in various computer vision tasks. 

Several pre-trained CNN base models are believed to be 

the best feasible architectures to achieve accuracy on 

ImageNet [8]. These CNN architectures are used to 

construct a refined system for extracting features in the 

proposed model. The extracted feature is then added to 

a neural classifier model that includes a global average 

pooling and a batch normalization layer to resolve the 

vanishing gradient [22], [23] and a dense layer of 128 

neurons to resolve overfitting [7], [24], followed by a 

binary classification output layer for benign and 

malignant, as presented in the process stages of Figure 

1.  

 

Figure 1. TL and the proposed model framework 

In TL, the learning weights and biases acquired from 

the model trained with the ImageNet dataset are used to 

extract the required image features [25]. The model is 

then fine-tuned and trained on skin lesions of two 

classes, namely benign and malignant. Using individual 

images of skin lesions aids in the capture of more 

detailed features of the dermoscopy images by the 
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training model. The training and validation method in 

this research uses cross-validation and early stop to 

avoid overfitting the model [11]. The hyperparameters 

used in the proposed models are presented in Table 1. 

Table 1. Hyperparameter setup used in the proposed CNN 

Hyperparameter Values 

Batch size 30 [12] 

Image input size 224 x 224 [12] 

Learning rate 0.0001 [12] 

Max epoch 25 [12] 

Optimizer Adam [7] 

Training validation split 80:20 [7] 

2.2 Pre-trained CNN with ML classifier 

The features of the dataset are extracted through pre-

trained CNN and then are given to ML classifier [17]. 

The skin cancer classification framework is presented 

in Figure 2 with a pre-trained CNN and a ML classifier. 

The pre-trained CNN utilized in this paper are 

DenseNet201, InceptionV3, MobileNet, ResNet50, and 

VGG16. SVM, KNN, and RF are several ML classifiers 

used in this study[12], [26]. SVM, pioneered by Cortes 

and Vapnik [27], is selected for its robustness in 

managing high-dimensional data and its ability to 

identify the best hyperplane that maximizes the margin 

between classes, making it suitable for image 

classification tasks with nonlinear decision boundaries. 

KNN, originally proposed by Cover and Hart [28], is 

utilized for its simplicity and robustness in 

classification tasks. The classification of an input 

instance is decided by the most class among its k nearest 

neighbors in the feature space. RF, developed by 

Breiman [29], is used for its ensemble learning 

technique, which combines multiple decision trees to 

mitigate overfitting and improve generalization 

performance, making it suitable for robust image 

classification tasks. The evaluation parameters applied 

include accuracy, precision, sensitivity, specificity and 

the F1 score in the different models. 

 

Figure 2. ML classifier framework 

2.3. Hybrid models 

Using multiple pre-trained networks for skin 

classification, as much as the pre-trained CNN can be 

used individually, there is the possibility of using 

multiple pre-trained CNN to arrive at a better 

classification [12], [30]. In this method, it is possible to 

combine various pre-trained models and select 

important features that are further passed onto the ML 

classifier, where the final desired outcome in terms of 

classification is derived. The features acquired from the 

pre-trained CNN are then concatenated and provided to 

the ML classifier, such as SVM, KNN, and RF. Finally, 

the output of the trained ML classifier gives the classes 

of the dermoscopy image input. The framework of the 

hybrid model is presented in Figure 3.  

 

Figure 3. Hybrid model framework 

The proposed models are evaluated in terms of their 

performance using the ISBI 2016 dataset. The hybrid 

models will be applied to traditional and modified pre-

trained CNN structures, including MobileNet and 

DenseNet201, MobileNet and ResNet50, as well as 

MobileNet and VGG16. The performance of the model 

is measured by precision, precision, sensitivity, 

specificity and F1 score.  

2.4 Datasets 

A subset of the ISIC dataset, the ISBI 2016 dataset [31], 

is used to train and test the pre-trained CNN models. 

The training set has 900 images, and the test set contains 

379 images with image sizes ranging from 1022 x 767 

to 4288 x 284 pixels. For training the models, we used 

training images consisting of 727 benign lesions, the 

remaining 173 malignant lesions. For the test, we used 

test images consisting of 304 benign lesions; the 

remaining 75 images were malignant lesions. 

Furthermore, for computational efficiency purposes, the 

training and testing images were rescaled to 224 x 224 

pixels.  

To overcome the problems related to unbalanced data, 

several image enhancement methods, including 

flipping, cropping, and rotation techniques, were used 

in the training images. Training images are flipped 

around the vertical and horizontal axes. Then an angle 

of 20 ° is used to rotate the images. In this study, 727 

benign and 173 malignant images were each augmented 

to 1000 images, resulting in balanced training data for 

the proposed models. 

2.5 Performance Evaluation 

This research aims to identify the appropriate 

evaluation metrics to determine how effective the 

proposed models are in categorizing skin cancer into 

benign and malignant. The assessment includes the 

application of a confusion matrix along with other 

essential metrics, including accuracy [32], precision 

[32], sensitivity [32], specificity [32], and the F1-score 

[33]. The formula to calculate all these metrics can be 

seen in Formulas 1, 2, 3, 4, and 5.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(5) 

The confusion matrix gives a clear understanding of 

classified data, distinguishing between correct and 

incorrect classifications [34]. Since accuracy is crucial, 

it measures the extent of correct classification out of the 

total instances. Precision quantifies the size of 

accurately identified benign cases among all genuine 

benign cases classified by the system. Sensitivity, on 

the other hand, is modeled as the size of genuine benign 

cases to the total instances that are accurately classified 

as benign by the algorithm. Specificity is modeled as 

the size of genuine malignant cases to the count of 

instances that the algorithm accurately identified as 

malignant.  

The F1 score metric, the result of combining precision 

and sensitivity, offers a unique way to measure the 

performance of a model. In this case, positives mean 

that the skin had benign cancer and negatives indicate 

that it was malignant. The number of accurately 

classified instances is termed true positives (TP) and 

true negatives (TN), while false negatives (FN) and 

false positives (FP) are those that are misclassified. 

3. Results and Discussions 

This section delves into the exploration of various 

methodologies employed for skin cancer classification, 

detailing the datasets utilized and key performance 

metrics assessed. The findings are categorized into 

three distinct sections for clarity and depth of analysis. 

Section 3 focuses on the outcomes derived from several 

pre-trained CNN. Within this section, Section 3.1 

provides an overview of the results obtained from skin 

cancer classification utilizing individual pre-trained 

CNN models. These models were evaluated based on 

their ability to accurately differentiate between 

malignant and benign skin lesions, using established 

benchmark datasets. 

Section 3.2 delves into the outcomes of employing pre-

trained CNN models in conjunction with ML classifiers 

for skin cancer classification. This hybrid approach 

aims to capitalize on the feature extraction capabilities 

of CNN while leveraging the robust classification 

capabilities of ML algorithms such as SVM, KNN, and 

RF. The results presented in this section highlight the 

combined efficacy of CNN and ML classifiers in 

enhancing diagnostic accuracy. 

In Section 3.3 of this study, the spotlight turns to hybrid 

models that capitalize on the synergy between features 

extracted from two distinct pre-trained CNN 

architectures, which are then processed through ML 

classifiers. This innovative approach aims to elevate 

classification accuracy by harnessing the 

complementary strengths of diverse CNN and refining 

their performance through strategic model fusion 

strategies. The thorough exploration conducted in this 

section sheds light on the superiority of these hybrid 

models over conventional methods. By effectively 

integrating the feature extraction capabilities of 

multiple CNN and leveraging the discriminative power 

of ML classifiers like SVM, KNN, and RF, these hybrid 

models demonstrate significant advancements in the 

field of skin cancer diagnosis. The detailed analysis 

presented underscores their potential to enhance 

diagnostic precision and reliability in medical image 

analysis, paving the way for more effective and efficient 

clinical decision-making processes. 

3.1 Results of skin cancer classification using pre-

trained CNN 

The training of pre-trained CNN models in this study 

adheres to a standardized approach, employing uniform 

settings across batch size, image input size, learning 

rate, epochs, and optimizer configurations as outlined in 

Table 1. The ISBI 2016 training dataset undergoes an 

80-20 split for training and validation, respectively, 

within each of the five folds utilized for cross-

validation. Given the constraints of data scarcity and 

class imbalance between benign and malignant skin 

lesions, augmentation techniques such as rotation, 

scaling, and translation are applied to augment all 

training images. The ISBI 2016 test dataset serves as the 

benchmark for evaluating model performance. 

Results for traditional pre-trained CNN models are 

compiled and presented in Table 2, highlighting their 

respective accuracies. Concurrently, modified versions 

of these pre-trained CNN are evaluated and their 

performance metrics are detailed in Table 3. Notably, 

nearly all modified pre-trained models exhibit 

improved accuracy rates, with the exception of the 

modified InceptionV3 model, which achieves a slightly 

lower accuracy of 79.16% compared to the traditional 

InceptionV3 model's accuracy of 81.53%. Among the 

modified models, VGG16 stands out with the highest 

accuracy recorded at 85.22%. 

To provide a visual representation of the performance 

metrics, confusion matrices are depicted. Figures 4 and 

5 illustrate the confusion matrices for traditional and 

modified pre-trained CNN models, respectively. These 

matrices offer a comprehensive breakdown of 

classification outcomes, shedding light on the strengths 

and weaknesses of each model configuration in 

accurately distinguishing between benign and 

malignant skin lesions. 

3.2 Results of skin cancer classification using pre-

trained CNN models with ML classifier 

In this study, a thorough and systematic approach was 

adopted to train and evaluate various models using the 

ISBI 2016 dataset. Initially, 80% of the images from the 

ISBI 2016 training dataset were employed for model 

training. The remaining 20% of the images were set 
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aside for testing, utilizing cross-validation techniques to 

ensure a robust assessment of the models' performance. 

Beyond this, the ISBI 2016 test dataset was also used to 

further gauge the effectiveness and reliability of the 

models. 

Table 2. Performance of the pre-trained CNN 

Pre-trained CNN Accuracy Precision Sensitivity Specificity F1-score 

MobileNet 81.79% 86.83% 91.12% 44.00% 81.11% 

DenseNet201 80.74% 86.46% 92.43% 41.33% 82.28% 

ResNet50 64.37% 80.21% 76.64% 14.67% 68.23% 

InceptionV3 81.53% 87.10% 88.82% 46.67% 79.06% 

VGG16 69.12% 87.97% 84.21% 53.33% 74.96% 

 

Figure 4. Confusion matrices for the traditional pre-trained CNN 

Table 3. Performance of the modified pre-trained CNN 

Pre-trained CNN Accuracy Precision Sensitivity Specificity F1-score 

MobileNet 84.90% 89.46% 92.11% 56.00% 81.99% 

DenseNet201 82.85% 86.54% 93.09% 41.33% 82.87% 

ResNet50 82.56% 87.42% 91.45% 46.67% 81.41% 

InceptionV3 79.16% 86.41% 87.83% 44.00% 78.18% 

VGG16 85.22% 84.44% 100.00% 25.33% 89.02% 

 

Figure 5. Confusion matrices for the modified pre-trained CNN 

To provide a detailed analysis of the modified pre-

trained models, confusion matrices were generated. 

These matrices offer an in-depth examination of the 

models' performance metrics, presenting the results for 

traditional pre-trained CNN in Figure 6 and those for 

the modified pre-trained CNN in Figure 7. The 

comprehensive performance metrics for all pre-trained 

CNN are summarized in Tables 4 and 5, providing a 

clear comparison of their effectiveness.Among the 

various models tested, the modified MobileNet, when 

combined with an SVM classifier, achieved the highest 

accuracy. This notable finding underscores the superior 

performance of the modified MobileNet model in 

comparison to the other models evaluated. It highlights 

the significant benefits of modifying and optimizing 

pre-trained CNN to enhance accuracy in skin lesion 

classification. This study demonstrates the potential for 

advanced CNN techniques to substantially improve 

diagnostic accuracy in medical image analysis, paving 

the way for more reliable and efficient skin cancer 

detection methods

Table 4. Performance of the traditional pre-trained CNN with ML classifier 

Pre-trained CNN Classifier Accuracy Precision Sensitivity Specificity F1-score 

MobileNet SVM 83,11% 88,22% 91,12% 50,67% 89,64% 

 KNN 81,79% 87,30% 90,46% 46,67% 88,85% 

 RF 82,32% 88,85% 89,14% 54,67% 89,00% 

DenseNet201 SVM 82,59% 87,42% 91,45% 46,67% 89,39% 

 KNN 80,47% 88,33% 87,17% 53,33% 87,75% 

 RF 81,53% 89,00% 87,83% 56,00% 88,41% 

ResNet50 SVM 82,18% 87,99% 89,14% 50,67% 88,56% 

 KNN 76,78% 85,06% 86,18% 38,67% 85,62% 

 RF 82,06% 88,82% 88,82% 54,67% 88,82% 

InceptionV3 SVM 83,91% 87,16% 93,75% 44,00% 90,33% 

 KNN 84,17% 86,09% 95,72% 37,33% 90,65% 

 RF 83,91% 87,38% 93,42% 45,33% 90,30% 

VGG16 SVM 70,98% 87,31% 74,67% 56,00% 80,50% 

 KNN 68,34% 83,58% 75,33% 40,00% 79,24% 

 RF 69,31% 82,58% 78,22% 33,33% 80,34% 
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Figure 6. Confusion matrices for the traditional pre-trained CNN 

Table 5. Performance of the modified pre-trained CNN with ML classifier 

Pre-trained CNN Classifier Accuracy Precision Sensitivity Specificity F1-score 

MobileNet SVM 83,11% 88,71% 90,46% 53,33% 89,58% 

 KNN 85,49% 88,79% 93,75% 52,00% 91,20% 

 RF 84,43% 89,39% 91,45% 56,00% 90,41% 

DenseNet201 SVM 82,06% 88,82% 88,82% 54,67% 88,82% 

 KNN 84,43% 88,16% 93,09% 49,33% 90,56% 

 RF 83,11% 87,97% 91,45% 49,33% 89,68% 

ResNet50 SVM 82,32% 88,85% 89,14% 54,67% 89,00% 

 KNN 82,85% 87,46% 91,78% 46,67% 89,57% 

 RF 82,32% 87,62% 90,79% 48,00% 89,18% 

InceptionV3 SVM 78,36% 85,58% 87,83% 40,00% 86,69% 

 KNN 80,47% 86,86% 89,14% 45,33% 87,99% 

 RF 81,27% 86,07% 91,45% 40,00% 88,68% 

VGG16 SVM 72,30% 90,28% 73,36% 68,00% 80,94% 

 KNN 72,56% 82,68% 83,22% 29,33% 82,95% 

 RF 68,34% 82,39% 76,97% 33,33% 79,59% 

 

Figure 7. Confusion matrices for the modified pre-trained CNN
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3.3 Results of skin cancer classification using hybrid 

models 

In this study, a comprehensive approach was taken to 

enhance the accuracy of skin lesion classification by 

combining the strengths of multiple CNN architectures. 

The extracted features from images processed by two 

pre-trained CNN were concatenated and then used as 

input for various ML classifiers, including SVM, KNN, 

and RF. This method aimed to exploit the 

complementary features captured by different CNN to 

improve overall classification performance. The 

performance evaluations of these concatenated models 

are detailed in Tables 6 and 7, covering combinations 

such as MobileNet and DenseNet201, MobileNet and 

ResNet50, and MobileNet and VGG16. Each 

combination was assessed to determine its effectiveness 

in classifying skin lesions as malignant or benign. 

Among the various hybrid models tested, the 

combination of MobileNet and VGG16, paired with the 

RF classifier, achieved the highest accuracy of 94.20%. 

This optimal performance was attained by using the 

hyperparameters specified in Table 1, which were 

meticulously tuned to enhance the model's predictive 

capability. 

To provide a thorough analysis of these hybrid models' 

effectiveness, confusion matrices were generated. 

Figure 8 presents the confusion matrices for the 

traditional pre-trained hybrid models, while Figure 9 

displays the results for the modified pre-trained hybrid 

models. These matrices offer a detailed breakdown of 

classification accuracy and error distribution, clearly 

illustrating the superior performance of the modified 

hybrid models compared to their traditional 

counterparts. 

This methodology underscores the significant potential 

of combining feature extraction from multiple CNN 

with advanced ML classifiers. By leveraging the unique 

strengths of each CNN architecture and optimizing the 

model through concatenation and careful 

hyperparameter tuning, the study demonstrates a 

promising approach to significantly improve the 

accuracy of skin lesion classification in medical image 

analysis

Table 6. Performance of hybrid traditional pre-trained CNN 

Pre-trained CNN Classifier Accuracy Precision Sensitivity Specificity F1-score 

MobileNet and ResNet50 SVM 82.85% 87.70% 91.45% 48.00% 89.53% 

  KNN 82.06% 88.31% 89.47% 52.00% 88.89% 

 RF 86.54% 89.66% 94.08% 56.00% 91.81% 

MobileNet and DenseNet201 SVM 85.22% 88.04% 94.41% 48.00% 91.11% 

 KNN 84.96% 88.47% 93.42% 50.67% 90.88% 

  RF 86.28% 89.87% 93.42% 57.33% 91.61% 

MobileNet and VGG16 SVM 83.11% 87.74% 91.78% 48.00% 89.71% 

  KNN 83.11% 88.46% 90.79% 52.00% 89.61% 

 RF 86.28% 89.87% 93.42% 57.33% 91.61% 

 

Figure 8. Confusion matrices for hybrid traditional pre-trained CNN 

Table 7. Performance of a hybrid modified pre-trained CNN 

Pre-trained CNN Classifier Accuracy Precision Sensitivity Specificity F1-score 

MobileNet and ResNet50 SVM 87.60% 90.54% 94.41% 60.00% 92.43% 

  KNN 87.86% 89.81% 95.72% 56.00% 92.68% 

 RF 92.35% 92.05% 99.01% 65.33% 95.40% 

MobileNet and DenseNet201 SVM 87.34% 88.79% 96.38% 50.67% 92.43% 

 KNN 86.28% 89.13% 94.41% 53.33% 91.69% 

  RF 90.24% 91.59% 96.71% 64.00% 94.08% 

MobileNet and VGG16 SVM 91.03% 91.93% 97.37% 65.33% 94.57% 

 KNN 85.49% 89.78% 92.43% 57.33% 91.09% 

 RF 94.20% 94.06% 99.01% 74.67% 96.47% 
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Figure 9. Confusion matrices for hybrid modified pre-trained CNN

4. Conclusions 

This study delves deeply into the realm of skin cancer 

image classification, proposing novel methods to 

enhance the performance of traditional pre-trained 

CNN models for more effective classification tasks. 

The research systematically compares the efficacy of 

standard pre-trained CNN against modified versions in 

the context of skin cancer image classification. Notably, 

the modified VGG16 model achieves the highest 

accuracy among all models tested, reaching 85.22%, 

highlighting its superior performance in distinguishing 

between benign and malignant skin lesions. Expanding 

upon this initial investigation, the study explores the 

integration of alternative classifiers such as SVM, 

KNN, and RF The most precise classification result 

emerges from the modified MobileNet model coupled 

with the KNN classifier, achieving an impressive 

accuracy of 85.49%. Further advancing the research, a 

hybrid model approach is introduced, combining 

features extracted from various modified pre-trained 

CNN architectures and processing them through ML 

classifiers. Particularly noteworthy is the concatenation 

of MobileNet and VGG16 with an RF classifier, 

yielding a remarkable accuracy of 94.20%, 

underscoring the effectiveness of hybrid models in 

optimizing classification performance. Looking 

forward, future endeavors could explore additional 

dimensions of optimization for the proposed pre-trained 

CNN models, including variations in epochs, batch 

sizes, classifiers, and optimization strategies. 

Furthermore, integrating preprocessing steps into the 

input stream before network processing could further 

refine the proposed method's ability to classify a 

broader spectrum of skin lesion classes with enhanced 

accuracy. These avenues of exploration hold promise 

for advancing the capabilities of CNN-based diagnostic 

systems in dermatology, ultimately improving clinical 

decision-making and patient outcomes. 
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