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Abstract  

Hate speech classification is a critical task in the domain of natural language processing, aiming to mitigate the negative 

impacts of harmful content on digital platforms. This study explores the application of a Multilayer Perceptron (MLP) model 

for hate speech classification, utilizing Bag of Words (BoW) for feature extraction. The hypothesis posits that hyperparameter 

tuning through sophisticated optimization techniques will significantly improve model performance. To validate this 

hypothesis, we employed two distinct hyperparameter tuning approaches: Random Search and Optuna. Random Search 

provides a straightforward yet effective means of exploring the hyperparameter space, while Optuna offers a more 

sophisticated, optimization-based approach to hyperparameter selection. The study involved training the MLP model on a 

labeled dataset based on crawling results on the Twitter platform of hate speech and non-hate speech overall total dataset is 

13.169, followed by evaluation using standard metrics. Our experimental results demonstrate the comparative effectiveness of 

these two hyperparameter tuning methods. Notably, the MLP model tuned with Optuna achieved a higher F1-score of 81.49%, 

compared to 79.70% achieved with Random Search, indicating the superior performance of Optuna in optimizing the 

hyperparameters. These results were obtained through extensive cross-validation to ensure robustness and generalizability. 

The findings underscore the importance of optimized hyperparameters in developing robust hate speech classification systems. 

The superior performance of Optuna highlights its potential for broader application in other machine learning tasks requiring 

hyperparameter optimization. This improvement enables more reliable and efficient automated moderation, which is crucial 

for the integrity and security of digital communication platforms such as Twitter. 
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1. Introduction  

The digital age has revolutionized communication, 

transforming how we interact by rapidly exchanging 

information and ideas. However, alongside these 

advancements, the spread of hate speech defined as any 

expression intended to insult or degrade individuals 

based on characteristics such as religious affiliation, 

sexual orientation, gender, or ethnicity has intensified, 

posing serious social challenges and consequences [1].  

The rise of social media platforms like Twitter and 

Facebook has led to an exponential increase in user-

generated content, facilitating both constructive 

discourse and the rapid dissemination of harmful 

content, including hate speech [2]. As more people turn 

to these platforms for news and discussion, the visibility 

of hate speech has grown, sometimes leading to 

conflicts among social groups [3], [4]. Specifically, 

Twitter, which has 63.6% of Indonesians aged 16 to 64 

as active users, has become a focal point for public 

discourse and the spread of offensive language, making 

it an important platform for studying public opinion and 

conducting sentiment analysis [5], [6].  

Despite the prevalence of offensive language on social 

media, the sheer volume of content makes manual 

detection inefficient. To address this, research has 

increasingly focused on automating the identification of 

hate speech through machine learning and deep learning 

techniques [7], [8]. Among the various methods 

available, Multilayer Perceptron (MLP) has been 

selected for this study due to its proven ability to model 

complex, non-linear relationships in data, making it 

well-suited for the nuanced task of hate speech 

detection. MLP's flexibility in learning representations 
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from data, combined with hyperparameter tuning, 

allows for optimizing model performance, making it a 

compelling choice over more traditional approaches. 

Hyperparameter tuning, in particular, is crucial in this 

context as it ensures that the model is not only accurate 

but also robust, and capable of generalizing well to new, 

unseen data [9].  

This study aims to improve hate speech detection using 

MLP, Bag of Words feature extraction, and 

Hyperparameter Tuning with Random Search and 

Optuna approaches. This study attempts to build a 

machine learning model through algorithm selection 

and optimization, which ultimately contribute to 

broader efforts to automate hate speech detection. 

Research [10], [11] and [12] focused on detecting 

abusive language and hate speech in Indonesia on the 

Twitter platform, using different approaches. The 

research by [10] has successfully created a dataset based 

on crawling results on Twitter and used a combination 

of unigram word features, Random Forest the Decision 

Tree (RFDT), and Label Power-set (LP). This 

experiment showed an accuracy rate of 77.36% for 

multi-label classification without target, category, and 

hate speech level identification, and 66.12% when 

including these identifications. On the other hand, 

research [11] used a multi-label classification One-vs-

All method with an Artificial Neural Network (ANN) 

classifier and a Bag of Words (BoW) approach, 

achieving the highest accuracy of 86.79%. This study 

emphasized the importance of text preprocessing steps, 

such as the elimination of non-formal words and the 

application of non-formal stemming, as well as 

balancing the number of tweets for each label to 

improve results. A combination of alternative feature 

selection and the use of deep learning models is also 

suggested for optimal classification performance. 

Research [12] evaluated the hate speech classification 

model using a Support Vector Machine (SVM) with 

linear and polynomial kernels, and DistilBERT feature 

extraction combined with PCA dimensionality 

reduction. The evaluation results showed that the 

polynomial kernel with 50 dimensions provided the 

highest average F1 Score of 78%. This study 

recommended focusing on the word cleaning methods 

in the preprocessing stage to improve analysis accuracy 

and consider dimensionality reduction methods in 

determining component values. In addition, the 

classification using DistilBERT with SVM can be 

optimized by extracting TF/IDF, Bag of Words, and 

Tweet Length features 

By applying different approaches, the research 

conducted by [13] and [14] used text classification with 

Bag of Words (BoW) feature extraction to address 

different issues, namely hate speech and suicide 

detection. The study [13] compared classification 

methods such as Decision Tree and Stochastic Gradient 

Boosting, using prominent feature extraction TF-IDF, 

Bag of Words, and Tweet Length to identify hate speech 

during COVID-19. The final results showed that 

Stochastic Gradient Boosting achieved an F1-Score of 

98%, higher than the Decision Tree which achieved 

97%. This research revealed that the classification that 

considers gender categories can enhance the generated 

information. Meanwhile, recent studies in suicide 

detection and prevention conducted by [14] showed a 

significant increase in the use of semi-supervised 

methods to populate the Life Corpus with bootstrapping 

techniques. There are two classifiers used namely 

Support Vector Machine (SVM) with Bag of Words 

(BoW) feature extraction and without TF-IDF. These 

approaches were applied to classify texts from social 

networks and forums related to suicide and depression. 

With five different data collections: Life, Reddit, 

Life+Reddit, Life_en, and Life_en+Reddit, the research 

results showed that the semi-supervised method 

increased the Life Corpus size from 102 to 273 samples 

with a macro F1 score of 0.80 in the combination of 

Life+Reddit+BoW Embeddings using SVM. 

Subsequently, the manual evaluation by annotators 

showed a Cohen's Kappa agreement level of 0.86. 

Although the semi-supervised method made significant 

contributions, there are limitations in recognizing 

certain contexts or nuances in the text that can affect 

detection accuracy. These findings contribute 

significantly to further development in hate speech 

detection and suicide prevention through text 

classification and feature extraction Bag of Word. 

Additionally, research [15] - [18] proposed the use of 

deep learning models, particularly Multilayer 

Perceptron (MLP), for text classification and sentiment 

analysis with different yet complementary approaches. 

Research [15], [16], [17] used a combination of 

BiLSTM, CNN, and MLP models with word 

embedding techniques such as GloVe, TF-IDF, and 

transformer-based embeddings, achieving accuracies of 

over 95% in hate speech classification in English and 

Spanish. Research [15], [16], [17] also proposed MLP 

for sentiment analysis on two datasets, namely Twitter 

and movie reviews, with accuracies of 85% and 89%, 

respectively. Sentiment analysis is important for 

understanding public opinion from texts like messages 

or posts. Research [15], [16], [17] emphasized the 

importance of Explainable Artificial Intelligence (XAI) 

in hate speech detection, using BERT+ANN and 

BERT+MLP models with accuracies of 93.55% and 

93.67% on the HateXplain dataset, and applying LIME 

interpretation methods. However, this method was less 

effective for all users due to insufficient depth in 

interpretation. Research [18] combined lexicon-based 

and machine-learning approaches to predict public 

market mood in BIST30, Borsa Istanbul, using 17.189 

tweets. By excluding neutral labels, Support Vector 

Machine and MLP showed the best performance with 

accuracies of 0.89 and 0.88. All these studies indicated 

that MLP can achieve high accuracy in text 

classification, with potential improvements through 

parameter optimization and better preprocessing steps. 



Muhamad Ridwan, Ema Utami 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 4 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 527 

 

In another place, research [9] and [19] focused on 

hyperparameter optimization and imbalanced handling 

data in Multi-Layer Perceptron Neural Network 

(MLPNN) models. Research [19] proposed a new 

model to optimize the number of neurons in hidden 

layers, neuron connections, and connection weights to 

avoid overfitting or underfitting, enhancing the 

generalization capacity of MLPNN. Although methods 

like Random search and Grid Search take longer, both 

can yield good accuracy. Meanwhile, research [20] 

addressed the issue of imbalanced data in the context of 

fraud detection, achieving a test accuracy of 99.937% 

with the MLP model. This study explored resampling 

strategies such as under-sampling, oversampling, and 

SMOTE to reduce the number of false negatives. The 

results highlighted the importance of addressing class 

imbalance in the data preprocessing phase to improve 

the performance of predictive models. 

2. Research Methods 

This section focuses on the architectural description of 

the proposed system. The development of a hate speech 

text classification system is driven by the urgent need to 

address the rampant spread of hate speech across 

various digital platforms. This phenomenon does not 

only threaten social security and order but also disrupts 

peace and comfort in online interactions. Therefore, an 

effective solution is needed to identify and classify hate 

speech accurately. 

The proposed system is built using a multilayer 

perceptron (MLP) approach, a type of artificial neural 

network known for its ability to process text data. 

Moreover, the hyperparameter tuning using two 

methods: Random Search and Optuna, is applied to 

enhance the performance and accuracy of the 

classification. Hyperparameter tuning is a crucial step 

that determines the best configuration for a machine 

learning model, thereby maximizing its performance. 

The steps required to build this text classifier involve 

several stages which are started from the collection and 

preparation of hate speech text data, feature extraction 

using the Bag of Words (BoW) technique, and the 

construction and training of the MLP model. The BoW 

feature extraction is used to convert the text into a 

numerical representation that can be processed by the 

MLP model. Subsequently, the model is trained with 

the prepared dataset, and hyperparameter tuning is 

conducted to find the optimal parameters that enhance 

the classification performance. 

 

Figure 1. Research Flow 

Figure 1 illustrates the research flow process involving 

the use of data preprocessing techniques, feature 

extraction, cross-validation, and machine learning, 

along with hyperparameter tuning to find optimal 

parameters. 

2.1 Dataset  

This research utilizes a dataset from previous research 

conducted by [10] which is accessible through GitHub. 

This reference dataset uses multilabel information to 

identify language containing insulting content and 

words that can trigger hateful feelings. The dataset 

contains the following columns: Religion/creed, 

Race/ethnicity, Physical/disability, Gender/sexual 

orientation, and other invective/slander. In Figure 2, the 

graph displays the number of Tweets containing hate 

and non-hate speech based on the HS label. The 0 

number is used to indicate that the Tweet data does not 

contain hate or non-hate speech, with a total of 7.608. 

Then, the second bar with the value 1 is used for Tweet 

data containing hate or HS, with a total of 5.561, and 

the overall total of both is 13.169. 

The hate speech tweets totalling 5.561 were mostly 

directed at individuals. In detail, the 3.575 tweets were 

specifically aimed at individuals, and 1.986 tweets were 

targeted to certain groups. The identified hate speech 

categories included 793 tweets related to religion/creed, 

566 tweets related to race/ethnicity, 323 tweets related 

to physical/disability, 306 tweets related to 
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gender/sexual orientation, and 3.740 tweets related to 

other invective/slander. To assess the severity of hate 

speech, the data also included 3.383 cases of weak hate 

speech, 1.705 cases of moderate hate speech, and 473 

cases of hate speech classified as strong. 

 

Figure 2. Class Distribution 

2.2 Preprocessing 

In the initial stage of the data preprocessing, this step 

significantly impacts the model's performance. The data 

sources such as Twitter or other online platforms are 

often filled with noise and may contain incomplete 

information, such as text, images, audio, video, and so 

on. This initial processing aims to clean the data, 

eliminate noise, and make it clear and meaningful [17]. 

The preprocessing steps include lowercase conversion, 

tweet attributes removal, non-alphanumeric characters 

removal, spell checking, stemming, and stop word 

removal. The following table is an example of a dataset 

that has undergone preprocessing at each step, shown in 

Table 1. 

Table 1. Result Preprocessing 

Tweet Tweet_Clean 

- disaat semua cowok 

berusaha melacak perhatian 

cowok usaha lacak perhati 

lantas remeh perhati 

RT USER: USER siapa yang 

telat ngasih tau elu? 

telat tau edan sarap gaulcigax 

jifla cal licew 

41. Kadang aku berfikir, 

kenapa aku tetap percaya 

41 kadang pikir percaya tuhan 

jatuh kali kali 

USER USER AKU ITU 

AKU\n\nKU TAU 

MATAMU SIPIT TAPI 

ku tau mata sipit lihat 

USER USER Kaum cebong 

kapir udah keliatan 

dongoknya 

kaum cebong kafir lihat dongok  

dungu haha 

… … 

USER jangan asal ngomong 

ndasmu. congor lu yg 

bicara ndasmu congorsekata 

anjing 

USER Kasur mana ena 

kunyuk' 
kasur enak kunyuk 

USER Hati hati bisu :( 

.g\n\nlagi bosan huft \ 
hati hati bisu bosan duh 

USER USER USER USER 

Bom yang real mudah 

terdeteksi 

sangat mudah _ deteksi lahir 

kubur dahsyat ledak 

USER Mana situ ngasih(": 

itu Cuma foto ya kutil onta' 
itu foto kutil di atas 

  

The transformation of the text preprocessing stage is 

illustrated through word clouds. These changes can be 

observed by comparing tweet data before and after the 

preprocessing process. Figure 3 shows the visualization 

of the "Tweet" column containing data before the 

preprocessing process: 

 

Figure 3. Wordcloud before initial processing 

Figure 3 shows the frequency of words that often appear 

in the "Tweet" column. In that figure, some words in the 

tweet dataset contain meaningless phrases, such as 

(USER, URL, X9F, X98, XF0, etc), which can affect 

the analysis results. 

 

Figure 4. Wordcloud after preprocessing 

Next, Figure 4 shows the frequency of words that often 

appear in the "Tweet_Clean" column. This Figure 

provides an overview of the changes resulting from the 

preprocessing process. The comparison between 

Figures 3 and 4 allows an understanding of the overall 

changes after the preprocessing stage. The analysis 

expressed that there were several words like "WKWK," 

"HAHA," "EH," and other meaningless words, which 

indicate the need for improvements in the preprocessing 

stage in this study. The selection and creation of a 

"kamus alay" could be one factor that causes some 

meaningless words to be inadequately processed during 

preprocessing. 

2.3 Feature Extraction 

The feature extraction method applied in this research 

was Bag of Words. The training data in text form will 

be extracted into vectors. The resulting vectors can 

further be used as the implementation features in natural 

language processing and machine learning cases. 

Computers cannot directly understand text because it 

does not contain numerical information [20]. Thus, a 

method is needed to connect the computer with the text 

using a text-to-number converter.  
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CountVectorizer implementation bag-of-words 

approach, as previously mentioned, calculated the 

frequency of each feature and determined the 

importance of each word in the document. Table 2 

shows the results of CountVectorizer. 

Table 2. Converts Text Into Vector 

CountVectorizer Result 

(0, 2427) 2 

(0, 12073) 1 

(0, 6306) 1 

(0, 8737) 2 

(0, 6386) 1 

(0, 9559) 1 

(0, 8737) 2 

(0, 5493) 1 

(0, 5843) 1 

(0, 1353) 1 

In research, hate speech detection using both deep and 

shallow learning methods and the Bag of Words (BoW) 

model is employed as a basic technique for text 

representation [21]. Bag of Word is commonly used in 

Natural Language Processing (NLP) to run tasks such 

as sentiment analysis, text classification, and 

information retrieval. This approach offers a 

straightforward and efficient means of converting 

textual data into structured format 

2.4 Cross Validation  

At this stage, the data would be divided into two parts, 

namely the training data and the test data. A portion of 

the data, called the training sample, is used for training, 

while the remaining portion, called the validation 

sample, is used for testing. The data split is illustrated 

in Figure 5. 

 

Figure 5. Cross Validation illustration 

This research employed cross-validation, a common 

method for data partitioning in model selection. In this 

technique, the data was divided into k segments (known 

as k-folds). One segment serves as the validation set. 

The trained model was then tested on this validation set 

and its predictive performance was recorded. This 

process was repeated k times so that each data segment 

served as the validation set once [22].  

After the preprocessing and data splitting process was 

completed, the data was trained using machine learning 

algorithms to build the model. This section provides a 

brief explanation of the chosen machine learning 

algorithms and hyperparameter tuning performed. 

2.5 Multilayer Perceptron 

This research employed a Multilayer Perceptron (MLP) 

as the learning module. MLP is a type of artificial neural 

network that consists of multiple layers of neurons, 

where each neuron in one layer is connected to neurons 

in the next layer.  

 

Figure 6. Multilayer Perceptron Architecture 

Figure 6 illustrates the structure of a Multilayer 

Perceptron (MLP). MLP is known for its high 

classification capability and it consists of three types of 

layers that are input layer, hidden layers, and output 

layer [23]. In the input layer, each neuron represents an 

input variable or feature. The hidden layers are 

responsible for processing data and storing weights 

during training. Furthermore, the output layer consists 

of neurons that represent the output variables. The 

number of neurons in the input layer is equal to the 

number of features provided to the neural network, 

while the number of neurons in the output layer matches 

the number of classes to be predicted. The number of 

neurons in the hidden layers is a crucial architectural 

decision, with the primary goal of optimizing it with 

appropriate parameters to generalize well in the task of 

aggression detection classification. To minimize the 

difference between the desired network output and the 

actual output, MLP learning is based on weight 

adjustment, commonly using backpropagation 

techniques based on gradient descent methods.  

Suppose we use n neurons as the input layer x as shown 

in Formula 1.  

𝑥 =  (𝑥1, 𝑥2 . . . , 𝑥𝑛)  () 

Rectified Linear Unit (ReLU) is used as the activation 
function in the hidden layer where ReLU(x) = max(x, 
0) is shown in Formula 2 

𝑓(𝑥) =
1

(1+𝑒(−𝑥))
  () 

Then the output of each layer is calculated to obtain the 
final output. Assume the set of hidden layers h = (h1, 
h2, ...., hm) and the number of neurons in each hidden 
layer hi is ni. The output of the first hidden layer h1 is 
calculated using Formula 3. 

ℎ𝑖
𝑘 = 𝑓(∑ 𝑤𝑚,𝑘

0𝑛𝑖−1
𝑗=1 𝑥𝑗) 𝑘 = 1 ⋯ 𝑛𝑖 () 

The output of the next hidden layer is calculated using 
Formula 4. 
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ℎ𝑖
𝑘 = 𝑓 (∑ 𝑤𝑗,𝑘

𝑖−1𝑛𝑖−1
𝑗=1 ℎ𝑖−1

𝑗
)  𝑖 = 2, ⋯ 𝑁 𝑑𝑎𝑛 𝑘 = 1 ⋯ 𝑛𝑖 () 

In the equation w i−1 j, k represents the weight between 

the j-th neuron and (i − 1) in the next hidden layer, ni is 

the i-th neuron in the i-th hidden layer. The output hi 

can be calculated as in Formula 5. 

ℎ𝑖 = (ℎ𝑖
1, ℎ𝑖

2, ⋯ ℎ𝑖
𝑛𝑖  )  () 

The classification stage uses Multilayer Perceptron with 

the scikit-learn library as follows: 

hidden_layer_sizes: array-like of shape (n_layers - 2,), 
default=(100,): This parameter specifies the architecture 
of the artificial neural network (MLP) by providing the 
number of units (neurons) in each hidden layer 

activation{'logistic'}: This parameter specifies the 
activation function used in each unit (neuron) in the 
hidden layers and the output unit. 'logistic' refers to the 
sigmoid or logistic activation function, which produces 
output in the range (0.1). 

batch_sizeint,: This parameter specifies the batch size 
used This parameter specifies the learning rate for the 
optimization algorithm used in training the model. The 
learning rate controls how much adjustment is made to 
the weights and biases of the network each iteration.  

max_iterint,: This parameter specifies the maximum 
number of iterations and epochs performed during 
model training. 

2.6 Hyperparameter Tuning 

Hyperparameter is a model to automate the 

hyperparameter tuning process and achieve [24], is 

shown in Formula 6. 

𝑥∗ = 𝑎𝑟𝑔 min
𝑥 ∈ 𝑋

𝑓(𝑥)  () 

f(x) is the objective function; x∗ is the hyperparameter 

configuration that yields the optimal value for f(x); and 

the hyperparameter x can take any element in the search 

space X. Hyperparameter optimization automates the 

adjustment of hyperparameter values to make the 

process more efficient. Overall, the goal of 

hyperparameter optimization is to achieve this 

efficiency [25]. Hyperparameters in the Multilayer 

Perceptron (MLP) model for classification tasks use 

two main approaches, namely Random Search and 

Optuna. 

Random Search is a straightforward, simple and easy-

to-use technique for hyperparameter optimization in 

machine learning [26], [27]. This approach involves 

randomly sampling hyperparameters from a predefined 

search space, and then evaluating the resulting model 

on the validation set to assess the performance of each 

hyperparameter combination [24]. 

Figure 7 illustrates a strategy where a set of random 
hyperparameters is used to find the optimal solution for 
a model [28]. The advantages of random search are its 
simplicity and ease of implementation. Additionally, 
random search can often outperform more complex 
optimization methods in low-dimensional 
hyperparameter spaces. However, the main drawback 
of random search is that each evaluation conducted 
during the search process is independent of one another. 
Consequently, this approach does not consider the 
results of previous evaluations when selecting the next 
set of hyperparameters to be tested. Random search is 
used to find the best hyperparameter combinations by 
using RandomizedSearchCV from scikit-learn. 

 

Figure 7. RandomSearchCV Process 

RandomizedSearchCV is done by randomly sampling 
the hyperparameter configurations from a specified 

search space and then evaluating their performance 
using cross-validation. This approach allows for 
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broader exploration of hyperparameters, which can 
result in more optimal configurations [29]. The steps 
involved in RandomizedSearchCV are as follows: 

Step 1: Define the possible range for each 
hyperparameter. 

Step 2: Randomly select a set of hyperparameter 
configurations based on predetermined sampling time. 

Step 3: Evaluate the model's performance using these 
configurations on the cross-validation set and calculate 
the objective function value. 

Step 4: Select the hyperparameter configuration that 
yields the best performance, as determined by the 
objective function value. 

Compared to traditional grid search methods, 
RandomizedSearchCV is more efficient because it can 
explore the hyperparameter space with random 
sampling. This allows it to find superior configurations 
with a limited number of samples. However, because it 
relies on random sampling, this method may not always 
find the globally optimal configuration. 

Optuna uses the Hyperband method to perform 
optimization and test various hyperparameter 
combinations [30]. Optuna consists of several modules 
including Study, Storage, Trial, Sampler, and Pruner. 
The Study module is responsible for managing the 
objective function values for the best set of 
hyperparameters found, as well as setting the 
optimization method (Hyperband) and the number of 
trials to be conducted. Optuna helps us determine the 
optimal threshold values to maximize model accuracy 
[31]. It searches automatically for optimal 
hyperparameters by efficiently exploring its space using 
pruning and statistical modeling techniques. Optuna 
dynamically adjusts the search strategy based on the 
objective function and search space specified by the user 
and thus maximizes the model performance. This 
Optuna also supports various types of hyperparameters 
and integrates well with popular machine learning 
libraries, simplifying the hyperparameter optimization 
process and enhancing model performance. 

The determination of hyperparameters or 

hyperparameter settings is essential in defining the 

structure of an Artificial Neural Network (ANN) model. 

The quality of the resulting model is highly dependent 

on the correct hyperparameter values [32]. The 

multilayer perceptron has hidden layers in this study, 

we investigate the influence of various hyperparameter 

settings on the effectiveness and efficiency of the 

artificial neural network model. The parameters to be 

used are shown in Table 3. 

The model used has complex hidden layers with 

varying sizes from 5 to 100 neuron units in each layer, 

applied sequentially. Furthermore, the learning rate is 

set to (0.1, 0.01, 0.001, 0.0001). On the other hand, this 

method also uses batch sizes of (64, 128, 256, and 512)  

[33]. 

 

Table 3. Hyperparameter space 

Parameter Values 

'batch_size': 64, 128, 256, 512 

'hidden_layer_sizes': (5 – 100) 

'activation': 
relu, tanh, logistic, 

identity 

'solver': sgd, adam, lbfgs 

'learning_rate': 
constant, adaptive, 

invscaling 

'learning_rate_init': (0.1 – 0.0001) 

'alpha': (0.1 – 0.0001) 

3. Results and Discussions 

This study presents various experiments conducted with 

data cleaning preparation and bag of words feature 

extraction. The machine learning method applied in this 

study was the multilayer perceptron. This research 

employed random search and Optuna as 

hyperparameter tuning approaches to optimize the 

parameters used by these algorithms. The algorithm's 

hyperparameters are listed in Table 3. 

Experiment 1: Hyperparameter Optimization with 

Random Search vs Optuna 

In an attempt to set the hyperparameters in this 

experiment, the study applied tuning on the dataset 

using the multilayer perceptron algorithm by dividing 

the dataset into 10 parts using the cross-validation 

technique. The two hyperparameter tuning approaches 

used were Random Search and Optuna. The optimal 

hyperparameters obtained are shown in Table 4. 

Table 4. Hyperparameter Optimal Random Search and Optuna 

Best Parameter Random Search Optuna 

'batch_size': 64 64 

'hidden_layer_sizes': 80 95 

'activation': Relu Relu 

'solver': Adam Sgd 

'learning_rate': Constant Adaptive 

'learning_rate_init': 0.0001 0.1 

'alpha': 0.1 0.1 

As shown in Table 4, the optimal hyperparameter 

settings obtained from Experiment 1 for the multilayer 

perceptron with random search optimization are: 

batch_size: 64, hidden_layer_size: 80, activation: relu, 

solver: adam, learning_rate: constant, 

learning_rate_init: 0.0001, and alpha: 0.1. Then, for 

Optuna: batch_size: 64, hidden_layer_size: 95, 

activation: relu, solver: sgd, learning_rate: adaptive, 

learning_rate_init: 0.1 and alpha: 0.1. 

Experiment 2: Evaluation Metrics of Random Search 

and Optuna 

After finding the optimal hyperparameters for the 

multilayer perceptron algorithm using both random 

search and Optuna approaches, this study used the tuned 

hyperparameters to train and evaluate the model, as well 

as calculate performance metrics for the algorithms 

used. The results of both models are summarized in 

Table 5. 

Based on the model evaluation results, in the second 

experiment, this study yielded the highest F1-Score of 
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81.49% on the Optuna model, while the Random Search 

model achieved 79.70%. Figure 8 shows the 

comparison results of the two approaches, namely 

random search and Optuna. 

Table 5. Comparison Of Random Search and Optuna Results 

Method Hidden 

Layer 

Accuracy Precision Recall F1-

Score 

Random 

Search 
80 0.8309 0.8105 0.7838 0.7970 

Optuna 95 0.8450 0.8237 0.8063 0.8149 

 

Figure 8. F1-Score Random Search and Optuna results 

This improvement in performance using Optuna could 

be attributed to its more sophisticated hyperparameter 

optimization process, which explores a broader range of 

parameter combinations more effectively than Random 

Search. In the context of hate speech detection, this 

means that the Optuna-tuned model is better at 

balancing precision and recall, leading to more accurate 

identification of hate speech instances. For practical 

applications, this could translate to more reliable 

detection in environments where reducing false 

positives and capturing a higher number of actual hate 

speech occurrences is critical. The slightly higher 

computational cost may be justified in scenarios where 

accuracy is paramount. 

From these results, this study concluded that Optuna 

allows the development of more efficient classifiers 

compared to the Random Search technique. This study 

also noted that both techniques achieved the highest 

classification accuracy levels. The results of Random 

Search tend to be closer to the results of Optuna. To 

deepen this comparison, this study proposes a third 

experiment focusing on the study of algorithm 

execution time with both techniques. 

Experiment 3: Evaluation of Random Search and 

Optuna Execution Time 

The third experiment of this study compares and 

measures the execution time in the hyperparameter 

tuning process for hate speech classification using 

multilayer perceptron and feature extraction with these 

two approaches, namely Random Search and Optuna. 

This study further summarizes the execution time 

results of both techniques, which can be seen in Table 

6. 

Table 6. Comparison Of Random Search And Optuna Execution 

Times 

Random Search Optuna 

25.38 Hours 36.93 Hours 

Random Search's best execution time took 

approximately 25.38 hours to complete. This method 

worked by randomly selecting hyperparameter 

combinations from a predefined search space. Although 

this method is simple and easy to implement, its 

drawback lies in its relatively low efficiency, as it does 

not consider information from previous iterations. 

On the other hand, Optuna's best execution time of 

36.93 hours. Optuna is a more sophisticated 

hyperparameter optimization method, using a Bayesian 

optimization approach to adaptively adjust the search 

space based on results from previous iterations. 

Although it requires a longer execution time, this 

method is expected to find more optimal 

hyperparameter combinations compared to Random 

Search. 

 

Figure 9. Algorithm time execution results 

Based on the execution results illustrated in Figure 9, 

the Multilayer Perceptron algorithms show significant 

differences in execution time. Optuna's best execution 

time is 36.93 hours, while Random Search takes 25.38 

hours. Although Optuna's execution time is notably 

longer, it achieves the highest F1-Score of 81.49%, 

compared to 79.70% for Random Search. This indicates 

that Optuna, despite its longer execution time, offers 

better performance. However, it is essential to consider 

whether this trade-off is practical for real-world 

applications, where the additional accuracy may or may 

not justify the increased execution time in a production 

environment. 
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Experiment 4: Comparing Previous Models and 

Proposed Models 

In the fourth experiment, similar dataset results from the 

study [10] were compared to detect hate speech on 

Twitter in Indonesia. 

Table 7. Comparison Of Previous Research 

In Table 7, this study conducts a comparative analysis 

between several classifications methods used in hate 

speech detection by combining Hyperparameter Tuning 

Random Search and Optuna with Multilayer Perceptron 

(MLP) using Bag of Words (BoW) as feature 

extraction. The study results were compared to several 

previous studies LP with RFDT and Unigram [10] This 

method achieves an accuracy of 66.12%. However, this 

accuracy result is relatively lower compared to the other 

methods, indicating that this combination may be less 

effective in the context of hate speech detection. 

One-vs-All using ANN with BoW and Chi-Square [11] 

this method achieved an accuracy of 86.79% and an F1-

Score of 74.66%. These results indicated a quite good 

performance in classifying hate speech, especially in 

terms of relatively high accuracy. 

DistilBERT with Support Vector Machine (SVM) [12] 

This approach managed to achieve an F1-Score of 

78.5%. By using more advanced deep learning models 

such as DistilBERT, these results show an advantage in 

terms of higher predictive accuracy compared to several 

other methods. 

Hyperparameter Tuning Random Search and Optuna 

using MLP with BoW In this study, this method 

managed to achieve an accuracy of 84.50% and an F1-

Score of 81.49%. These results indicated that the use of 

hyperparameter tuning techniques such as Random 

Search and Optuna can improve the performance of 

MLP in hate speech classification. The high F1-Score 

also shows a good balance between precision and recall, 

which is essential in hate speech detection. 

4. Conclusions 

Hyperparameter Tuning is a technique for optimizing 

the parameters provided by machine learning 

algorithms, allowing efficient model creation and 

accurate classification identification. This study aims to 

compare the effectiveness of two hyperparameter 

tuning techniques, namely Optuna and Random Search, 

in classifying hate speech on the social media platform 

Twitter. The results showed that Optuna outperforms 

Random Search in terms of accuracy, precision, recall, 

and F1-Score of 81.49%, but had a longer execution 

time when applied to Multilayer Perceptron and Bag of 

Words feature extraction. This study contributes to the 

literature by demonstrating the effectiveness of Optuna, 

which is not limited to a specific language or dataset, 

yet also applies to hate speech classification on 

Indonesian-language Twitter. Additionally, this 

research emphasizes the importance of hyperparameter 

tuning techniques to improve the performance of 

machine learning algorithms on Indonesian text data. 

Future work can add hybrid methods and explore other 

hyperparameter tuning techniques or investigate the 

effectiveness of various feature extraction methods in 

classifying Indonesian language news. Overall, this 

study provides valuable insights for researchers and 

practitioners working on Indonesian language text 

classification tasks. 
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