
 Received: 25-07-2024 | Accepted: 22-08-2024 | Published Online: 24-08-2024

525

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 4 (2024) 525 - 534 e-ISSN: 2580-0760

Optimized Hyperparameter Tuning for Improved Hate Speech Detection

with Multilayer Perceptron

Muhamad Ridwan1*, Ema Utami2
1, 2Magister Informatika, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia

1rdwanmuhamad@students.amikom.ac.id, 2ema.u@amikom.ac.id

Abstract

Hate speech classification is a critical task in the domain of natural language processing, aiming to mitigate the negative

impacts of harmful content on digital platforms. This study explores the application of a Multilayer Perceptron (MLP) model

for hate speech classification, utilizing Bag of Words (BoW) for feature extraction. The hypothesis posits that hyperparameter

tuning through sophisticated optimization techniques will significantly improve model performance. To validate this

hypothesis, we employed two distinct hyperparameter tuning approaches: Random Search and Optuna. Random Search

provides a straightforward yet effective means of exploring the hyperparameter space, while Optuna offers a more

sophisticated, optimization-based approach to hyperparameter selection. The study involved training the MLP model on a

labeled dataset based on crawling results on the Twitter platform of hate speech and non-hate speech overall total dataset is

13.169, followed by evaluation using standard metrics. Our experimental results demonstrate the comparative effectiveness of

these two hyperparameter tuning methods. Notably, the MLP model tuned with Optuna achieved a higher F1-score of 81.49%,

compared to 79.70% achieved with Random Search, indicating the superior performance of Optuna in optimizing the

hyperparameters. These results were obtained through extensive cross-validation to ensure robustness and generalizability.

The findings underscore the importance of optimized hyperparameters in developing robust hate speech classification systems.

The superior performance of Optuna highlights its potential for broader application in other machine learning tasks requiring

hyperparameter optimization. This improvement enables more reliable and efficient automated moderation, which is crucial

for the integrity and security of digital communication platforms such as Twitter.

Keywords: hate speech; multilayer perceptro; bag of words; hyperparameter tuning; random search; optuna

How to Cite: Muhamad Ridwan and Ema Utami, “An Optimized Hyperparameter Tuning for Improved Hate Speech Detection

with Multilayer Perceptron”, J. RESTI (Rekayasa Sist. Teknol. Inf.), vol. 8, no. 4, pp. 525 - 534, Aug. 2024.

DOI: https://doi.org/10.29207/resti.v8i4.5949

1. Introduction

The digital age has revolutionized communication,

transforming how we interact by rapidly exchanging

information and ideas. However, alongside these

advancements, the spread of hate speech defined as any

expression intended to insult or degrade individuals

based on characteristics such as religious affiliation,

sexual orientation, gender, or ethnicity has intensified,

posing serious social challenges and consequences [1].

The rise of social media platforms like Twitter and

Facebook has led to an exponential increase in user-

generated content, facilitating both constructive

discourse and the rapid dissemination of harmful

content, including hate speech [2]. As more people turn

to these platforms for news and discussion, the visibility

of hate speech has grown, sometimes leading to

conflicts among social groups [3], [4]. Specifically,

Twitter, which has 63.6% of Indonesians aged 16 to 64

as active users, has become a focal point for public

discourse and the spread of offensive language, making

it an important platform for studying public opinion and

conducting sentiment analysis [5], [6].

Despite the prevalence of offensive language on social

media, the sheer volume of content makes manual

detection inefficient. To address this, research has

increasingly focused on automating the identification of

hate speech through machine learning and deep learning

techniques [7], [8]. Among the various methods

available, Multilayer Perceptron (MLP) has been

selected for this study due to its proven ability to model

complex, non-linear relationships in data, making it

well-suited for the nuanced task of hate speech

detection. MLP's flexibility in learning representations

https://doi.org/10.29207/resti.v8i4.5949

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 526

from data, combined with hyperparameter tuning,

allows for optimizing model performance, making it a

compelling choice over more traditional approaches.

Hyperparameter tuning, in particular, is crucial in this

context as it ensures that the model is not only accurate

but also robust, and capable of generalizing well to new,

unseen data [9].

This study aims to improve hate speech detection using

MLP, Bag of Words feature extraction, and

Hyperparameter Tuning with Random Search and

Optuna approaches. This study attempts to build a

machine learning model through algorithm selection

and optimization, which ultimately contribute to

broader efforts to automate hate speech detection.

Research [10], [11] and [12] focused on detecting

abusive language and hate speech in Indonesia on the

Twitter platform, using different approaches. The

research by [10] has successfully created a dataset based

on crawling results on Twitter and used a combination

of unigram word features, Random Forest the Decision

Tree (RFDT), and Label Power-set (LP). This

experiment showed an accuracy rate of 77.36% for

multi-label classification without target, category, and

hate speech level identification, and 66.12% when

including these identifications. On the other hand,

research [11] used a multi-label classification One-vs-

All method with an Artificial Neural Network (ANN)

classifier and a Bag of Words (BoW) approach,

achieving the highest accuracy of 86.79%. This study

emphasized the importance of text preprocessing steps,

such as the elimination of non-formal words and the

application of non-formal stemming, as well as

balancing the number of tweets for each label to

improve results. A combination of alternative feature

selection and the use of deep learning models is also

suggested for optimal classification performance.

Research [12] evaluated the hate speech classification

model using a Support Vector Machine (SVM) with

linear and polynomial kernels, and DistilBERT feature

extraction combined with PCA dimensionality

reduction. The evaluation results showed that the

polynomial kernel with 50 dimensions provided the

highest average F1 Score of 78%. This study

recommended focusing on the word cleaning methods

in the preprocessing stage to improve analysis accuracy

and consider dimensionality reduction methods in

determining component values. In addition, the

classification using DistilBERT with SVM can be

optimized by extracting TF/IDF, Bag of Words, and

Tweet Length features

By applying different approaches, the research

conducted by [13] and [14] used text classification with

Bag of Words (BoW) feature extraction to address

different issues, namely hate speech and suicide

detection. The study [13] compared classification

methods such as Decision Tree and Stochastic Gradient

Boosting, using prominent feature extraction TF-IDF,

Bag of Words, and Tweet Length to identify hate speech

during COVID-19. The final results showed that

Stochastic Gradient Boosting achieved an F1-Score of

98%, higher than the Decision Tree which achieved

97%. This research revealed that the classification that

considers gender categories can enhance the generated

information. Meanwhile, recent studies in suicide

detection and prevention conducted by [14] showed a

significant increase in the use of semi-supervised

methods to populate the Life Corpus with bootstrapping

techniques. There are two classifiers used namely

Support Vector Machine (SVM) with Bag of Words

(BoW) feature extraction and without TF-IDF. These

approaches were applied to classify texts from social

networks and forums related to suicide and depression.

With five different data collections: Life, Reddit,

Life+Reddit, Life_en, and Life_en+Reddit, the research

results showed that the semi-supervised method

increased the Life Corpus size from 102 to 273 samples

with a macro F1 score of 0.80 in the combination of

Life+Reddit+BoW Embeddings using SVM.

Subsequently, the manual evaluation by annotators

showed a Cohen's Kappa agreement level of 0.86.

Although the semi-supervised method made significant

contributions, there are limitations in recognizing

certain contexts or nuances in the text that can affect

detection accuracy. These findings contribute

significantly to further development in hate speech

detection and suicide prevention through text

classification and feature extraction Bag of Word.

Additionally, research [15] - [18] proposed the use of

deep learning models, particularly Multilayer

Perceptron (MLP), for text classification and sentiment

analysis with different yet complementary approaches.

Research [15], [16], [17] used a combination of

BiLSTM, CNN, and MLP models with word

embedding techniques such as GloVe, TF-IDF, and

transformer-based embeddings, achieving accuracies of

over 95% in hate speech classification in English and

Spanish. Research [15], [16], [17] also proposed MLP

for sentiment analysis on two datasets, namely Twitter

and movie reviews, with accuracies of 85% and 89%,

respectively. Sentiment analysis is important for

understanding public opinion from texts like messages

or posts. Research [15], [16], [17] emphasized the

importance of Explainable Artificial Intelligence (XAI)

in hate speech detection, using BERT+ANN and

BERT+MLP models with accuracies of 93.55% and

93.67% on the HateXplain dataset, and applying LIME

interpretation methods. However, this method was less

effective for all users due to insufficient depth in

interpretation. Research [18] combined lexicon-based

and machine-learning approaches to predict public

market mood in BIST30, Borsa Istanbul, using 17.189

tweets. By excluding neutral labels, Support Vector

Machine and MLP showed the best performance with

accuracies of 0.89 and 0.88. All these studies indicated

that MLP can achieve high accuracy in text

classification, with potential improvements through

parameter optimization and better preprocessing steps.

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 527

In another place, research [9] and [19] focused on

hyperparameter optimization and imbalanced handling

data in Multi-Layer Perceptron Neural Network

(MLPNN) models. Research [19] proposed a new

model to optimize the number of neurons in hidden

layers, neuron connections, and connection weights to

avoid overfitting or underfitting, enhancing the

generalization capacity of MLPNN. Although methods

like Random search and Grid Search take longer, both

can yield good accuracy. Meanwhile, research [20]

addressed the issue of imbalanced data in the context of

fraud detection, achieving a test accuracy of 99.937%

with the MLP model. This study explored resampling

strategies such as under-sampling, oversampling, and

SMOTE to reduce the number of false negatives. The

results highlighted the importance of addressing class

imbalance in the data preprocessing phase to improve

the performance of predictive models.

2. Research Methods

This section focuses on the architectural description of

the proposed system. The development of a hate speech

text classification system is driven by the urgent need to

address the rampant spread of hate speech across

various digital platforms. This phenomenon does not

only threaten social security and order but also disrupts

peace and comfort in online interactions. Therefore, an

effective solution is needed to identify and classify hate

speech accurately.

The proposed system is built using a multilayer

perceptron (MLP) approach, a type of artificial neural

network known for its ability to process text data.

Moreover, the hyperparameter tuning using two

methods: Random Search and Optuna, is applied to

enhance the performance and accuracy of the

classification. Hyperparameter tuning is a crucial step

that determines the best configuration for a machine

learning model, thereby maximizing its performance.

The steps required to build this text classifier involve

several stages which are started from the collection and

preparation of hate speech text data, feature extraction

using the Bag of Words (BoW) technique, and the

construction and training of the MLP model. The BoW

feature extraction is used to convert the text into a

numerical representation that can be processed by the

MLP model. Subsequently, the model is trained with

the prepared dataset, and hyperparameter tuning is

conducted to find the optimal parameters that enhance

the classification performance.

Figure 1. Research Flow

Figure 1 illustrates the research flow process involving

the use of data preprocessing techniques, feature

extraction, cross-validation, and machine learning,

along with hyperparameter tuning to find optimal

parameters.

2.1 Dataset

This research utilizes a dataset from previous research

conducted by [10] which is accessible through GitHub.

This reference dataset uses multilabel information to

identify language containing insulting content and

words that can trigger hateful feelings. The dataset

contains the following columns: Religion/creed,

Race/ethnicity, Physical/disability, Gender/sexual

orientation, and other invective/slander. In Figure 2, the

graph displays the number of Tweets containing hate

and non-hate speech based on the HS label. The 0

number is used to indicate that the Tweet data does not

contain hate or non-hate speech, with a total of 7.608.

Then, the second bar with the value 1 is used for Tweet

data containing hate or HS, with a total of 5.561, and

the overall total of both is 13.169.

The hate speech tweets totalling 5.561 were mostly

directed at individuals. In detail, the 3.575 tweets were

specifically aimed at individuals, and 1.986 tweets were

targeted to certain groups. The identified hate speech

categories included 793 tweets related to religion/creed,

566 tweets related to race/ethnicity, 323 tweets related

to physical/disability, 306 tweets related to

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 528

gender/sexual orientation, and 3.740 tweets related to

other invective/slander. To assess the severity of hate

speech, the data also included 3.383 cases of weak hate

speech, 1.705 cases of moderate hate speech, and 473

cases of hate speech classified as strong.

Figure 2. Class Distribution

2.2 Preprocessing

In the initial stage of the data preprocessing, this step

significantly impacts the model's performance. The data

sources such as Twitter or other online platforms are

often filled with noise and may contain incomplete

information, such as text, images, audio, video, and so

on. This initial processing aims to clean the data,

eliminate noise, and make it clear and meaningful [17].

The preprocessing steps include lowercase conversion,

tweet attributes removal, non-alphanumeric characters

removal, spell checking, stemming, and stop word

removal. The following table is an example of a dataset

that has undergone preprocessing at each step, shown in

Table 1.

Table 1. Result Preprocessing

Tweet Tweet_Clean

- disaat semua cowok

berusaha melacak perhatian

cowok usaha lacak perhati

lantas remeh perhati

RT USER: USER siapa yang

telat ngasih tau elu?

telat tau edan sarap gaulcigax

jifla cal licew

41. Kadang aku berfikir,

kenapa aku tetap percaya

41 kadang pikir percaya tuhan

jatuh kali kali

USER USER AKU ITU

AKU\n\nKU TAU

MATAMU SIPIT TAPI

ku tau mata sipit lihat

USER USER Kaum cebong

kapir udah keliatan

dongoknya

kaum cebong kafir lihat dongok

dungu haha

… …

USER jangan asal ngomong

ndasmu. congor lu yg

bicara ndasmu congorsekata

anjing

USER Kasur mana ena

kunyuk'
kasur enak kunyuk

USER Hati hati bisu :(

.g\n\nlagi bosan huft \
hati hati bisu bosan duh

USER USER USER USER

Bom yang real mudah

terdeteksi

sangat mudah _ deteksi lahir

kubur dahsyat ledak

USER Mana situ ngasih(":

itu Cuma foto ya kutil onta'
itu foto kutil di atas

The transformation of the text preprocessing stage is

illustrated through word clouds. These changes can be

observed by comparing tweet data before and after the

preprocessing process. Figure 3 shows the visualization

of the "Tweet" column containing data before the

preprocessing process:

Figure 3. Wordcloud before initial processing

Figure 3 shows the frequency of words that often appear

in the "Tweet" column. In that figure, some words in the

tweet dataset contain meaningless phrases, such as

(USER, URL, X9F, X98, XF0, etc), which can affect

the analysis results.

Figure 4. Wordcloud after preprocessing

Next, Figure 4 shows the frequency of words that often

appear in the "Tweet_Clean" column. This Figure

provides an overview of the changes resulting from the

preprocessing process. The comparison between

Figures 3 and 4 allows an understanding of the overall

changes after the preprocessing stage. The analysis

expressed that there were several words like "WKWK,"

"HAHA," "EH," and other meaningless words, which

indicate the need for improvements in the preprocessing

stage in this study. The selection and creation of a

"kamus alay" could be one factor that causes some

meaningless words to be inadequately processed during

preprocessing.

2.3 Feature Extraction

The feature extraction method applied in this research

was Bag of Words. The training data in text form will

be extracted into vectors. The resulting vectors can

further be used as the implementation features in natural

language processing and machine learning cases.

Computers cannot directly understand text because it

does not contain numerical information [20]. Thus, a

method is needed to connect the computer with the text

using a text-to-number converter.

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 529

CountVectorizer implementation bag-of-words

approach, as previously mentioned, calculated the

frequency of each feature and determined the

importance of each word in the document. Table 2

shows the results of CountVectorizer.

Table 2. Converts Text Into Vector

CountVectorizer Result

(0, 2427) 2

(0, 12073) 1

(0, 6306) 1

(0, 8737) 2

(0, 6386) 1

(0, 9559) 1

(0, 8737) 2

(0, 5493) 1

(0, 5843) 1

(0, 1353) 1

In research, hate speech detection using both deep and

shallow learning methods and the Bag of Words (BoW)

model is employed as a basic technique for text

representation [21]. Bag of Word is commonly used in

Natural Language Processing (NLP) to run tasks such

as sentiment analysis, text classification, and

information retrieval. This approach offers a

straightforward and efficient means of converting

textual data into structured format

2.4 Cross Validation

At this stage, the data would be divided into two parts,

namely the training data and the test data. A portion of

the data, called the training sample, is used for training,

while the remaining portion, called the validation

sample, is used for testing. The data split is illustrated

in Figure 5.

Figure 5. Cross Validation illustration

This research employed cross-validation, a common

method for data partitioning in model selection. In this

technique, the data was divided into k segments (known

as k-folds). One segment serves as the validation set.

The trained model was then tested on this validation set

and its predictive performance was recorded. This

process was repeated k times so that each data segment

served as the validation set once [22].

After the preprocessing and data splitting process was

completed, the data was trained using machine learning

algorithms to build the model. This section provides a

brief explanation of the chosen machine learning

algorithms and hyperparameter tuning performed.

2.5 Multilayer Perceptron

This research employed a Multilayer Perceptron (MLP)

as the learning module. MLP is a type of artificial neural

network that consists of multiple layers of neurons,

where each neuron in one layer is connected to neurons

in the next layer.

Figure 6. Multilayer Perceptron Architecture

Figure 6 illustrates the structure of a Multilayer

Perceptron (MLP). MLP is known for its high

classification capability and it consists of three types of

layers that are input layer, hidden layers, and output

layer [23]. In the input layer, each neuron represents an

input variable or feature. The hidden layers are

responsible for processing data and storing weights

during training. Furthermore, the output layer consists

of neurons that represent the output variables. The

number of neurons in the input layer is equal to the

number of features provided to the neural network,

while the number of neurons in the output layer matches

the number of classes to be predicted. The number of

neurons in the hidden layers is a crucial architectural

decision, with the primary goal of optimizing it with

appropriate parameters to generalize well in the task of

aggression detection classification. To minimize the

difference between the desired network output and the

actual output, MLP learning is based on weight

adjustment, commonly using backpropagation

techniques based on gradient descent methods.

Suppose we use n neurons as the input layer x as shown

in Formula 1.

𝑥 = (𝑥1, 𝑥2 . . . , 𝑥𝑛) ()

Rectified Linear Unit (ReLU) is used as the activation
function in the hidden layer where ReLU(x) = max(x,
0) is shown in Formula 2

𝑓(𝑥) =
1

(1+𝑒(−𝑥))
 ()

Then the output of each layer is calculated to obtain the
final output. Assume the set of hidden layers h = (h1,
h2,, hm) and the number of neurons in each hidden
layer hi is ni. The output of the first hidden layer h1 is
calculated using Formula 3.

ℎ𝑖
𝑘 = 𝑓(∑ 𝑤𝑚,𝑘

0𝑛𝑖−1
𝑗=1 𝑥𝑗) 𝑘 = 1 ⋯ 𝑛𝑖 ()

The output of the next hidden layer is calculated using
Formula 4.

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 530

ℎ𝑖
𝑘 = 𝑓 (∑ 𝑤𝑗,𝑘

𝑖−1𝑛𝑖−1
𝑗=1 ℎ𝑖−1

𝑗
) 𝑖 = 2, ⋯ 𝑁 𝑑𝑎𝑛 𝑘 = 1 ⋯ 𝑛𝑖 ()

In the equation w i−1 j, k represents the weight between

the j-th neuron and (i − 1) in the next hidden layer, ni is

the i-th neuron in the i-th hidden layer. The output hi

can be calculated as in Formula 5.

ℎ𝑖 = (ℎ𝑖
1, ℎ𝑖

2, ⋯ ℎ𝑖
𝑛𝑖) ()

The classification stage uses Multilayer Perceptron with

the scikit-learn library as follows:

hidden_layer_sizes: array-like of shape (n_layers - 2,),
default=(100,): This parameter specifies the architecture
of the artificial neural network (MLP) by providing the
number of units (neurons) in each hidden layer

activation{'logistic'}: This parameter specifies the
activation function used in each unit (neuron) in the
hidden layers and the output unit. 'logistic' refers to the
sigmoid or logistic activation function, which produces
output in the range (0.1).

batch_sizeint,: This parameter specifies the batch size
used This parameter specifies the learning rate for the
optimization algorithm used in training the model. The
learning rate controls how much adjustment is made to
the weights and biases of the network each iteration.

max_iterint,: This parameter specifies the maximum
number of iterations and epochs performed during
model training.

2.6 Hyperparameter Tuning

Hyperparameter is a model to automate the

hyperparameter tuning process and achieve [24], is

shown in Formula 6.

𝑥∗ = 𝑎𝑟𝑔 min
𝑥 ∈ 𝑋

𝑓(𝑥) ()

f(x) is the objective function; x∗ is the hyperparameter

configuration that yields the optimal value for f(x); and

the hyperparameter x can take any element in the search

space X. Hyperparameter optimization automates the

adjustment of hyperparameter values to make the

process more efficient. Overall, the goal of

hyperparameter optimization is to achieve this

efficiency [25]. Hyperparameters in the Multilayer

Perceptron (MLP) model for classification tasks use

two main approaches, namely Random Search and

Optuna.

Random Search is a straightforward, simple and easy-

to-use technique for hyperparameter optimization in

machine learning [26], [27]. This approach involves

randomly sampling hyperparameters from a predefined

search space, and then evaluating the resulting model

on the validation set to assess the performance of each

hyperparameter combination [24].

Figure 7 illustrates a strategy where a set of random
hyperparameters is used to find the optimal solution for
a model [28]. The advantages of random search are its
simplicity and ease of implementation. Additionally,
random search can often outperform more complex
optimization methods in low-dimensional
hyperparameter spaces. However, the main drawback
of random search is that each evaluation conducted
during the search process is independent of one another.
Consequently, this approach does not consider the
results of previous evaluations when selecting the next
set of hyperparameters to be tested. Random search is
used to find the best hyperparameter combinations by
using RandomizedSearchCV from scikit-learn.

Figure 7. RandomSearchCV Process

RandomizedSearchCV is done by randomly sampling
the hyperparameter configurations from a specified

search space and then evaluating their performance
using cross-validation. This approach allows for

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 531

broader exploration of hyperparameters, which can
result in more optimal configurations [29]. The steps
involved in RandomizedSearchCV are as follows:

Step 1: Define the possible range for each
hyperparameter.

Step 2: Randomly select a set of hyperparameter
configurations based on predetermined sampling time.

Step 3: Evaluate the model's performance using these
configurations on the cross-validation set and calculate
the objective function value.

Step 4: Select the hyperparameter configuration that
yields the best performance, as determined by the
objective function value.

Compared to traditional grid search methods,
RandomizedSearchCV is more efficient because it can
explore the hyperparameter space with random
sampling. This allows it to find superior configurations
with a limited number of samples. However, because it
relies on random sampling, this method may not always
find the globally optimal configuration.

Optuna uses the Hyperband method to perform
optimization and test various hyperparameter
combinations [30]. Optuna consists of several modules
including Study, Storage, Trial, Sampler, and Pruner.
The Study module is responsible for managing the
objective function values for the best set of
hyperparameters found, as well as setting the
optimization method (Hyperband) and the number of
trials to be conducted. Optuna helps us determine the
optimal threshold values to maximize model accuracy
[31]. It searches automatically for optimal
hyperparameters by efficiently exploring its space using
pruning and statistical modeling techniques. Optuna
dynamically adjusts the search strategy based on the
objective function and search space specified by the user
and thus maximizes the model performance. This
Optuna also supports various types of hyperparameters
and integrates well with popular machine learning
libraries, simplifying the hyperparameter optimization
process and enhancing model performance.

The determination of hyperparameters or

hyperparameter settings is essential in defining the

structure of an Artificial Neural Network (ANN) model.

The quality of the resulting model is highly dependent

on the correct hyperparameter values [32]. The

multilayer perceptron has hidden layers in this study,

we investigate the influence of various hyperparameter

settings on the effectiveness and efficiency of the

artificial neural network model. The parameters to be

used are shown in Table 3.

The model used has complex hidden layers with

varying sizes from 5 to 100 neuron units in each layer,

applied sequentially. Furthermore, the learning rate is

set to (0.1, 0.01, 0.001, 0.0001). On the other hand, this

method also uses batch sizes of (64, 128, 256, and 512)

[33].

Table 3. Hyperparameter space

Parameter Values

'batch_size': 64, 128, 256, 512

'hidden_layer_sizes': (5 – 100)

'activation':
relu, tanh, logistic,

identity

'solver': sgd, adam, lbfgs

'learning_rate':
constant, adaptive,

invscaling

'learning_rate_init': (0.1 – 0.0001)

'alpha': (0.1 – 0.0001)

3. Results and Discussions

This study presents various experiments conducted with

data cleaning preparation and bag of words feature

extraction. The machine learning method applied in this

study was the multilayer perceptron. This research

employed random search and Optuna as

hyperparameter tuning approaches to optimize the

parameters used by these algorithms. The algorithm's

hyperparameters are listed in Table 3.

Experiment 1: Hyperparameter Optimization with

Random Search vs Optuna

In an attempt to set the hyperparameters in this

experiment, the study applied tuning on the dataset

using the multilayer perceptron algorithm by dividing

the dataset into 10 parts using the cross-validation

technique. The two hyperparameter tuning approaches

used were Random Search and Optuna. The optimal

hyperparameters obtained are shown in Table 4.

Table 4. Hyperparameter Optimal Random Search and Optuna

Best Parameter Random Search Optuna

'batch_size': 64 64

'hidden_layer_sizes': 80 95

'activation': Relu Relu

'solver': Adam Sgd

'learning_rate': Constant Adaptive

'learning_rate_init': 0.0001 0.1

'alpha': 0.1 0.1

As shown in Table 4, the optimal hyperparameter

settings obtained from Experiment 1 for the multilayer

perceptron with random search optimization are:

batch_size: 64, hidden_layer_size: 80, activation: relu,

solver: adam, learning_rate: constant,

learning_rate_init: 0.0001, and alpha: 0.1. Then, for

Optuna: batch_size: 64, hidden_layer_size: 95,

activation: relu, solver: sgd, learning_rate: adaptive,

learning_rate_init: 0.1 and alpha: 0.1.

Experiment 2: Evaluation Metrics of Random Search

and Optuna

After finding the optimal hyperparameters for the

multilayer perceptron algorithm using both random

search and Optuna approaches, this study used the tuned

hyperparameters to train and evaluate the model, as well

as calculate performance metrics for the algorithms

used. The results of both models are summarized in

Table 5.

Based on the model evaluation results, in the second

experiment, this study yielded the highest F1-Score of

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 532

81.49% on the Optuna model, while the Random Search

model achieved 79.70%. Figure 8 shows the

comparison results of the two approaches, namely

random search and Optuna.

Table 5. Comparison Of Random Search and Optuna Results

Method Hidden

Layer

Accuracy Precision Recall F1-

Score

Random

Search
80 0.8309 0.8105 0.7838 0.7970

Optuna 95 0.8450 0.8237 0.8063 0.8149

Figure 8. F1-Score Random Search and Optuna results

This improvement in performance using Optuna could

be attributed to its more sophisticated hyperparameter

optimization process, which explores a broader range of

parameter combinations more effectively than Random

Search. In the context of hate speech detection, this

means that the Optuna-tuned model is better at

balancing precision and recall, leading to more accurate

identification of hate speech instances. For practical

applications, this could translate to more reliable

detection in environments where reducing false

positives and capturing a higher number of actual hate

speech occurrences is critical. The slightly higher

computational cost may be justified in scenarios where

accuracy is paramount.

From these results, this study concluded that Optuna

allows the development of more efficient classifiers

compared to the Random Search technique. This study

also noted that both techniques achieved the highest

classification accuracy levels. The results of Random

Search tend to be closer to the results of Optuna. To

deepen this comparison, this study proposes a third

experiment focusing on the study of algorithm

execution time with both techniques.

Experiment 3: Evaluation of Random Search and

Optuna Execution Time

The third experiment of this study compares and

measures the execution time in the hyperparameter

tuning process for hate speech classification using

multilayer perceptron and feature extraction with these

two approaches, namely Random Search and Optuna.

This study further summarizes the execution time

results of both techniques, which can be seen in Table

6.

Table 6. Comparison Of Random Search And Optuna Execution

Times

Random Search Optuna

25.38 Hours 36.93 Hours

Random Search's best execution time took

approximately 25.38 hours to complete. This method

worked by randomly selecting hyperparameter

combinations from a predefined search space. Although

this method is simple and easy to implement, its

drawback lies in its relatively low efficiency, as it does

not consider information from previous iterations.

On the other hand, Optuna's best execution time of

36.93 hours. Optuna is a more sophisticated

hyperparameter optimization method, using a Bayesian

optimization approach to adaptively adjust the search

space based on results from previous iterations.

Although it requires a longer execution time, this

method is expected to find more optimal

hyperparameter combinations compared to Random

Search.

Figure 9. Algorithm time execution results

Based on the execution results illustrated in Figure 9,

the Multilayer Perceptron algorithms show significant

differences in execution time. Optuna's best execution

time is 36.93 hours, while Random Search takes 25.38

hours. Although Optuna's execution time is notably

longer, it achieves the highest F1-Score of 81.49%,

compared to 79.70% for Random Search. This indicates

that Optuna, despite its longer execution time, offers

better performance. However, it is essential to consider

whether this trade-off is practical for real-world

applications, where the additional accuracy may or may

not justify the increased execution time in a production

environment.

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 533

Experiment 4: Comparing Previous Models and

Proposed Models

In the fourth experiment, similar dataset results from the

study [10] were compared to detect hate speech on

Twitter in Indonesia.

Table 7. Comparison Of Previous Research

In Table 7, this study conducts a comparative analysis

between several classifications methods used in hate

speech detection by combining Hyperparameter Tuning

Random Search and Optuna with Multilayer Perceptron

(MLP) using Bag of Words (BoW) as feature

extraction. The study results were compared to several

previous studies LP with RFDT and Unigram [10] This

method achieves an accuracy of 66.12%. However, this

accuracy result is relatively lower compared to the other

methods, indicating that this combination may be less

effective in the context of hate speech detection.

One-vs-All using ANN with BoW and Chi-Square [11]

this method achieved an accuracy of 86.79% and an F1-

Score of 74.66%. These results indicated a quite good

performance in classifying hate speech, especially in

terms of relatively high accuracy.

DistilBERT with Support Vector Machine (SVM) [12]

This approach managed to achieve an F1-Score of

78.5%. By using more advanced deep learning models

such as DistilBERT, these results show an advantage in

terms of higher predictive accuracy compared to several

other methods.

Hyperparameter Tuning Random Search and Optuna

using MLP with BoW In this study, this method

managed to achieve an accuracy of 84.50% and an F1-

Score of 81.49%. These results indicated that the use of

hyperparameter tuning techniques such as Random

Search and Optuna can improve the performance of

MLP in hate speech classification. The high F1-Score

also shows a good balance between precision and recall,

which is essential in hate speech detection.

4. Conclusions

Hyperparameter Tuning is a technique for optimizing

the parameters provided by machine learning

algorithms, allowing efficient model creation and

accurate classification identification. This study aims to

compare the effectiveness of two hyperparameter

tuning techniques, namely Optuna and Random Search,

in classifying hate speech on the social media platform

Twitter. The results showed that Optuna outperforms

Random Search in terms of accuracy, precision, recall,

and F1-Score of 81.49%, but had a longer execution

time when applied to Multilayer Perceptron and Bag of

Words feature extraction. This study contributes to the

literature by demonstrating the effectiveness of Optuna,

which is not limited to a specific language or dataset,

yet also applies to hate speech classification on

Indonesian-language Twitter. Additionally, this

research emphasizes the importance of hyperparameter

tuning techniques to improve the performance of

machine learning algorithms on Indonesian text data.

Future work can add hybrid methods and explore other

hyperparameter tuning techniques or investigate the

effectiveness of various feature extraction methods in

classifying Indonesian language news. Overall, this

study provides valuable insights for researchers and

practitioners working on Indonesian language text

classification tasks.

References

[1] J. Kansok-Dusche et al., “A Systematic Review on Hate

Speech among Children and Adolescents: Definitions,

Prevalence, and Overlap with Related Phenomena,” Oct. 01,

2023, SAGE Publications Ltd. doi:

10.1177/15248380221108070.

[2] M. Anand, K. B. Sahay, M. A. Ahmed, D. Sultan, R. R.

Chandan, and B. Singh, “Deep learning and natural language

processing in computation for offensive language detection in

online social networks by feature selection and ensemble

classification techniques,” Theor Comput Sci, vol. 943, pp.

203–218, Jan. 2023, doi: 10.1016/j.tcs.2022.06.020.

[3] B. Elisa Shearer, A. Mitchell, J. Research Elisa Shearer, R.

Associate Hannah Klein, and C. Manager, “FOR MEDIA OR

OTHER INQUIRIES,” 2021. [Online]. Available:

www.pewresearch.org

[4] B. Mathew, P. Saha, S. M. Yimam, C. Biemann, P. Goyal, and

A. Mukherjee, “HateXplain: A Benchmark Dataset for

Explainable Hate Speech Detection,” Dec. 2020, [Online].

Available: http://arxiv.org/abs/2012.10289

[5] “Kemp, S. (2021). https://datareportal.com/reports/digital-

2021-global-overviewreport.”

[6] Y. Wang, J. Guo, C. Yuan, and B. Li, “Sentiment Analysis of

Twitter Data,” Nov. 01, 2022, MDPI. doi:

10.3390/app122211775.

[7] R. Kumar, A. K. Ojha, S. Malmasi, and M. Zampieri,

“Benchmarking Aggression Identification in Social Media,”

2018. [Online]. Available: https://competitions.codalab.org/

[8] M. Subramanian, V. Easwaramoorthy Sathiskumar, G.

Deepalakshmi, J. Cho, and G. Manikandan, “A survey on hate

speech detection and sentiment analysis using machine

learning and deep learning models,” Oct. 01, 2023, Elsevier

B.V. doi: 10.1016/j.aej.2023.08.038.

[9] T. Elansari, H. Bourray, and M. Ouanan, “Modeling of

Multilayer Perceptron Neural Network Hyperparameter

Optimization and Training,” 2023, doi: 10.21203/rs.3.rs-

2570112/v1.

[10] M. O. Ibrohim and I. Budi, “Multi-label Hate Speech and

Abusive Language Detection in Indonesian Twitter,” 2019.

[Online]. Available:

https://www.komnasham.go.id/index.php/

[11] E. Utami, Rini, A. F. Iskandar, and S. Raharjo, “Multi-Label

Classification of Indonesian Hate Speech Detection Using

One-vs-All Method,” in Proceedings - 2021 IEEE 5th

International Conference on Information Technology,

Information Systems and Electrical Engineering: Applying

Data Science and Artificial Intelligence Technologies for

Global Challenges During Pandemic Era, ICITISEE 2021,

Institute of Electrical and Electronics Engineers Inc., 2021,

pp. 78–82. doi: 10.1109/ICITISEE53823.2021.9655883.

[12] N. Azmi Verdikha, R. Habid, and A. Johar Latipah, “Analisis

DistilBERT dengan Support Vector Machine (SVM) untuk

Klasifikasi Ujaran Kebencian pada Sosial Media Twitter,”

Scenario Accuracy F1-Score

LP with RFDT and Unigram [10] 66.12%. -

One-vs-All using ANN with BoW

and Chi-Square [11]

86.79% 74.66%

DistilBERT with Support Vector

Machine (SVM) [12]
- 78.5%

Hyperparameter Tuning Random

Search and Optuna using MLP with

BoW *This Research

84.50% 81.49%

Muhamad Ridwan, Ema Utami

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)

This is an open access article under the CC BY-4.0 license 534

METIK JURNAL, vol. 7, no. 2, pp. 101–110, Dec. 2023, doi:

10.47002/metik.v7i2.583.

[13] A. M. U. D. Khanday, S. T. Rabani, Q. R. Khan, and S. H.

Malik, “Detecting twitter hate speech in COVID-19 era using

machine learning and ensemble learning techniques,”

International Journal of Information Management Data

Insights, vol. 2, no. 2, Nov. 2022, doi:

10.1016/j.jjimei.2022.100120.

[14] R. W. Acuña Caicedo, J. M. Gómez Soriano, and H. A.

Melgar Sasieta, “Bootstrapping semi-supervised annotation

method for potential suicidal messages,” Apr. 01, 2022,

Elsevier B.V. doi: 10.1016/j.invent.2022.100519.

[15] “Retracted: Analysing Hate Speech against Migrants and

Women through Tweets Using Ensembled Deep Learning

Model,” Comput Intell Neurosci, vol. 2023, pp. 1–1, Oct.

2023, doi: 10.1155/2023/9781063.

[16] K. Shaker, “Optimizing Sentiment Big Data Classification

Using Multilayer Perceptron,” Anbar Journal of Engineering

Sciences, vol. 13, no. 2, pp. 14–21, Nov. 2022, doi:

10.37649/aengs.2022.176353.

[17] H. Mehta and K. Passi, “Social Media Hate Speech Detection

Using Explainable Artificial Intelligence (XAI),” Algorithms,

vol. 15, no. 8, Aug. 2022, doi: 10.3390/a15080291.

[18] H. Cam, A. V. Cam, U. Demirel, and S. Ahmed, “Sentiment

analysis of financial Twitter posts on Twitter with the

machine learning classifiers,” Heliyon, vol. 10, no. 1, Jan.

2024, doi: 10.1016/j.heliyon.2023.e23784.

[19] I. de Zarzà, J. de Curtò, and C. T. Calafate, “Optimizing

Neural Networks for Imbalanced Data,” Electronics

(Switzerland), vol. 12, no. 12, Jun. 2023, doi:

10.3390/electronics12122674.

[20] W. F. Satrya, R. Aprilliyani, and E. H. Yossy, “Sentiment

analysis of Indonesian police chief using multi-level

ensemble model,” in Procedia Computer Science, Elsevier

B.V., 2022, pp. 620–629. doi: 10.1016/j.procs.2022.12.177.

[21] A. Toktarova et al., “Hate Speech Detection in Social

Networks using Machine Learning and Deep Learning

Methods.” [Online]. Available: www.ijacsa.thesai.org

[22] B. Morris, “The components of the wired spanning forest are

recurrent,” Probab Theory Relat Fields, vol. 125, no. 2, pp.

259–265, Feb. 2003, doi: 10.1007/s00440-002-0236-0.

[23] S. Sadiq, A. Mehmood, S. Ullah, M. Ahmad, G. S. Choi, and

B. W. On, “Aggression detection through deep neural model

on Twitter,” Future Generation Computer Systems, vol. 114,

pp. 120–129, Jan. 2021, doi: 10.1016/j.future.2020.07.050.

[24] H. T. Vo, H. T. Ngoc, and L. Da Quach, “An Approach to

Hyperparameter Tuning in Transfer Learning for Driver

Drowsiness Detection Based on Bayesian Optimization and

Random Search,” International Journal of Advanced

Computer Science and Applications, vol. 14, no. 4, pp. 828–

837, 2023, doi: 10.14569/IJACSA.2023.0140492.

[25] L. Yang and A. Shami, “On Hyperparameter Optimization of

Machine Learning Algorithms: Theory and Practice,” Jul.

2020, doi: 10.1016/j.neucom.2020.07.061.

[26] Z. B. Zabinsky, “Random Search Algorithms,” 2009.

[27] J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for

Hyper-Parameter Optimization Yoshua Bengio,” 2012.

[Online]. Available: http://scikit-learn.sourceforge.net.

[28] I. Jamaleddyn, R. El ayachi, and M. Biniz, “An improved

approach to Arabic news classification based on

hyperparameter tuning of machine learning algorithms,”

Journal of Engineering Research (Kuwait), vol. 11, no. 2, Jun.

2023, doi: 10.1016/j.jer.2023.100061.

[29] Y. Zhao, W. Zhang, and X. Liu, “Grid search with a weighted

error function: Hyper-parameter optimization for financial

time series forecasting,” Appl Soft Comput, vol. 154, Mar.

2024, doi: 10.1016/j.asoc.2024.111362.

[30] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,

“Optuna: A Next-generation Hyperparameter Optimization

Framework,” Jul. 2019, [Online]. Available:

http://arxiv.org/abs/1907.10902

[31] O. Dib, Z. Nan, and J. Liu, “Machine learning-based

ransomware classification of Bitcoin transactions,” Journal of

King Saud University - Computer and Information Sciences,

vol. 36, no. 1, Jan. 2024, doi: 10.1016/j.jksuci.2024.101925.

[32] Z. Car, S. Baressi Šegota, N. Anđelić, I. Lorencin, and V.

Mrzljak, “Modeling the Spread of COVID-19 Infection Using

a Multilayer Perceptron,” Comput Math Methods Med, vol.

2020, 2020, doi: 10.1155/2020/5714714.

[33] R. Marco, S. S. S. Ahmad, and S. Ahmad, “An Improving

Long Short Term Memory-Grid Search Based Deep Learning

Neural Network for Software Effort Estimation,”

International Journal of Intelligent Engineering and Systems,

vol. 16, no. 4, pp. 164–180, 2023, doi:

10.22266/ijies2023.0831.14.

