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Abstract  

Effective production forecasting is important for resource planning and management in the mining industry. Tin ore production 

from Cutter Section Dredges (CSD) may fluctuate due to a variety of factors, in which there are periods when the production 

is zero. This study compares various combinations of machine learning-based classification and forecasting to predict future 

tin ore production values, which have not been found in previous studies. The presence of zero values in the forecast in the next 

day's tin ore production forecast is addressed by combining classification and forecasting techniques. Random Forest and 

CatBoost classification techniques are used to determine the next day's CSD production operating status. Then, for each time 

point when the CSD is operational, a forecasting model is created using CatBoost and Bi-LSTM. This study's findings show 

that a serial combination of the Random Forest classification method and CatBoost forecasting can produce accurate tin ore 

production forecasts for the selected CSD (RMSE = 0.271, MAE = 0.179, MAE = 0.730, F1-score = 0,80). This study 

demonstrates how a serial combination of classification and forecasting models can improve the accuracy and efficiency of 

production forecasting for intermittent time series data. 
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1. Introduction  

Tin ore production plays a crucial part in the mining 

industry as it provides raw materials needed for a 

variety of industries. Effective forecasting of tin ore 

production aims to provide an overview of future trends 

in tin ore production and may aid in resource planning 

and management. 

Offshore tin ore production using Cutter Section 

Dredges (CSDs) varies throughout the year due to 

changing weather, equipment and operational factors, 

and other field conditions, as well as unpredictable 

docking times that can result in zero production on 

some days. Up to 30.3% of the production data used in 

this study contain zero values. 

Previous studies have been done on the prediction and 

forecasting of various mining outcomes, employing a 

variety of machine-learning techniques that combine 

historical production data with specific operational data 

for each mine type [1] - [8]. However, discussions on 

production forecasting, particularly for tin ore, are 

difficult to find. 

Several studies have also examined forecasting data 

with a large number of zero values, which is common 

in the context of intermittent demand forecasts. [9], [10] 

take an interesting approach to overcome this problem 

by splitting it into two tasks: classifying the 

presence/absence of demand and predicting the 

magnitude of demand, which can provide more accurate 

results than the classical Croston method. 

Deep learning methods, such as LSTM, are commonly 

used in time series data analysis due to their ability to 

process data in sequences and remember past 

information. However, other machine learning 

methods, such as gradient boosting, are more 

interpretable [11] and also applicable to make 

predictions with zero values, as seen in this study [9]. 

Random forest and gradient boosting are methods that 

can be used for time series data processing and 

classification. 
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This study aims to build a model to forecast the tin ore 

production results of a chosen CSD for the following 

day. The model is built using a variety of machine 

learning methods and divided into two serial phases: 

classification and forecasting. Random Forest and 

CatBoost classification models are used to determine 

the CSD's operational status, addressing the zero values. 

The CatBoost and Bi-LSTM forecasting models are 

then used to predict tin ore production at the time step 

when the classification results indicate that the CSD is 

operational. As a result, the classification process must 

take precedence over the forecasting process. 

In this study, the combined models are built using a 

combination of decision tree-based methods (Random 

Forest and CatBoost) and neural network techniques 

(Bi-LSTM). This is an extension of previous studies [9], 

[10] and allows for the comparison of combined models 

to determine the most effective configuration. 

Separating intermittent data forecasting tasks into 

classification and regression tasks allows for easier 

evaluation and optimization for each of the tasks [10]. 

The classification phase results in this study are 

evaluated using a variety of metrics, including 

precision, recall, and F1 score. Meanwhile, the 

forecasting results for the task are evaluated using 

RMSE, MAE, and MASE. This combined approach, 

utilizing historical production data as the input, is 

expected to yield accurate forecasting results. 

2. Research Methods 

The flowchart in Figure 1 illustrates the stages of 

analysis for this study, while Figure 2 provides an 

overview of the combined methods used in the study . 

Inspired by [9], [10], we employ a machine learning-

based methodology and follow a similar procedure. The 

forecasting model is built using various machine 

learning methods and divided into two serial tasks: 

classification and forecasting. Random Forest and 

CatBoost classification models are used to determine 

the CSD's operational status for the next day 

(operational or non operational/zero productions), 

while the CatBoost and Bi-LSTM forecasting models 

are used to forecast the size of the production value if 

the CSD is determined to be operational in the particular 

timestep. In the classification phase, the Random Forest 

classifier and CatBoost classifier models are compared, 

which are two types of decision tree ensembles that 

perform well in classification. During the forecasting 

phase, the Bi-LSTM and CatBoost models are 

compared. The Bi-LSTM model excels at processing 

sequence data such as time series data, whereas 

CatBoost is a type of gradient boosting that has been 

used in previous similar studies. All of the analyses in 

this study were carried out on Google Colab with 

Python 3.10. 

2.1 Research Data and Feature Engineering 

This study makes use of daily production data on tin ore 

production (measured in Ton of Sn) from CSD A, which 

was acquired from Company X. The data spans 1449 

days within the timespan of 2020-2023, in which 439 

days (30.3% of the data) are zeroes. In addition to the 

production data, several features are created to aid in the 

classification and forecasting process, using machine 

learning methods inspired by previous studies and 

tailored to the context of this research data. The CSD's 

operating status is a binary feature that describes when 

the ship is operational (has production value) and when 

it is non-operational (zero production). Discrete-time 

features (year, month, date, and day) are also included 

[9], [10]. In addition, several features related to the 

characteristics of intermittent data [9] were added, 

including time since the last CSD operation (number of 

days since the last non-zero production value) and time 

since the last CSD operation (number of days since the 

last zero production value). This study utilizes up to 14 

days of lagged data to forecast the next day's tin ore 

production. Table 1 summarizes the variables used in 

each of the study's phases. 

 

Figure 1 Flowchart of Research Plan  



Nabila Dhia Alifa Rahmah, Budhi Handoko, Anindya Apriliyanti Pravitasari 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 646 

 

 

Figure 2 Flowchart of Combined Methods 

Table 1. Features Used for Each Study Phase 

2.2 Classification and Forecasting Model Development 

Random Forest is one of the most popular machine 

learning algorithms in classification tasks that can 

provide good prediction results [12]. It is first 

developed by Breiman [13]. Random Forest is an 

ensemble learning which is built on decision trees as the 

basis. Each decision tree in the Random Forest model is 

formed by selecting attributes at random to determine 

the splitting of the tree, as well as taking subsamples of 

the data using bootstrap [13], [14]. When combining the  

tree models, Random Forest employs a bagging 

(bootstrap aggregation) algorithm [15]. In this study, 

Random Forest Classifier and Random Forest 

Regressor were implemented using scikit-learn [14] to 

perform classification tasks. 

Random Forest can limit the training time and avoid 

overfitting [12], deal with outliers and is not dependent 

on the distribution of the data [16], and is also 

applicable to a large number of input features [12]. This 

makes Random Forest to be one of the easiest machine-

learning algorithms to implement. However, the 

Random Forest model's hyperparameters can have an 

impact on the accuracy of the predictions [12]. In this 

study, a grid search technique was used to determine the 

best hyperparameters to apply to the dataset. Table 2 

shows the selected random forest architecture used in 

the study. 

Table 2. Random Forest Architecture 

Hyperparameter Value 

Number of Decision Tree (n_estimators) 100 
Max Depth of Decision Tree 5 

Max features for split node None 

Min sample for leaf 2 

Gradient Boosting, like Random Forest, is a machine-

learning algorithm that consists of an ensemble of 

multiple decision trees. However, when combining the 

results of different decision trees into its ensemble, the 

Gradient Boosting model takes a different approach, 

known as "boosting". The boosting algorithm is built by 

systematically combining multiple weak learners into a 

strong learner [17], with each tree learning from the 

previous tree's errors to improve output prediction 

results [18]. This algorithm can also be applied to 

classification and regression tasks [19]. 

This research focuses on the CatBoost algorithm [20], 

[21], which is a development of the gradient-boosting 

algorithm with decision trees as its base predictor [21], 

[22]. CatBoost has advantages when processing 

categorical data and can reduce overfitting, producing 

competitive results and with faster processing times 

than other gradient boosting algorithms [20], [21]. 

CatBoost works well with heterogeneous, noisy, and 

complex data [19], [22]. 

The two main principles of the CatBoost algorithm 

include the processing of categorical data with target 

statistics and innovation in overcoming gradient bias or 

prediction shift with ordered boosting [20], [21]. In 

addition, CatBoost uses a combination of different 

category features as additional features to be able to 

capture more complex patterns that are taken with 

a greedy approach to the splitting of the decision tree, 

which can also include numerical features [20]. 

In this study, the CatBoost classification and 

forecasting method is implemented in Python using the 

CatBoost package. Table 2 shows the CatBoost model 

architecture after hyperparameter tuning. 

Table 3. CatBoost Architecture 

Model Hyperparameter Value 

Classification of 

CSD’s Operational 
Status 

Number of iterations 500 

Max depth of Decision Tree 6 

Max combinations of features 
(max_ctr_complexity) 

2 

Learning rate 0,1 

Forecasting of 
Production 

Magnitude 

Number of iterations 500 
Max depth of Decision Tree 5 

Max combinations of features 

(max_ctr_complexity) 
2 

Learning rate 0,03 

Long Short-Term Memory (LSTM) is a neural network 

algorithm introduced by  Sepp Hochreiter and Jürgen 

Schmidhuber [23]. LSTM is an improvement to the 

Recurrent Neural Network (RNN) that is applicable to 

sequence data, able to take information from previous 

timesteps into account. LSTM is an RNN architecture 

that has a special unit to overcome the problem of 

vanishing gradients. LSTM has a memory cell that can 

store data for a long time, with three gates that regulate 

the entry and exit of information from each cell [24]. 

This keeps LSTM from the vanishing or exploding of 

error from backpropagations, overcoming the general 

Phase 
Machine Learning 

Algorithm 
Data 

Classification 

Random Forest Historical Production 

Data + Additional 
Features 

CatBoost 

Forecasting 

CatBoost 

Historical Production 

Data (Non Zero) + 

Additional Features 

Bi-LSTM 
Historical Production 

Data 
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vanishing gradient problem in RNNs and increasing 

accuracy [25]. The Forget Gate enables LSTM to 

control memory cell resetting by determining which 

information is stored or deleted when no longer needed 

[24]. Meanwhile, the input gate determines whether the 

memory cell is updated by controlling the information 

entering the cell [24]. Finally, the output gate controls 

the information leaving the cell [24], [25]. 

Bidirectional LSTM, also known as Bi-LSTM, is an 

advancement of LSTM in which the sequence data is 

processed in two directions using forward and 

backwards hidden layers that are then connected to the 

output layer [17]. This yields information from before 

and after a particular point in the sequence data being 

processed [17]. With its numerous benefits, Bi-LSTM 

has been shown to outperform LSTM in a variety of 

applications. 

In general, the process in Bi-LSTM is similar to LSTM, 

but it also involves bidirectional information 

processing, specifically with forward and backwards 

hidden layers [17]. In deep bidirectional LSTM, two 

LSTMs are applied to the input data, the first to the 

input sequence (forward layer), which is then reversed 

(backward layer), increasing the ability to understand 

long-term dependencies in the sequence data [26].  

The input to the Bi-LSTM model is formed as a 3-

dimensional array using the sliding window method and 

is normalized with the min-max scaler prior to entering 

the model. The Bi-LSTM method is implemented in 

Python with TensorFlow [27] dan Keras [28]. Table 4 

shows the architecture and hyperparameter tuning 

design for the LSTM and Bi-LSTM models, while 

Figure 2 illustrates the training loss. 

Table 4. Bi-LSTM Architecture 

Hyperparameter Value 

Number of layers 2 
Number of units 64, 64 

Activation function ReLU 

Optimizer Adam 
Dropout 0,1 

L2 Regularizer 0,1 

Batch 32 
Learning rate 0,00015992 

Epoch 22 (Early Stopping) 

 

Figure 3 Training Loss and Epoch of the Bi-LSTM Model 

2.3 Model Evaluation 

Several metrics are used to assess the CSD's operational 

status classification model, which comprises 

recall/sensitivity, precision, and F1-score. These 

metrics are based on the values of TP (True Positive), 

TN (True Negative), FP (False Positive), and FN (False 

Negative), indicating the agreement between the class 

obtained from the classification result and the actual 

class [29]. 

Meanwhile, the metrics Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean 

Absolute Squared Error (MASE) are used to assess the 

final forecasting result of the serial combination of 

classification and forecasting method in this study. 

RMSE and MAE are scale-dependent metrics, therefore 

the resulting value has the unit of the actual data (Ton 

of Sn), while MASE is a scale-free error. The MASE is 

a useful metric for evaluating forecast results on sparse 

time series data [10], as it does not have to concern 

about having zero values in the denominator, and will 

have an infinite value unless the historical value is 

always the same [9]. The scaled error (𝑞𝑡) and MASE is 

calculated as Formula 1 and 2 [30]: 

𝑞𝑡 =
𝑒𝑡

1

𝑛−1
∑ |𝑌𝑖−𝑌𝑖−1|𝑛

𝑖=2

                (1) 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞𝑡|)                (2) 

3. Results and Discussions 

3.1 Result for the Serial Combination of CatBoost 

Classification and Bi-LSTM Forecasting Model 

The Serial Combination of CatBoost Classification 

Model - Bi-LSTM Forecasting Model is applied to 

forecast the test data. Table 4 and Figure 4 describes the 

evaluation of the CatBoost classifier when predicting 

the CSD’s operational status, while Figure 5 compares 

the forecasting results from the 1-day-ahead model 

applied to the test data as compared to the actual data. 

This model does a good job of identifying zero data 

patterns, but it produces flat forecasts on data that has 

been identified as having a production value (𝑅𝑀𝑆𝐸 =
0,255, 𝑀𝐴𝐸 =  0,159, 𝑀𝐴𝑆𝐸 = 0,649).  

 

Figure 4 Confusion Matrix for the CatBoost Classification  

Model on Test Data 
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Figure 5 Forecasting Result of the Serial Combination of CatBoost 

Classification – Bi-LSTM Forecasting Model on Test Data 

3.2 Result for the Serial Combination of CatBoost 

Classification and CatBoost Forecasting Model 

The Serial Combination of CatBoost Classification 

Model - CatBoost Forecasting Model is applied to 

forecast the test data and then compared to the actual 

test data, as illustrated in Figure 6. As with the previous 

model, this model does a good job of identifying zero 

data patterns, but it can also provide good forecasts on 

data that has been identified as having a production 

value (𝑅𝑀𝑆𝐸 = 0,277 , 𝑀𝐴𝐸 =  0,188, 𝑀𝐴𝑆𝐸 =
0,769). This result fit the data better than The Serial 

Combination of CatBoost Classification Model - Bi-

LSTM Forecasting Model. 

 

Figure 6. Forecasting Result of the Serial Combination of CatBoost 

Classification – CatBoost Forecasting Model on Test Data 

3.3 Result for the Serial Combination of Random Forest 

Classification and Bi-LSTM Forecasting Model 

The Serial Combination of Random Forest 

Classification Model - Bi-LSTM Forecasting Model is 

also applied to forecast the test data. Table 4 and Figure 

7 describes the evaluation of the Random Forest 

classifier when predicting the CSD’s operational status, 

while Figure 8 compares the forecasting results from the 

model for the test data to the actual data. The Random 

Forest classification model also does a good job of 

identifying zero data patterns, but the final result of the 

serial combination model produces flat forecasts on 

data that has been identified as having a production 

value (𝑅𝑀𝑆𝐸 = 0,252, 𝑀𝐴𝐸 =  0,150, 𝑀𝐴𝑆𝐸 =
0,614). 

 

Figure 7 Confusion Matrix for the Random Forest Classification  

Model on Test Data 

  

Figure 8. Forecasting Result of the Serial Combination of Random 

Forest Classification – Bi-LSTM Forecasting Model on Test Data 

3.4 Result for the Serial Combination of Random Forest 

Classification and CatBoost Forecasting Model 

At last, the Serial Combination of Random Forest 

Classification Model - CatBoost Forecasting Model is 

also applied to forecast the test data. Figure 9 compares 

the forecasting results from the model for the test data 

to the actual data. The Random Forest classification 

model does a good job at both identifying zero data 

patterns and also producing fitting forecast value for the 

production magnitudes (𝑅𝑀𝑆𝐸 = 0,271 , 𝑀𝐴𝐸 =
 0,179, 𝑀𝐴𝑆𝐸 = 0,730). This result is comparable to 

the Serial Combination of CatBoost Classification 

Model - CatBoost Forecasting Model. 

 

Figure 9. Forecasting Result of the Serial Combination of Random 

Forest Classification – CatBoost Forecasting Model on Test Data 
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Table 5. Metrics Comparison of All Serial Combination Methods 

3.5 Discussions 

Finally, Table 5 summarizes the accuracy of all serial 

combination methods’ forecast as compared to the 

actual test data, as can also be observed graphically on 

Figure 5-9. 

The Serial Combination of Random Forest 

Classification and Bi-LSTM Forecasting Model 

achieves the best results in metric evaluation. However, 

when examining the graph form more closely in Figure 

8, we can see that the model tends to produce nearly flat 

forecast results for tin ore production at time steps 

identified as having production value.  

Alternatively, the Serial Combination of CatBoost 

Classification and CatBoost Forecasting Model and the 

Serial Combination of Random Forest Classification 

and CatBoost Forecasting Model both produce good 

results in identifying periods when the CSD is non-

operational (zero production value) as well as in the 

forecasting of the tin ore production magnitude. Among 

the two models, the Random Forest Classification and 

CatBoost Forecasting Model produces result that is best 

suited to the data, as can be seen in Figure 9. Therefore, 

the model is chosen as the best model for the next day 

forecast of the daily tin ore production of the CSD. 

The findings from this study show that using decision 

tree-based classification methods (Random Forest and 

CatBoost) prior to the forecasting step can help 

distinguish between the CSD's non-operational and 

operational periods, which aligns well with the previous 

study [10]. However, when the classification methods 

are combined with the neural network-based 

forecasting method (Bi-LSTM), the resulting models 

tend to produce forecast results that are flat over the 

operational period and can not reflect the fluctuations of 

the data. In contrast, combinations of the classification 

methods with the CatBoost forecasting method, which 

is also based on a decision tree, produce forecast results 

that are more responsive to data fluctuations. This result 

is consistent with the previous study by [9] that shows 

that combining classification and forecasting methods 

utilizing LightGBM, also based on a decision tree, can 

produce favorable results for intermittent data. 

However, it is worth noting that the methods used in this 

study are still unable to produce accurate forecasts for 

outliers. 

4. Conclusions 

This study attempts to forecast one day-ahead tin ore 

production of a selected CSD with highly varying data 

and intermittent operational periods (30.3% of the data 

has zero values). A proposed solution to this problem is 

to utilize a serial combination of classification and 

forecasting models using Machine Learning algorithms. 

The findings of this study show that the Serial 

Combination of Random Forest Classification and 

CatBoost Forecasting Model can provide good results 

in forecasting tin ore production from the CSD for the 

next day while also accurately identifying periods when 

the CSD is non operational or has zero values with 

𝑅𝑀𝑆𝐸 = 0,271, 𝑀𝐴𝐸 =  0,179,  𝑀𝐴𝑆𝐸 =  0,730, 

and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  0,80. In general, the proposed serial 

combinations of classification and forecasting models 

are able to predict the next day’s CSD operational status 

and forecast the tin ore production size with adequate 

results. This demonstrates that the method used in this 

study is capable of capturing the dynamics of 

fluctuating tin ore production, including overcoming 

challenges such as a high number of zero-value 

productions. The presence of the classification method 

differentiates between zero and non-zero values, 

allowing for more accurate predictions. To improve the 

accuracy of the proposed method in future research, 

additional data and related operational variables can be 

added to consideration. Likewise,  more complex 

machine learning and deep learning methods can also 

be utilized to improve forecasting performance, chosen 

based on the characteristics of the data. For example, 

the combination of decision tree-based classification 

methods and neural network forecasting methods can be 

tried on a more homogenous or non-fluctuating dataset. 

In the presence of outliers, future research can also look 

into appropriate methods to deal with extreme values in 

addition to accommodating zero values. This research 

has shown the potential for the proposed serial 

combination model to be considered in practical 

applications with an aim to support operational 

decisions in related fields. 
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