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Abstract  

This study aims to enhance the accuracy of diabetes prediction models in Indonesia by comparing the performance of Support 

Vector Machines (SVM), Logistic Regression, and Naïve Bayes algorithms, both with and without synthetic oversampling 

techniques such as SMOTE and ADASYN. The research addresses the issue of imbalanced datasets in medical diagnostics, 

specifically in predicting diabetes among Indonesian patients, where such imbalance often leads to biased predictions. A 

comprehensive dataset comprising 657 patient records from a Regional General Hospital in Indonesia was used, with 70% of 

the data allocated for training and 30% for testing. The results indicate that the SVM model combined with SMOTE achieved 

the highest accuracy of 95.8% and an AUC of 99.1, underscoring the effectiveness of these techniques in improving prediction 

performance. The findings of this study highlight the importance of selecting appropriate oversampling methods and algorithms 

to optimize diabetes prediction accuracy in the Indonesian context, providing valuable insights for future healthcare strategies. 
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1. Introduction  

Diabetes mellitus is a widely prevalent chronic 

metabolic disorder and poses a significant public health 

challenge, particularly in countries with a high disease 

burden, including Indonesia. [1]. This condition has a 

substantial impact on the population and is frequently 

linked to severe complications such as cardiovascular 

disease, kidney failure, and neuropathy [2], [3]. In 

Indonesia, rapid urbanization and lifestyle changes have 

aggravated the prevalence of diabetes, necessitating a 

more tailored predictive approach for risk mitigation. 

The incidence of diabetes in Indonesia has been 

escalating at an alarming rate, largely due to 

urbanization, lifestyle changes, and specific genetic 

predispositions unique to the Indonesian population. 

This swift urbanization has particularly led to increased 

consumption of high-calorie foods and decreased 

physical activity, which, combined with specific 

genetic factors, has exacerbated the diabetes situation in 

the country. 

This alarming trend necessitates the development of 

precise predictive models to facilitate early diagnosis 

and intervention, thereby mitigating the disease's 

impact on individuals and healthcare systems. As such, 

accurate prediction and early diagnosis of diabetes are 

essential to mitigate its adverse impact on individuals 

and healthcare systems, emphasizing the need for 

robust predictive models in the Indonesian context [2], 

[3], [4]. The primary goal of this study is to develop and 

evaluate a diabetes prediction model that accurately 

reflects the unique risk factors in Indonesia, while also 

enhancing prediction accuracy through the application 

of suitable oversampling techniques. This study seeks 

to explore how demographic and lifestyle factors in 

Indonesia influence the accuracy of diabetes prediction 

models and to identify which algorithms and 

https://doi.org/10.29207/resti.v8i5.5980


Selly Rahmawati, Arief Wibowo, Anis Fitri Nur Masruriyah 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 608 

 

oversampling methods are most effective in improving 

prediction accuracy within the Indonesian context. 

Despite the advancements in medical diagnostics, 

conventional approaches often fall short in accurately 

predicting diabetes, especially within heterogeneous 

populations like Indonesia. This discrepancy stems 

from the unique interplay of genetic, environmental, 

and lifestyle factors prevalent among Indonesians, 

which are not adequately captured by generic models. 

Therefore, there is a critical need for tailored predictive 

models that can address these nuances. 

Recent advancements in machine learning (ML) have 

demonstrated considerable potential in enhancing the 

accuracy of disease prediction and classification. The 

study [5] underscores Diabetes Mellitus as a prevalent 

chronic endocrine disease influenced by both genetic 

and lifestyle factors, affecting a diverse age group. It 

reports that 68% of the population in the country is 

impacted, highlighting the critical necessity for early 

prediction to prevent complications. The study 

evaluates various machine learning techniques, 

including classifiers such as K-Nearest Neighbors, 

Naive Bayes, XGBoost, Decision Tree, and Random 

Forest, for their efficacy in diabetes prediction. Initially, 

Random Forest was identified as particularly precise; 

however, the study concludes that XGBoost, with a 

precision rate of 77%, surpassed other classifiers in 

predicting diabetic outcomes. This highlights the 

potential of machine learning in healthcare for early 

intervention and improved disease management, 

underlining the importance of continuous research in 

this field to enhance patient outcomes and healthcare 

strategies. Additionally, study [6] employed supervised 

learning and logistic regression to construct a model for 

diagnosing diabetes. The study utilizes logistic 

regression to analyze a dataset of patient information, 

aiming to predict diabetes diagnoses and emphasizing 

the significance of data-driven predictions in 

healthcare. The conclusion reveals that the logistic 

regression model achieved an accuracy rate of 74%, 

which, while better than random guessing, is not 

adequate as a standalone diagnostic tool. To improve 

accuracy, the authors suggest exploring more advanced 

models, such as neural networks, and incorporating 

additional features. This study underscores the potential 

of machine learning in disease diagnosis and 

prevention, proposing it as a valuable tool for enhancing 

healthcare outcomes and reducing costs, while also 

pointing to future research directions for refining the 

approach. 

Furthermore, The research [7] explored the utilization 

of machine learning and artificial intelligence for early 

diabetes prediction and diagnosis, focusing on Diabetes 

Mellitus as a complex polygenic disorder that can lead 

to multiple organ failures if not properly monitored. The 

study delves into various methodologies for diabetes 

detection, concentrating on six critical areas: datasets, 

preprocessing techniques, feature extraction, machine 

learning-based analysis, classification and prediction 

models, and evaluation of results. It emphasizes that 

automated methods for diabetes prediction and 

diagnosis using machine learning offer superior 

accuracy and efficiency compared to manual methods, 

highlighting the importance of this technology in the 

research community. The study describes the analytical 

process, which includes data cleaning, managing 

missing values, exploratory analysis, and culminates in 

model creation and testing. The achieved high accuracy 

on public testing datasets showcases the approach's 

potential in predicting diabetes outcomes. However, it 

mentions an apparent error in the results currently 

related to Google Play Store review classification, 

suggesting future research to enhance machine learning 

models by integrating them with cloud technologies and 

optimizing them for artificial intelligence applications, 

reinforcing the potential of these techniques in 

advancing healthcare diagnostics and research. 

The study [8] investigated the application of machine 

learning (ML) models in predicting microvascular and 

macrovascular complications in adults with Type 2 

diabetes, addressing the rising prevalence of diabetes 

and the complexity of involved data. The study 

conducts a systematic review using major databases, 

adhering to the PRISMA guidelines, to assess the 

performance of ML models specifically developed or 

validated for predicting these diabetes-related 

complications. The review comprises 32 studies and 87 

ML models, with neural networks being the most 

frequently employed technique, followed by other 

methods such as random forests. Common predictors 

across models include age, duration of diabetes, and 

body mass index. Performance evaluation is based on 

the area under the receiver operating characteristic 

curve (AUC), where a score above 0.75 signifies 

effective discrimination. Results indicate that 36% of 

models reached this accuracy level, and ML models 

often outperformed non-ML methods, with random 

forests demonstrating the highest effectiveness in 

predicting both microvascular and macrovascular 

complications. However, the study identifies a high risk 

of bias in the majority of included studies, indicating 

that most ML models are still in exploratory stages. 

While random forests showed promising results, 

extensive external validation is necessary before 

the clinical application of these ML models. 

In [9], an interdisciplinary approach is explored to 

improve disease prediction and diagnosis, specifically 

targeting diabetes. The study introduces an innovative 

method utilizing machine learning techniques, 

particularly stochastic gradient descent for logistic 

regression, to predict diabetes in patients. A dataset 

comprising eight original features collected from 

patients prior to diabetes diagnosis is utilized. The study 

applies rough set theory (RST) to select the most 

pertinent features, finding that this selection 

considerably enhances prediction accuracy. It 

highlights the importance of precise disease prediction 

in healthcare, demonstrating through the Pima Indian 



Selly Rahmawati, Arief Wibowo, Anis Fitri Nur Masruriyah 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 609 

 

Diabetes dataset that stochastic gradient descent 

combined with RST-enhanced logistic regression 

surpasses traditional methods. This approach 

underscores the potential of integrating RST with 

machine learning algorithms to refine prediction 

models, suggesting that analogous methodologies could 

be applied to other algorithms for improved outcomes. 

The research contributes to ongoing efforts to leverage 

interdisciplinary techniques in healthcare, advocating 

further exploration of RST in combination with other 

machine learning methods to augment predictive 

accuracy in diabetes and potentially other diseases. 

The study in [10] examined diabetes mellitus patient 

classification at a hospital in Palembang, Indonesia, 

using machine learning algorithms to enhance data 

management. It compared Naive Bayes and Support 

Vector Machine (SVM) using WEKA software, 

employing tools like cross-validation and confusion 

matrix to evaluate accuracy. Diabetes, characterized by 

high blood glucose due to insulin deficiency, 

complicates patient classification. The study found that 

SVM with a polynomial kernel achieved the highest 

accuracy at 96.27%, surpassing Naive Bayes at 92.07%, 

highlighting SVM's superior performance. The 

conclusion emphasizes SVM with a polynomial kernel 

as the best algorithm for diabetes classification in this 

setting. It references previous research favoring Naive 

Bayes due to preprocessing steps like stopword 

removal, which may affect data context. The study 

concludes that manual calculations do not always 

ensure classification accuracy, reinforcing the SVM 

approach's reliability in healthcare. 

Amidst various ML algorithms, Support Vector 

Machines (SVM), Logistic Regression, and Naive 

Bayes have emerged as leading contenders for 

classification tasks, particularly in medical diagnostics. 

However, a predominant challenge associated with 

these algorithms is managing imbalanced datasets, 

where the minority class (e.g., diabetes cases) is 

significantly underrepresented compared to the 

majority class. This imbalance often leads to biased 

predictions, as models tend to favour the majority class, 

resulting in reduced sensitivity and an increased risk of 

misdiagnosis. To counter this issue, oversampling 

techniques such as Synthetic Minority Over-sampling 

Technique (SMOTE) and Adaptive Synthetic 

(ADASYN) sampling have been devised. These 

methodologies aim to artificially balance the dataset by 

generating synthetic examples of the minority class, 

thereby enhancing the model's capability to accurately 

identify true positive cases. While these techniques 

have demonstrated significant improvements across 

various domains, their comparative efficacy in the 

context of diabetes prediction, particularly using 

Indonesian data, remains largely unexplored. This study 

conducts an in-depth analysis of the SVM, Logistic 

Regression, and Naive Bayes algorithms, integrating 

SMOTE and ADASYN to improve diabetes prediction 

accuracy in Indonesia. The novelty of this research lies 

in its focus on Indonesian diabetes data, presenting 

unique characteristics and patterns distinct from 

datasets in other regions. Through a systematic 

evaluation of these algorithms in conjunction with 

synthetic oversampling techniques, the study seeks to 

ascertain the most effective strategy for optimizing 

diabetes prediction in Indonesia. Additionally, this 

research contributes to a broader understanding of how 

oversampling methods can be effectively employed to 

address class imbalance issues in medical datasets, 

potentially informing future studies across various 

diseases and populations. 

2. Research Methods 

In this study, the research methodology adheres to the 

Cross-Industry Standard Process for Data Mining 

(CRISP-DM) framework, a comprehensive and 

systematic approach for data mining endeavors. The 

research workflow, as illustrated in Figure 1, 

encompasses several critical phases integral to the 

study's progression.  

 

Figure 1. Stages of CRISP-DM 

The CRISP-DM methodology, depicted in Figure 1, is 

divided into six stages: Business Understanding, Data 

Understanding, Data Preparation, Modeling, 

Evaluation, and Prototyping [11]. This study, however, 

focuses specifically on the Evaluation phase, 

deliberately excluding the Prototyping stage to 

concentrate solely on assessing model performance. 

The initial phase, Business Understanding, is dedicated 

to delineating project objectives and requirements from 

a business perspective [12], [13]. This stage involves 

defining project goals, establishing criteria for success, 

and ensuring that data mining efforts align with 

overarching business objectives to maximize relevance 

and impact. A thorough analysis of business needs is 

imperative, alongside a strategic mapping of how data 

mining can address identified challenges and capitalize 

on potential opportunities. 

The Data Understanding phase entails the preliminary 

collection and exploration of data to garner insights into 

the dataset [12], [14]. This stage involves evaluating 
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data quality, detecting potential issues, and forming 

initial hypotheses regarding data relationships. 

The dataset utilized in this study is a meticulously 

curated collection of patient data from a Regional 

General Hospital in Indonesia, focusing on individuals 

diagnosed with diabetes mellitus. This hospital's 

extensive reach and diverse patient demographics 

ensure that the data reflects a broad spectrum of cases, 

thus providing a comprehensive basis for predictive 

modelling. For this study, the dataset covers the period 

from 2022 to 2023, with a total of 657 patient records. 

The dataset includes attributes such as age, gender, 

family history of diabetes, Body Mass Index (BMI), 

blood pressure, blood sugar levels, pregnancy status, 

smoking habits, physical activity, and sleep patterns, as 

detailed in Table 1. Each attribute contributes valuable 

insights into the patients' health profiles, facilitating a 

comprehensive analysis. 

Table 1. Attributes of Data 

Attribute Detail 

Age 
The patient's age, expressed in years, at the 

time of data collection. 

Gender 
The classification of the patient as either 

male or female. 

Family History 

of Diabetes 

The presence or absence of diabetes among 
the patient's immediate family members, 

such as parents or siblings. 

Body Mass 
Index (BMI) 

A metric that assesses body fat based on the 
patient's height and weight. 

Blood Pressure 
The measurement of the force exerted by 

blood against the arterial walls. 
Blood Sugar 

Levels 

The concentration of glucose present in the 

blood. 

Pregnancy 
Status 

Indicates whether the patient has ever been 
pregnant. 

Smoking Habits 
Indicates whether the patient uses tobacco 

products. 
Physical 

Activities 

The frequency and intensity of the patient's 

regular physical exercise or activities. 

Sleep Patterns 
The duration and quality of the patient's 
sleep. 

Diagnosis 
Indicates whether the patient has been 

formally diagnosed with diabetes. 

In the Data Preparation phase, the focus is on data 

cleaning and transformation to render the dataset 

suitable for modelling [12], [15]. This involves 

addressing missing values, eliminating outliers, and 

performing feature engineering to enhance predictive 

capabilities. The data preparation process is illustrated 

in Figure 2. In medical datasets, particularly those 

related to disease diagnosis,  class imbalance is a 

prevalent challenge, often leading to biased predictions 

that favour the majority class. Our dataset exhibited a 

significant class imbalance, with the number of diabetic 

patients substantially lower than non-diabetic patients. 

This imbalance could severely impact the model's 

ability to correctly identify diabetes cases. To address 

this, we selected SMOTE and ADASYN as our 

oversampling techniques. These methods were chosen 

because of their proven effectiveness in generating 

synthetic samples that enhance model performance in 

imbalanced scenarios, particularly in medical datasets. 

SMOTE was selected for its ability to generate new 

instances that are more representative of the minority 

class, while ADASYN was chosen for its capacity to 

adaptively create synthetic samples in areas where the 

decision boundary is more complex. These 

characteristics align well with the specific challenges of 

our dataset, making these techniques particularly 

suitable for improving the accuracy and robustness of 

our predictive models. 

Moreover, these methods were chosen over others, such 

as simple random oversampling or undersampling, 

because they offer a more sophisticated approach that 

better aligns with the dataset's complexity and the need 

for precise, reliable predictions in a healthcare setting. 

 

Figure 2. Data Preparation Process 

SMOTE operates by selecting a minority class sample 

and identifying its k-nearest neighbors [16], [17]. New 

synthetic samples are then created along the line 

segments connecting the sample to its neighbors, 

thereby balancing the dataset and improving model 

performance. The SMOTE pseudocode (Pseudocode 1) 

details the steps for generating synthetic samples, 

highlighting the process of neighbor identification and 

interpolation. 

Pseudocode 1 SMOTE 

def smote(X, y, k_neighbors, N): 

    # X: Feature matrix 
    # y: Target vector 

    # k_neighbors: Number of neighbors to use for generating 

synthetic samples 
    # N: Amount of synthetic samples to generate for each minority 

class instance 

 
    # Step 1: Identify minority class samples 

    minority_class = get_minority_class(y) 

    minority_samples = get_samples(X, y, minority_class) 
 

    synthetic_samples = [] 

 
    for sample in minority_samples: 

        # Step 2: Find k-nearest neighbors for each minority class 

sample 
        neighbors = find_nearest_neighbors(sample, X, 

k_neighbors) 

 
        for _ in range(N): 

            # Step 3: Randomly select a neighbor 
            neighbor = random.choice(neighbors) 

 

            # Step 4: Generate a synthetic sample 
            synthetic_sample = generate_synthetic_sample(sample, 

neighbor) 

            synthetic_samples.append(synthetic_sample) 
 

    # Step 5: Combine original dataset with synthetic samples 

    X_augmented = concatenate(X, synthetic_samples) 
    y_augmented = concatenate(y, [minority_class] * 

len(synthetic_samples)) 

 
    return X_augmented, y_augmented 
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Unlike other oversampling methods like SMOTE, 

ADASYN adaptively focuses on generating more 

synthetic samples in regions where the decision 

boundary between classes is more complex or where the 

minority class is underrepresented [17], [18]. This helps 

improve the model's ability to learn from difficult 

examples. ADASYN helps improve the performance of 

classifiers by focusing on regions of the feature space 

where the model has difficulty learning, thus enhancing 

the model's ability to generalize better to unseen data. 

The detailed stages of ADASYN are shown in 

Pseudocode 2. 

Pseudocode 2 ADASYN 

def adasyn(X, y, k_neighbors, beta): 
    # X: Feature matrix 

    # y: Target vector 

    # k_neighbors: Number of neighbors to use for generating 

synthetic samples 

    # beta: Control parameter for the number of synthetic samples 

 
    # Step 1: Identify minority and majority class samples 

    minority_class = get_minority_class(y) 
    majority_class = get_majority_class(y) 

 

    # Step 2: Find k-nearest neighbors for each minority class 
sample 

    minority_samples = get_samples(X, y, minority_class) 

    synthetic_samples = [] 
 

    for sample in minority_samples: 

        neighbors = find_nearest_neighbors(sample, X, 
k_neighbors) 

         

        # Step 3: Compute the density of the sample's neighborhood 
        density = compute_density(neighbors, y, majority_class) 

         

        # Step 4: Generate synthetic samples based on the density 
        num_synthetic = int(beta * density) 

        for _ in range(num_synthetic): 

            synthetic_sample = generate_synthetic_sample(sample, 
neighbors) 

            synthetic_samples.append(synthetic_sample) 

 
    # Step 5: Combine original dataset with synthetic samples 

    X_augmented = concatenate(X, synthetic_samples) 

    y_augmented = concatenate(y, [minority_class] * 
len(synthetic_samples)) 

 

    return X_augmented, y_augmented 

 

The Modeling phase involves the implementation of 

various algorithms to develop and validate predictive or 

descriptive models. This iterative process encompasses 

three key algorithms: Support Vector Machine (SVM), 

Naïve Bayes, and Logistic Regression. Each algorithm 

will be utilized to build and test models, with an 

emphasis on their respective methodologies and 

performance metrics. 

SVM is a powerful supervised machine learning 

algorithm primarily used for classification tasks [19]. 

SVM works by finding the optimal hyperplane that 

separates data points from different classes with the 

maximum margin [20]. This optimal hyperplane is 

defined as the one that maximizes the distance between 

the nearest data points of each class, known as support 

vectors. The mathematical formulation of SVM 

involves solving the following optimization problem as 

shown in Equation 1. 

𝑚𝑖𝑛𝑤,𝑏
1

2
‖𝑤‖2,                (1) 

subject to 𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖 

w is the weight vector, b is the bias term, 𝑥𝑖 is a data 

point and 𝑦𝑖  is the class label typically -1 or 1. 

Naïve bayes is a probabilistic classification algorithm 

based on Bayes' Theorem [16]. It assumes that the 

features are conditionally independent given the class 

label, which simplifies the computation of probabilities. 

Despite its simplicity, Naïve Bayes is highly effective 

and is commonly used in text classification tasks, such 

as spam detection and sentiment analysis. The core idea 

of Naïve Bayes is to calculate the posterior probability 

of a class C given a set of feature 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

using Bayes’ Theorem in Equation 2. 

𝑃(𝐶|𝑋) =
𝑃(𝐶)∙𝑃(𝑋|𝐶)

𝑃(𝑋)
              (2) 

Since P(X) is constant for all classes, the equation can 

be simplified to P(C|X) ∝ 𝑃(𝐶) ∙ ∏ 𝑃(𝑥𝑖|𝐶)𝑛
𝑖=1 . Where 

P(C) is the prior probability of class C, 𝑃(𝑥𝑖|𝐶) is the 

likelihood of a feature 𝑥𝑖 given class C and the product 

∏ 𝑃(𝑥𝑖|𝐶)𝑛
𝑖=1  represents the assumption of 

independence among features. 

[9]Logistic Regression is a widely used statistical 

method for binary classification problems. Unlike linear 

regression, which predicts continuous values, logistic 

regression predicts the probability of a binary outcome, 

using the logistic (sigmoid) function to map predictions 

to the range [0, 1]. The model estimates the probability 

that a given input x belongs to class 1 as follows in 

Equation 3. 

𝑃(𝑦 = 1|𝑥) = 𝜎(𝑤 ∙ 𝑥 + 𝑏) =
1

1+𝑒−(𝑤∙𝑥𝑖+𝑏)
               (3) 

 𝜎(𝑧) =
1

1+𝑒−(𝑧) is the sigmoid function, w is the weight 

vector and b is the bias term. 

The Evaluation phase is crucial for assessing the 

performance of classification models like Support 

Vector Machine (SVM), Naïve Bayes, and Logistic 

Regression. Key performance metrics include 

Accuracy, Precision, Recall (Sensitivity), and the Area 

Under the ROC Curve (AUC-ROC). Accuracy 

(Equation 4) represents the proportion of correctly 

predicted instances, giving a general overview of the 

model's performance [21], [22]. Precision (Equation 5) 

measures the accuracy of positive predictions by 

calculating the ratio of true positives to the sum of true 

positives and false positives [8], [17]. Recall (Equation 

6) evaluates the model's ability to identify all true 

positives, calculated as the ratio of true positives to the 

sum of true positives and false negatives. AUC-ROC 

assesses the model's discriminative ability by plotting 

the true positive rate against the false positive rate, with 

a higher AUC indicating better performance. 
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To validate our models, we used k-fold cross-

validation, a robust statistical method for estimating 

model skill. This method divides the dataset into k 

subsets (folds), trains the model on k−1 folds, and tests 

it on the remaining fold. This process repeats k times, 

allowing each fold to serve as a test set once. By 

averaging performance across all iterations, we obtain 

an unbiased estimate of the model's effectiveness. 

Combining cross-validation with a train-test split 

ensures that the models are not overfitted to a specific 

dataset partition and can generalize to new, unseen data. 

Cross-validation is complemented by a train-test split, 

where the dataset is divided into separate training and 

testing sets. This method provides an initial evaluation 

of model performance and allows for rapid tuning and 

parameter adjustments. Together, these techniques 

create a balanced assessment framework, leveraging the 

strengths of each method to ensure prediction reliability 

and validity. 

The results, derived from these validation techniques 

and represented in the confusion matrix (Table 2), offer 

a detailed breakdown of predictions, including true 

positives, true negatives, false positives, and false 

negatives. This comprehensive analysis highlights 

different dimensions of prediction accuracy and 

reliability, providing insights into the model's strengths 

and weaknesses. 

Table 2. Confusion Matrix 

 Actual 

Predicted Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (6) 

3. Results and Discussions 

In our comparative analysis of SVM, Logistic 

Regression, and Naive Bayes algorithms for diabetes 

prediction, we evaluated each model with and without 

the application of synthetic oversampling techniques 

SMOTE and ADASYN. The results reveal significant 

variations in model performance metrics, including 

accuracy, precision, recall, and AUC, highlighting the 

impact of these techniques on predictive accuracy.  

Based on Figure 3, the baseline SVM model achieved 

an accuracy of 95%, a precision of 95%, a recall of 97%, 

and an AUC of 98. These results indicate strong 

predictive performance, with high sensitivity to true 

positives. However, the introduction of SMOTE and 

ADASYN further enhanced the model’s performance. 

SVM + SMOTE exhibited the highest accuracy (95.8%) 

and the best AUC (99.1), reflecting improved 

discrimination ability. Meanwhile, SVM + ADASYN 

showed an accuracy of 95.3% and an AUC of 99, 

underscoring its effectiveness in addressing class 

imbalance. 

 

Figure 3. Result of Algorithm Evaluation 

Logistic Regression demonstrated an accuracy of 

94.8%, a precision of 96.2%, a recall of 96.2%, and an 

AUC of 98.3. This model also benefited from the use of 

SMOTE and ADASYN, although the improvements 

were not as pronounced as with SVM. Logistic 

Regression + SMOTE achieved an accuracy of 95.6% 

and an AUC of 98.7, indicating enhanced model 

performance compared to the baseline. In contrast, 

Logistic Regression + ADASYN had an accuracy of 

94.5% and an AUC of 98.3, with slightly lower recall 

compared to SMOTE. 

Naive Bayes, while exhibiting the highest precision of 

98.5% in its base form, had lower recall (91.9%) and 

accuracy (93.5%) compared to the other algorithms. 

The application of SMOTE slightly improved the 

accuracy to 94.3% and the AUC to 98.6%. However, 

the recall was reduced to 90.2%, indicating that while 

precision remained high, the model struggled with 

identifying all positive cases effectively. ADASYN did 

not significantly enhance the model’s performance, 

with accuracy at 93.8% and an AUC of 98.5%. 

SMOTE consistently improved the performance of 

SVM and Logistic Regression models, particularly by 

addressing the class imbalance more effectively. The 

superior performance of SMOTE can be attributed to its 

ability to generate synthetic samples that closely mimic 

the characteristics of the minority class, which is crucial 

in datasets like ours, where the diabetic cases are 

underrepresented. For SVM, the high-dimensional 

feature space benefits from SMOTE's synthetic sample 

generation, which creates a more balanced decision 

boundary, leading to the highest observed accuracy and 

AUC. In contrast, ADASYN, while effective, focuses 

on more complex regions near the decision boundary, 

which may introduce noise in Logistic Regression 

models, particularly in less complex feature spaces, 

resulting in slightly lower improvements. The modest 

improvements observed in Naive Bayes with SMOTE 

and ADASYN suggest that probabilistic models may 

not fully leverage the benefits of oversampling 
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techniques, potentially due to their reliance on feature 

independence assumptions. This analysis underscores 

the importance of selecting oversampling techniques 

that align with the specific characteristics and 

complexity of the dataset and the models being used. 

ADASYN also contributed to improved model 

performance, particularly with SVM, which showed a 

notable increase in precision compared to the baseline. 

However, its impact on Logistic Regression was less 

pronounced, with a marginal decrease in recall but 

similar AUC compared to SMOTE. Naive Bayes 

showed modest improvements with ADASYN, though 

not as impactful as SMOTE, suggesting that the choice 

between SMOTE and ADASYN may vary depending 

on the specific algorithm and dataset characteristics. 

SVM and Logistic Regression demonstrated superior 

overall performance compared to Naive Bayes, with 

higher accuracy, recall, and AUC values. SVM + 

SMOTE achieved the highest metrics across all 

evaluated criteria, indicating its robustness in handling 

imbalanced datasets. Logistic Regression + SMOTE 

also showed strong performance but slightly lower than 

SVM + SMOTE. Naive Bayes, despite high precision, 

struggled with lower recall and accuracy, making it less 

effective for this specific application. Precision and 

recall are critical metrics for evaluating the trade-offs in 

predictive models. While Naive Bayes achieved the 

highest precision, it suffered from lower recall, 

indicating a tendency to miss positive cases. In contrast, 

SVM and Logistic Regression models, particularly with 

SMOTE, balanced high precision with better recall, 

ensuring a more comprehensive identification of 

diabetes cases. The AUC metric provides insight into 

the model’s ability to distinguish between classes. SVM 

+ SMOTE achieved the highest AUC, demonstrating 

the best performance in distinguishing between diabetic 

and non-diabetic cases. This metric underscores the 

importance of using synthetic oversampling techniques 

to enhance the model’s discriminative power and 

overall effectiveness. 

The practical implications of our research underscore 

the potential of machine learning models to 

revolutionize diabetes care in Indonesia. By enhancing 

early detection and identifying high-risk individuals 

based on historical and clinical data, these models can 

serve as a decision-support tool for healthcare 

providers, enabling more accurate assessments of 

diabetes risk. This capability is particularly crucial in 

Indonesia, where diabetes prevalence is rising rapidly 

due to lifestyle changes and genetic predispositions 

specific to the population. Early diagnosis can lead to 

better management of the disease, reducing the 

likelihood of complications such as cardiovascular 

diseases, neuropathy, and kidney failure. 

4. Conclusions 

In conclusion, this study underscores the critical role of 

tailored oversampling techniques, such as SMOTE, in 

enhancing the predictive accuracy of machine learning 

models for diabetes diagnosis in Indonesia. The 

superior performance of the SVM model with SMOTE 

suggests that such techniques can effectively address 

the class imbalance inherent in medical datasets, 

thereby improving the robustness of predictions in real-

world applications. These results have significant 

implications for healthcare strategies in Indonesia, 

where early and accurate diagnosis is essential for 

managing the growing burden of diabetes. However, 

this study is not without limitations. The dataset used, 

while comprehensive, is limited to a specific regional 

hospital, which may not fully capture the broader 

diversity of the Indonesian population. Additionally, 

the reliance on synthetic oversampling techniques like 

SMOTE and ADASYN, while effective, may introduce 

synthetic data points that do not fully reflect the 

complexity of real-world scenarios. Future research 

should explore the integration of more advanced 

techniques, such as hybrid sampling methods or deep 

learning approaches, to further refine prediction 

accuracy. Moreover, it is recommended that future 

studies validate these models using datasets from 

multiple regions and healthcare settings across 

Indonesia to ensure the generalizability of the results. 

Further investigation into the impact of other 

demographic and lifestyle factors specific to Indonesia 

could also provide deeper insights into the nuances of 

diabetes prediction in this unique context. By 

addressing these limitations and expanding the scope of 

research, the potential for developing robust, context-

specific predictive models can be further realized, 

ultimately contributing to better healthcare outcomes. 
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