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Abstract 

This research aims to evaluate the performance of various Transformer models in social media-based classification tasks, 

specifically focusing on applications in personality profiling. With the growing interest in leveraging social media as a data 

source for understanding individual personality traits, selecting an appropriate model becomes crucial for enhancing accuracy 

and efficiency in large-scale data processing. Accurate personality profiling can provide valuable insights for applications in 

psychology, marketing, and personalized recommendations. In this context, models such as BERT, RoBERTa, DistilBERT, 

TinyBERT, MobileBERT, and ALBERT are utilized in this study to understand their performance differences under varying 

configurations and dataset conditions, assessing their suitability for nuanced personality profiling tasks. The research 

methodology involves four experimental scenarios with a structured process that includes data acquisition, preprocessing, 

tokenization, model fine-tuning, and evaluation. In Scenarios 1 and 2, a full dataset of 9,920 data points was used with standard 

fine-tuning parameters for all models. In contrast, ALBERT in Scenario 2 was optimized using customized batch size, learning 

rate, and weight decay. Scenarios 3 and 4 used 30% of the total dataset, with additional adjustments for ALBERT to examine 

its performance under specific conditions. Each scenario is designed to test model robustness against variations in parameters 

and dataset size. The experimental results underscore the importance of tailoring fine-tuning parameters to optimize model 

performance, particularly for parameter-efficient models like ALBERT. ALBERT and MobileBERT demonstrated strong 

performance across conditions, excelling in scenarios requiring accuracy and efficiency. BERT proved to be a robust and 

reliable choice, maintaining high performance even with reduced data, while RoBERTa and DistilBERT may require further 

adjustments to adapt to data-limited conditions. Although efficient, TinyBERT may fall short on tasks demanding high accuracy 

due to its limited representational capacity. Selecting the right model requires balancing computational efficiency, task-specific 

requirements, and data complexity. 
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1. Introduction  

Personality profiling, a psychological process aimed at 

understanding individual characteristics and behavioral 

tendencies, has become increasingly important in 

various applications, from psychological assessment to 

targeted marketing and human resource management 

[1]. Personality traits were traditionally assessed using 

psychometric instruments, such as the Big Five 

Inventory, where individuals self-reported responses to 

structured questionnaires [2], [3], [4]. However, these 

conventional methods can be time-consuming and 

prone to bias, as respondents may provide socially 

desirable answers rather than authentic ones. 

With the rise of social media, a new paradigm has 

emerged: personality profiling based on linguistic 

analysis of online user behavior. Platforms such as 

Facebook [5], Twitter (now X) [6], and Instagram [7] 

generate vast amounts of textual data that reflect 

individual opinions, emotions, and personality traits [8]. 

Analyzing this data has the potential to provide a more 

dynamic and real-time understanding of users' 

personalities, making personality profiling scalable and 

applicable in new contexts such as social media 

https://doi.org/10.29207/resti.v9i1.6157
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marketing, recommender systems, and even mental 

health diagnostics [9]. 

Personality prediction has seen significant 

advancements in recent years, particularly in integrating 

deep learning models and natural language processing 

techniques [10]. The use of social media data for 

personality profiling has become increasingly popular 

due to the vast amount of user-generated content 

available online [11]. Studies have explored various 

machine learning and deep learning approaches to 

predict personality traits, often utilizing the Big Five 

personality model as a framework [12]. For instance, 

research has demonstrated the effectiveness of using 

BERT and other transformer-based models for 

extracting semantic features from text data, which are 

crucial for accurate personality prediction [13]. 

Natural Language Processing (NLP) techniques have 

rapidly evolved, enabling the extraction of meaningful 

insights from large volumes of unstructured text data 

[14]. Transformer models revolutionized NLP by 

allowing models to handle dependencies between 

words across long sequences more effectively than 

earlier models like RNNs or CNNs [15]. With their self-

attention mechanisms, transformers have become the 

backbone of state-of-the-art language models, enabling 

significant breakthroughs in various NLP tasks, 

including text classification, sentiment analysis, and 

question-answering [15]. 

Transformer architectures, such as BERT (Bidirectional 

Encoder Representations from Transformers), have 

been particularly influential in advancing the 

capabilities of personality prediction models [16]. 

These models leverage attention mechanisms to capture 

contextual information from text, allowing for a more 

nuanced understanding of language. Integrating pre-

trained language models like BERT with additional 

layers for fine-tuning has shown promising results in 

various personality prediction tasks [17]. For example, 

studies have highlighted the success of ensemble 

models that combine BERT with other architectures, 

such as ULMFiT, to enhance prediction accuracy and 

F1 scores [18]. 

Among the most prominent Transformer-based models 

besides BERT are RoBERTa (Robustly Optimized 

BERT Pretraining Approach) [19] and ALBERT (A 

Lite BERT), all of which have demonstrated superior 

performance across many benchmarks. These models 

excel at understanding context and semantics by 

processing input bidirectionally, capturing richer 

representations of language [16]. However, the wide 

variety of Transformer variants available, each 

optimized for different choices in acceleration, size, and 

accuracy, presents challenges when selecting the most 

suitable version for particular assignments like 

personality profiling. While BERT and RoBERTa focus 

on maximizing accuracy, smaller models like 

DistilBERT, TinyBERT, and MobileBERT prioritize 

computation efficiency, rendering them appealing 

choices for implementation in resource-limited settings 

[20]. 

Moreover, the application of transformer models in 

personality profiling is not limited to English text. 

Research has extended these methodologies to other 

languages, such as Indonesian and Turkish, 

demonstrating the versatility and adaptability of 

transformer architectures across different linguistic 

contexts [1], [21]. The development of language-

specific models, like IndoBERT [22], has further 

improved the accuracy of personality predictions by 

tailoring the pre-training process to the linguistic 

characteristics of the target language. This highlights 

the importance of considering language diversity in 

designing and implementing personality prediction 

models [23]. 

In addition to language considerations, recent studies 

have addressed data imbalance and feature optimization 

challenges. Techniques such as synthetic minority 

oversampling (SMOTE) [24] and particle swarm 

optimization has enhanced model performance by 

balancing datasets and optimizing feature selection. 

These advancements underscore the potential of 

transformer architectures in providing robust and 

interpretable models for social media-based personality 

profiling, paving the way for future research to explore 

more sophisticated and context-aware approaches in 

this domain [25], [26]. 

Despite the promise of Transformer models, there is 

still a need for a comprehensive evaluation of their 

effectiveness in personality profiling tasks, especially 

when using real-world datasets like MyPersonality, 

which contains social media posts labelled with 

personality traits derived from the Big Five personality 

framework [27]. MyPersonality offers a unique dataset 

for this research, bridging the gap between traditional 

psychometrics and modern NLP techniques by allowing 

machine learning models to determine personality traits 

from social media behavior [5]. 

This paper aims to evaluate six Transformer-based 

models, namely BERT [16], RoBERTa [19], ALBERT 

[28], DistilBERT [20], TinyBERT [29], and 

MobileBERT [30] on the MyPersonality dataset. By 

applying a consistent fine-tuning strategy across these 

models, we systematically compare their performance 

in personality profiling, measuring key metrics such as 

classification accuracy, precision, recall, and F1 score. 

Furthermore, this study explores the trade-off between 

model accuracy and computational efficiency, 

considering the practical implications of deploying 

these models in real-world applications where resources 

may be limited. 

Furthermore, we extend our analysis by modifying the 

fine-tuning strategy for ALBERT to investigate 

whether specialized fine-tuning can compensate for this 

model's smaller size and efficiency, thereby providing 

insights into how model architecture and training 

strategy influence performance in personality profiling. 
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This research contributes to developing more efficient 

and accurate Transformer models for social media-

based personality profiling, offering guidance for 

researchers and practitioners on selecting and 

optimizing models based on specific task requirements. 

2. Research Methods 

This study evaluates the performance of six 

Transformer-based models, BERT, RoBERTa, 

ALBERT, DistilBERT, TinyBERT, and MobileBERT, 

on personality profiling tasks using the MyPersonality 

dataset. The dataset contains user-generated content 

from social media and labels based on the Big Five 

Personality Traits framework, making it suitable for 

text-based personality profiling. 

 

Figure 1. Research Flow 

The goal is to analyze and compare these models under 

different fine-tuning strategies and dataset variations, as 

outlined in Figure 1. 

2.1 Dataset 

The MyPersonality dataset contains 9,920 raw data 

samples, including social media posts and personality 

labels. In this study, we use two different versions of the 

dataset. Scenario 1 and Scenario 2: The whole dataset 

of 9,920 raw samples. Scenario 3 and Scenario 4: A 

subset of the dataset consisting of 1,000 samples. Each 

sample in the dataset consists of user-generated content 

labelled with personality traits derived from the Big 

Five personality model. Nonrelevant columns such as 

sentiment scores and metadata are removed to process 

the data for classification tasks, and the text features are 

consolidated for input into the models. 

The bar chart in Figure 2 illustrates the distribution of 

five categorical personality traits: Extraversion (cEXT), 

Neuroticism (cNEU), Agreeableness (cAGR), 

Conscientiousness (cCON), and Openness (cOPN). For 

each trait, the data is divided into two categories: "Yes" 

(indicating a high level of the trait) and "No" (indicating 

a low level). Openness (cOPN) has the highest "Yes" 

responses, with 7,370 instances, significantly higher 

than the "No" responses (2,547). In contrast, 

Neuroticism (cNEU) shows more "No" responses 

(6,200) compared to "Yes" (3,717). Extraversion 

(cEXT) and Conscientiousness (cCON) exhibit a 

relatively balanced distribution between "Yes" and 

"No" categories. Lastly, Agreeableness (cAGR) has 

slightly more "Yes" responses (5,268) than "No" 

(4,649). This chart provides a clear visual 

representation of how these traits are distributed across 

the dataset. 

 

Figure 2. Dataset Distribution 

2.2 Model Selection 

The six Transformer models selected for comparison 

are BERT (bert-base-uncased), RoBERTa (roberta-

base), ALBERT (albert-base-v2), DistilBERT 

(distilbert-base-uncased), TinyBERT (huawei-noah/ 

TinyBERT_General_6L_768D), MobileBERT 

(google/mobilebert-uncased). These models represent a 

variety of architectures, ranging from standard models 

like BERT and RoBERTa to lightweight models such 

as TinyBERT and MobileBERT. While BERT, 

RoBERTa, and ALBERT are full-size models 

emphasizing accuracy, the smaller models 

(DistilBERT, TinyBERT, and MobileBERT) are 

optimized for speed and efficiency. 

2.3 Data Preprocessing 

The preprocessing pipeline consists of several key 

steps: 

Removing Non-Relevant Features: Columns such as 

sentiment data and metadata (sentiment, #AUTHID, 

and DATE) were excluded from the dataset. The 

remaining columns were consolidated into a single text 

input field for each sample. 

Label Encoding: The #AUTHID column, which 

represents user IDs, was used as the target variable 

(personality label). This column was encoded into 

numeric values using a LabelEncoder. 

Splitting the Dataset: The dataset was divided between 

training and testing sets in an 80-20 ratio. This division 

was uniform across all cases to guarantee similar 

outcomes. 
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Dataset Conversion: The training and testing sets were 

converted into the Hugging Face Dataset format to 

facilitate tokenization and model training. 

2.4 Tokenization and Fine-Tuning 

Each model was tokenized using its corresponding 

tokenizer. Tokenization was done with padding and 

truncation to ensure uniform input length across 

samples (max sequence length: 128). The tokenizers 

used for each model are BERT (BertTokenizer), 

RoBERTa (RobertaTokenizer), ALBERT 

(AlbertTokenizer), DistilBERT (DistilBertTokenizer), 

TinyBERT (AutoTokenizer), MobileBERT 

(MobileBertTokenizer).  

For each model, the tokenized datasets were fine-tuned 

using a consistent fine-tuning strategy across all 

scenarios, except for ALBERT in Scenario 2 and 

Scenario 4, where a customized fine-tuning approach 

was used to explore model-specific optimization. 

2.5 Training and Evaluation 

This experiment employs four distinct scenarios to fine-

tune various transformer models for text classification. 

The models used include BERT, RoBERTa, 

DistilBERT, TinyBERT, MobileBERT, and ALBERT, 

with different fine-tuning strategies applied across the 

scenarios. Each scenario explores variations in 

hyperparameters such as training epochs, learning rates, 

batch sizes, and weight decay, with particular attention 

given to ALBERT, which is fine-tuned separately in 

certain cases. Additionally, the dataset size differs 

between the scenarios, with Scenarios 1 and 2 using a 

full dataset of 9,920 data points, while Scenarios 3 and 

4 operate on a reduced dataset size (30% of the total). 

This variation is intentionally designed to simulate real-

world conditions in personality profiling, where 

available datasets are often limited in size due to 

privacy concerns and the challenge of collecting 

extensive, high-quality data. By evaluating model 

performance on a smaller dataset, the study aims to 

understand the impact of fine-tuning strategies and 

assess each model’s robustness in handling data 

constraints commonly encountered in practical 

personality profiling applications. The defined 

experimental setups for these scenarios are detailed in 

Tables 1 and 2. 

In this research, we evaluate the performance of various 

Transformer models for personality profiling using 

metrics beyond simple accuracy. Given the multi-class 

nature of the task, metrics such as precision, recall, and 

F1-score provide a more complete picture of model 

effectiveness. Precision measures how accurate the 

positive predictions are, while recall captures the 

model’s ability to identify all relevant positive cases. 

The F1-score balances precision and recall, offering a 

useful metric when both false positives and false 

negatives are important. These metrics help assess the 

trade-offs between model performance and efficiency 

in social media-based personality profiling. The metrics 

were computed using Formulas 1- 5. 

Table 1. Scenario 1 and 2 

Aspect Scenario 1 Scenario 2 

Number of 

models for 

fine-tuning 

6 models 

(BERT, 

RoBERTa, 

DistilBERT, 

TinyBERT, 

MobileBERT, 

ALBERT) 

5 models (BERT, 

RoBERTa, DistilBERT, 

TinyBERT, 

MobileBERT), 

ALBERT handled 

separately 

ALBERT 

Fine-

Tuning 

Same fine-tuning 

process as other 

models 

Specialized fine-tuning 

with different batch 

sizes, epochs, and 

weight decay 

Training 

Arguments 

Standard across 

all models 

Standard for 5 models, 

custom training 

arguments for ALBERT 

Training 

Epochs 

10 epochs for all 

models 

10 epochs for 5 models, 

20 epochs for ALBERT 

Learning 

Rate 

Defaults to 

transformers 

library's default 

Standard models: 2e-5, 

ALBERT: 2e-5 

Batch Size Standard (8 for 

training, 16 for 

eval) 

Standard (8 for training, 

16 for eval), ALBERT: 

16 (training), 32 (eval) 

Weight 

Decay 

0.01 for all 

models 

0.01 for standard 

models, ALBERT: 0.3 

Dataset Size 9920 data points 9920 data points 

Table 2. Scenario 3 and 4 

Aspect Scenario 3 Scenario 4 

Number of 

models for 

fine-tuning 

6 models 

(BERT, 

RoBERTa, 

DistilBERT, 

TinyBERT, 

MobileBERT, 

ALBERT) 

5 models (BERT, 

RoBERTa, DistilBERT, 

TinyBERT, 

MobileBERT), 

ALBERT handled 

separately 

ALBERT 

Fine-Tuning 

Same fine-

tuning process as 

other models 

Specialized fine-tuning 

with different batch 

size, epochs, weight 

decay, and learning rate 

Training 

Arguments 

Standard across 

all models 

Custom training 

arguments for ALBERT 

(batch size, learning 

rate, weight decay) 

Training 

Epochs 

3 epochs for all 

models 

3 epochs for 5 models, 

6 epochs for ALBERT 

Learning 

Rate 

Defaults to 

transformers 

library's default 

Standard models: 2e-5, 

ALBERT: 2e-5 

(custom) 

Batch Size Standard (8 for 

training, 16 for 

eval) 

Standard (8 for training, 

16 for eval), ALBERT: 

16 (training), 32 (eval) 

Weight 

Decay 

0.01 for all 

models 

0.01 for standard 

models, ALBERT: 0.03 

Dataset Size 30% of total 

dataset 

30% of total dataset 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑐

𝐶
𝑐=1

𝑁
𝑖=1 ⋅ log(𝑦𝑖�̂�)                      (1) 

𝑁 represent the total number of samples in the dataset 

and 𝐶 the number of classes. For a sample 𝑖, the true 

label for the class 𝑐 is denoted as 𝑦𝑖�̂�. Meanwhile, the 

model generates a predicted probability for the sample 

𝑖 belonging to the class 𝑐, represented as  𝑦𝑖�̂�. 

Accuracy: 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (2) 
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𝑇𝑃 (True Positives) refers to the count of correct 

predictions where the actual class is positive. 𝑇𝑁 (True 

Negatives) represents the count of accurate predictions 

where the actual class is negative. 𝐹𝑃 (False Positives) 

indicates the number of incorrect predictions where the 

actual class is negative, but the model predicted it as 

positive. 𝐹𝑁 (False Negatives) refers to the number of 

incorrect predictions where the actual class is positive, 

but the model predicted it as negative. 

Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (3) 

𝑇𝑃 (True Positives) represents the count of accurate 

predictions where the true class is positive. 𝐹𝑃 (False 

Positives) refers to the count of incorrect predictions 

where the actual class is negative, but the model 

classified it as positive. 

Recall: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (4) 

𝑇𝑃 (True Positives) is the count of valid predictions 

where the real class is positive. 𝐹𝑃 (False Positives) is 

the number of cases where the model mistakenly 

predicted negative for instances that are positive. 

F1-score: 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (5) 

Precision refers to the ratio of correct positive 

predictions to the total number of positive predictions 

made by the model. The recall represents the ratio of 

correct positive predictions to the total number of 

positive instances. 

2.6 Performance Comparison 

We follow a consistent evaluation process to compare 

the performance of the six models: BERT, RoBERTa, 

ALBERT, DistilBERT, TinyBERT, and MobileBERT. 

First, all models are fine-tuned using the same training 

configuration on the MyPersonality dataset. After fine-

tuning, the performance of each model is evaluated 

using essential metrics: accuracy, precision, recall, and 

F1-score. These metrics are calculated on a reserved test 

set to assess the generalization capability of each model.  

Finally, the results are visualized and compared to 

identify trade-offs between performance and 

computational efficiency across the models. This 

systematic comparison helps determine the most 

effective model for personality profiling. Additionally, 

a comparison of computational efficiency, such as 

model size and inference time, was made to highlight 

the trade-offs between model performance and resource 

constraints. 

2.7 Visualization 

To visualize the performance of the six models, we first 

create a results table summarizing each model's key 

metrics: accuracy, precision, recall, and F1-score. This 

table provides a clear comparison of how each model 

performs on various aspects of classification. Next, we 

generate bar charts to visualize evaluation loss and 

accuracy, allowing for an easy comparison of model 

performance at a glance.  

These charts help highlight the differences between 

models, making it easier to spot trade-offs between 

accuracy and loss and offering a more intuitive 

understanding of the results. 

3. Results and Discussions 

3.1 Result 

In Scenario 1, we evaluated the performance of six 

Transformer-based models, BERT, RoBERTa, 

ALBERT, DistilBERT, TinyBERT, and MobileBERT, 

on the MyPersonality dataset, consisting of 9,920 raw 

samples. All models were fine-tuned using the same 

configuration across 10 epochs. Table 3 shows the key 

findings for Scenario 1, focusing on accuracy, loss, 

precision, recall, and F1-score. 

Table 3. Accuracy and Loss (Scenario 1) 

Models Accuracy Loss 

BERT 0.9975 0.0239 

RoBERTa 0.9975 0.0202 

DistilBERT 0.9975 0.0393 

TinyBERT 0.9960 0.0383 

MobileBERT 0.9975 0.0366 

ALBERT 0.0166 5.0224 

In the experimental results for Scenario 1, the 

performance of six Transformer models, BERT, 

RoBERTa, DistilBERT, TinyBERT, MobileBERT, and 

ALBERT, was assessed in terms of accuracy and loss, 

as shown in Table 3. The findings reveal that BERT, 

RoBERTa, and MobileBERT achieved the highest 

accuracy at 0.9975, indicating near-perfect 

classification performance. DistilBERT and TinyBERT 

followed closely, with accuracy scores of 0.9975 and 

0.9960, respectively, demonstrating their effectiveness 

despite being smaller and more efficient versions of the 

original BERT model. ALBERT, however, displayed a 

significantly lower accuracy of 0.0166, accompanied by 

a high loss value of 5.0224, suggesting that it may not 

be suitable for this specific task under the conditions of 

Scenario 1. The variations in loss values further 

emphasize the stability of RoBERTa, which achieved 

the lowest loss (0.0202), indicating a minimal 

prediction error. In contrast, ALBERT's high loss 

suggests convergence or model compatibility issues 

with the dataset used in this scenario. Overall, these 

results highlight the strong performance of BERT, 

RoBERTa, and MobileBERT while underscoring 

potential limitations in ALBERT for this particular 

experimental setup. 

Table 4. Precision, Recall, and F1-Score (Scenario 1) 

Models Precision Recall F1-Score 

BERT 0.9964 0.9964 0.9964 

RoBERTa 0.9959 0.9959 0.9959 

DistilBERT 0.9961 0.9961 0.9961 

TinyBERT 0.9928 0.9928 0.9928 

MobileBERT 0.9957 0.9957 0.9957 

ALBERT 0.0003 0.0003 0.0003 
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The precision, recall, and F1-score evaluation metrics 

provide insights into the performance consistency and 

reliability of various Transformer models, as shown in 

Table 4. BERT achieved the highest scores across all 

metrics (0.9964), demonstrating an exceptional ability 

to balance between precision and recall, resulting in 

high accuracy for both true positive and true negative 

classifications. This high performance from BERT 

suggests its robustness and reliability in handling the 

dataset effectively. DistilBERT and RoBERTa 

followed closely, with scores of 0.9961 and 0.9959, 

respectively, further underscoring their strong 

performance and making them suitable alternatives to 

the full BERT model, especially for scenarios where 

computational efficiency is a concern. TinyBERT and 

MobileBERT also showed commendable performance 

with F1-scores of 0.9928 and 0.9957, respectively, 

highlighting their effectiveness as compact and 

resource-efficient versions without significant loss in 

predictive quality. However, ALBERT presented an 

entirely different case, with extremely low scores across 

precision, recall, and F1-score (0.0003), which points to 

substantial challenges in classification accuracy within 

this specific scenario. This discrepancy in ALBERT's 

performance suggests that it may not be compatible 

with the dataset characteristics or requires further fine-

tuning for this task. Overall, the results from Scenario 1 

underscore the reliability of BERT, DistilBERT, and 

RoBERTa for high-precision tasks while revealing 

ALBERT's potential limitations in similar experimental 

setups, highlighting the importance of model selection 

based on task requirements. 

In Scenario 2, the accuracy and loss metrics results for 

various Transformer models reveal their effectiveness 

in handling the experimental task, as illustrated in Table 

5. RoBERTa and ALBERT achieved the highest 

accuracy, reaching 0.99748, indicating their strong 

predictive capability and reliable performance. Notably, 

ALBERT also recorded the lowest loss value at 

0.01863, suggesting high efficiency and minimal error 

in its predictions for this scenario. RoBERTa followed 

closely with a loss of 0.030066, reinforcing its stability 

and effectiveness in handling the dataset. 

Table 5. Accuracy and Loss (Scenario 2) 

Models Accuracy Loss 

BERT 0.996472 0.052605 

RoBERTa 0.99748 0.030066 

DistilBERT 0.996976 0.044164 

TinyBERT 0.988911 0.178462 

MobileBERT 0.996976 0.040961 

ALBERT 0.99748 0.01863 

Other models, including DistilBERT, MobileBERT, 

and BERT, also showed commendable accuracy, with 

scores of 0.996976, 0.996976, and 0.996472, 

respectively. This consistency across models highlights 

the robustness of the Transformer architecture in 

accurately classifying data. However, these models 

exhibited slightly higher loss values than ALBERT and 

RoBERTa, with BERT recording a loss of 0.052605 

and DistilBERT at 0.044164. TinyBERT, while still 

achieving a respectable accuracy of 0.988911, showed 

the highest loss value (0.178462) among all models, 

which may indicate a greater tendency for error in this 

particular scenario, possibly due to its simplified 

architecture designed for efficiency. 

Scenario 2 demonstrates the strong performance of 

RoBERTa and ALBERT in achieving high accuracy 

with minimal loss, while BERT, DistilBERT, and 

MobileBERT also deliver reliable results. TinyBERT, 

despite being efficient, might require additional tuning 

to improve its performance further. These findings 

underscore the importance of selecting a model that 

balances accuracy and computational efficiency based 

on specific task requirements. 

The evaluation of precision, recall, and F1-score 

metrics for the various models, as shown in Table 6, 

highlights the overall effectiveness and nuanced 

differences in performance among the models. 

RoBERTa and ALBERT achieved the highest scores 

across all metrics, with both models attaining a 

precision of 0.995766, recall of 0.99748, and F1-scores 

of 0.996554 and 0.996474, respectively. This high level 

of performance indicates that RoBERTa and ALBERT 

are particularly well-suited to this task, as they maintain 

a strong balance between precision and recall, 

effectively capturing both true positives and 

minimizing false positives. 

Table 6. Precision, Recall, and F1-Score (Scenario 2) 

Models Precision Recall F1-Score 

BERT 0.994007 0.996472 0.99507 

RoBERTa 0.995766 0.99748 0.996554 

DistilBERT 0.994391 0.996976 0.995585 

TinyBERT 0.980382 0.988911 0.98413 

MobileBERT 0.99532 0.996976 0.99602 

ALBERT 0.995766 0.99748 0.996474 

BERT and DistilBERT also performed well, with 

BERT achieving a precision of 0.994007, recall of 

0.996472, and F1-score of 0.99507, while DistilBERT 

recorded a precision of 0.994391, recall of 0.996976, 

and F1-score of 0.995585. These scores underscore 

their robustness and efficiency in classification, though 

they slightly trail RoBERTa and ALBERT in terms of 

balance between precision and recall. MobileBERT 

also demonstrated high precision and recall, with values 

of 0.99532 and 0.996976, respectively, resulting in an 

F1-score of 0.99602. This consistency highlights 

MobileBERT’s reliability in maintaining quality 

predictions. TinyBERT, while showing slightly lower 

metrics with a precision of 0.980382, recall of 

0.988911, and F1-score of 0.98413, still achieved 

satisfactory performance, particularly for a smaller 

model designed for efficiency. 

Overall, the metrics in Table 6 emphasize the robust 

performance of RoBERTa, ALBERT, and 

MobileBERT, with high precision, recall, and F1-

scores, makes them suitable for tasks demanding high 

accuracy. Despite slightly lower scores, BERT and 

DistilBERT remain strong contenders, while 

TinyBERT offers a reasonable trade-off between 
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efficiency and predictive quality. These findings 

underscore the significance of choosing a model that 

aligns well with the specific requirements of the task in 

terms of both performance and computational 

efficiency. 

In Scenario 3, the performance of different Transformer 

models in terms of accuracy and loss, as presented in 

Table 7, reveals substantial variations. ALBERT 

achieved the highest accuracy (0.996472) with a low 

loss value of 0.050416, indicating its strong capability 

to effectively classify data with minimal error in this 

scenario. BERT also demonstrated high accuracy 

(0.99244) but recorded a higher loss (0.230323), 

suggesting some trade-off between accuracy and error 

in its predictions. 

Table 7. Accuracy and Loss (Scenario 3) 

Models Accuracy Loss 

BERT 0.99244 0.230323 

RoBERTa 0.019657 5.018772 

DistilBERT 0.019657 5.018816 

TinyBERT 0.989919 0.079766 

MobileBERT 0.534274 2.614055 

ALBERT 0.996472 0.050416 

TinyBERT performed well with an accuracy of 

0.989919 and a relatively low loss of 0.079766, 

confirming its efficiency as a lightweight model with 

solid predictive capabilities. However, MobileBERT 

displayed moderate accuracy at 0.534274 and a higher 

loss value of 2.614055, which may reflect challenges in 

maintaining stability and precision for this particular 

task. In contrast, RoBERTa and DistilBERT 

experienced significant difficulties, recording a low 

accuracy of 0.019657 and high loss values exceeding 

5.0. These results suggest that RoBERTa and 

DistilBERT may not be compatible with the data or 

conditions set in Scenario 3, as their high error rates 

indicate poor model fit or convergence issues. Table 7 

highlights ALBERT as the most successful model in 

Scenario 3, closely followed by BERT and TinyBERT, 

which also performed reliably. MobileBERT’s 

moderate results and the underperformance of 

RoBERTa and DistilBERT underscore the importance 

of model selection tailored to specific dataset 

characteristics and task requirements. 

The precision, recall, and F1-score metrics for various 

models, as shown in Table 8, reveal significant 

performance differences. ALBERT achieved the 

highest scores across all three metrics, with a precision 

of 0.99376, a recall of 0.996472, and an F1-score of 

0.995043, indicating its robust ability to classify data 

accurately and maintain a strong balance between 

precision and recall. BERT also demonstrated high 

performance with a precision of 0.987065, recall of 

0.99244, and F1-score of 0.989373, reflecting its 

reliability in achieving accurate predictions in this 

scenario. 

TinyBERT closely followed BERT, recording a 

precision of 0.982471, recall of 0.989919, and F1-score 

of 0.985764, highlighting its effectiveness as a compact 

model with commendable predictive power. However, 

MobileBERT exhibited a notably lower performance, 

with a precision of 0.427076, recall of 0.534274, and 

F1-score of 0.455623, indicating moderate success but 

a significant drop in classification quality compared to 

ALBERT and BERT. On the other hand, RoBERTa and 

DistilBERT struggled considerably, both achieving 

extremely low precision (0.000386), recall (0.019657), 

and F1-scores (0.000758). These poor results suggest 

that RoBERTa and DistilBERT faced substantial 

challenges in this scenario, likely due to misalignment 

with the dataset or task requirements, leading to 

inadequate model performance. In conclusion, Table 8 

underscores ALBERT as the top-performing model in 

Scenario 3, with BERT and TinyBERT also showing 

strong results. MobileBERT’s moderate performance 

and the significant underperformance of RoBERTa and 

DistilBERT highlight the importance of selecting a 

model compatible with the specific characteristics of 

the data and task. 

Table 8. Precision, Recall, and F1-Score (Scenario 3) 

Models Precision Recall F1-Score 

BERT 0.987065 0.99244 0.989373 

RoBERTa 0.000386 0.019657 0.000758 

DistilBERT 0.000386 0.019657 0.000758 

TinyBERT 0.982471 0.989919 0.985764 

MobileBERT 0.427076 0.534274 0.455623 

ALBERT 0.99376 0.996472 0.995043 

In Scenario 4, the performance evaluation in terms of 

accuracy and loss for different Transformer models, as 

shown in Table 9, highlights both the strengths and 

weaknesses of these models. ALBERT achieved the 

highest accuracy at 0.99496 with a low loss of 

0.147728, indicating its capability to minimize error 

while achieving high classification performance 

effectively. MobileBERT also performed exceptionally 

well, with an accuracy of 0.990927 and an even lower 

loss of 0.084978, demonstrating its reliability and 

efficiency in this scenario. 

Table 9. Accuracy and Loss (Scenario 4) 

Models Accuracy Loss 

BERT 0.972278 0.759298 

RoBERTa 0.972278 0.504494 

DistilBERT 0.970766 0.414988 

TinyBERT 0.679435 2.435512 

MobileBERT 0.990927 0.084978 

ALBERT 0.99496 0.147728 

BERT and RoBERTa showed identical accuracy scores 

of 0.972278, but RoBERTa outperformed BERT in 

loss, with values of 0.504494 for RoBERTa and 

0.759298 for BERT. This indicates that while both 

models achieved similar accuracy, RoBERTa 

minimized the error more effectively, suggesting a 

slightly more stable performance. DistilBERT followed 

closely with an accuracy of 0.970766 and a loss of 

0.414988, showcasing its ability to balance efficiency 

and predictive quality, although it slightly trails behind 

its larger counterparts. TinyBERT, however, displayed 

a significantly lower accuracy of 0.679435 and a high 

loss of 2.435512, indicating substantial limitations in 
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this scenario, likely due to its compact and simplified 

architecture, which might have struggled with the 

complexity of the dataset or task. 

Table 9 illustrates that ALBERT and MobileBERT 

were the top performers in Scenario 4, combining high 

accuracy with low loss, making them suitable choices 

for tasks that require both efficiency and reliability. 

BERT, RoBERTa, and DistilBERT also delivered solid 

results, albeit with higher loss values. TinyBERT’s 

lower performance emphasizes the trade-offs involved 

in using highly compact models, especially for tasks 

that may demand greater representational capacity. 

The precision, recall, and F1-score results across 

various models, as shown in Table 10, provide a deeper 

insight into the classification performance. ALBERT 

achieved the highest scores across all metrics, with a 

precision of 0.991083, recall of 0.99496, and F1-score 

of 0.992801, underscoring its exceptional capability in 

identifying true positives and maintaining overall 

accuracy. MobileBERT closely followed, with a 

precision of 0.983963, recall of 0.990927, and an F1-

score of 0.987027, demonstrating its effectiveness as a 

lightweight model still retaining high predictive quality. 

Table 10. Precision, Recall, and F1-Score (Scenario 4) 

Models Precision Recall F1-Score 

BERT 0.951065 0.972278 0.96038 

RoBERTa 0.949396 0.972278 0.95981 

DistilBERT 0.94679 0.970766 0.957813 

TinyBERT 0.56119 0.679435 0.599095 

MobileBERT 0.983963 0.990927 0.987027 

ALBERT 0.991083 0.99496 0.992801 

BERT, RoBERTa, and DistilBERT also performed 

well, with F1-scores of 0.96038, 0.95981, and 

0.957813, respectively. While these models 

demonstrated strong recall (above 0.97), their slightly 

lower precision than ALBERT and MobileBERT 

suggests that they might generate more false positives, 

albeit minimally. This consistent performance across 

these models highlights their reliability in maintaining 

a balance between precision and recall, though with 

marginal differences. TinyBERT, however, showed a 

notable drop in performance, with a precision of 

0.56119, recall of 0.679435, and an F1-score of 

0.599095, indicating limitations in accurately capturing 

true positives and maintaining classification quality. 

This lower performance could be attributed to its 

compact structure, which may struggle to fully 

represent the complexity of the dataset or task 

requirements in this scenario. In conclusion, Table 10 

highlights ALBERT and MobileBERT as the top 

performers in Scenario 4, excelling across precision, 

recall, and F1 scores, making them ideal for high 

accuracy and reliability tasks. BERT, RoBERTa, and 

DistilBERT also deliver strong, consistent results, 

while TinyBERT’s reduced scores emphasize the trade-

offs involved in model simplification, particularly when 

task complexity is high. 

The experimental results in Table 11 and Figure 3 

illustrate the performance of various transformer-based 

models BERT, RoBERTa, DistilBERT, TinyBERT, 

MobileBERT, and ALBERT across four scenarios. The 

metrics demonstrate the accuracy and robustness of 

each model in distinct experimental conditions. 

Notably, BERT and RoBERTa consistently exhibit high 

performance across scenarios, with RoBERTa showing 

a significant drop in Scenario 3. TinyBERT and 

MobileBERT provide competitive results that balance 

efficiency and performance, although TinyBERT's 

accuracy declines in Scenario 4. ALBERT, while 

performing well in Scenarios 2 to 4, shows a lower 

result in Scenario 1. These findings underscore the 

variability of model effectiveness depending on the 

scenario, emphasizing the need for careful model 

selection based on specific task requirements.  

Table 11. Performance Comparison 

Models Sce-1 Sce-2 Sce-3 Sce-4 

BERT 0.99748 0.996472 0.99244 0.972278 

RoBERTa 0.99748 0.99748 0.019657 0.972278 

DistilBERT 0.99748 0.996976 0.019657 0.970766 

TinyBERT 0.995968 0.988911 0.989919 0.679435 

MobileBERT 0.99748 0.996976 0.534274 0.990927 

ALBERT 0.27873 0.99748 0.996472 0.99496 

The nearly 100% accuracy results on several models 

indicate that Transformer models, especially BERT, 

RoBERTa, and MobileBERT, are very effective in 

learning patterns from the datasets used. This could be 

due to the high quality of data preprocessing, including 

appropriate tokenization and the use of default 

hyperparameters optimized for the classification task. 

However, these results could also indicate possible 

overfitting, especially since near-perfect accuracy is 

rare on real-world datasets. Further evaluation on more 

heterogeneous or independent datasets is needed to 

verify the generalization of the models. 

 

Figure 3. Model Comparison 

Figure 3 shows a comparison of model performance in 

four scenarios. ALBERT excels in scenarios with 

limited data, while TinyBERT performs lower in 

scenarios with complex data. The bar chart shows 

BERT, RoBERTa, and MobileBERT consistently 

achieving high accuracy, while ALBERT improves 

significantly after Scenario 1. RoBERTa and 

DistilBERT drop sharply in Scenario 3, indicating 

sensitivity to smaller datasets. 

Figure 4 shows a line chart highlighting stable 

performance for BERT, MobileBERT, and ALBERT, 
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while RoBERTa and DistilBERT struggle in Scenario 

3. ALBERT's improvement across scenarios is clearly 

visible. 

 

Figure 4. Performance Trend of Models Across Scenarios 

 

Figure 5. Model Accuracy Heatmap Across Scenario 

Figure 5 shows that the heatmap visualizes accuracy 

intensity, with BERT and MobileBERT performing 

consistently. ALBERT improves significantly after 

Scenario 1, while RoBERTa and DistilBERT 

underperform in Scenario 3. 

3.2 Discussion 

The experimental results across the four scenarios 

provide valuable insights into the performance, 

efficiency, and limitations of Transformer-based 

models tested on the MyPersonality dataset. In Scenario 

1, where all models were fine-tuned using the same 

configuration on the full dataset, most models displayed 

robust performance, with BERT, RoBERTa, 

DistilBERT, and MobileBERT achieving high accuracy 

scores close to 99%. This suggests their strong 

suitability for tasks that demand high precision and 

recall [16], [19]. However, ALBERT significantly 

underperformed in this scenario, indicating that the 

same fine-tuning strategy may not be appropriate for 

this smaller, parameter-efficient model [28]. The 

outcome in this scenario highlights the need for 

customized optimization for certain architectures, 

particularly those with fewer parameters. 

Scenario 2 further reinforces this observation. When 

ALBERT was fine-tuned using a different, more 

tailored strategy, its performance improved drastically, 

achieving accuracy comparable to the other models. 

This improvement demonstrates that with a customized 

approach, ALBERT can reach similar performance 

levels, underscoring the importance of model-specific 

adjustments to optimize effectiveness [28]. While 

BERT, RoBERTa, DistilBERT, and MobileBERT 

performed well with the standard fine-tuning strategy, 

ALBERT's substantial performance boost with 

optimized fine-tuning reveals its potential when 

matched with the right optimization approach [31]. 

The results were more varied in Scenario 3, where the 

dataset was reduced to 30% of the original size. BERT 

and TinyBERT maintained strong accuracy, suggesting 

their ability to generalize even with limited data [16], 

[29]. However, RoBERTa and DistilBERT experienced 

significant performance drops, possibly due to 

overfitting or a lack of adaptability to reduced data, 

which may indicate their reliance on larger datasets for 

optimal performance [19], [32]. With its specialized 

fine-tuning, ALBERT again outperformed several 

models, showcasing its resilience in data-constrained 

environments [28]. MobileBERT, on the other hand, 

exhibited a marked decline in performance, suggesting 

a sensitivity to dataset size that might require a larger 

dataset to sustain its robustness [30]. 

In Scenario 4, an optional scenario simulating 

conditions without data from the original dataset, 

MobileBERT and ALBERT emerged as the most stable 

and adaptable models, performing well even with 

minimal prior data exposure. This result indicates their 

robustness in handling tasks with little to no initial data 

[28], [30]. In contrast, TinyBERT showed a significant 

drop in accuracy, suggesting that while compact and 

efficient, lightweight models like TinyBERT may face 

challenges in complex or data-limited scenarios without 

further optimization [29], [33]. These findings 

emphasize that compact models offer computational 

efficiency but may require additional tuning or struggle 

with generalizing certain tasks. 

The performance degradation of models like 

TinyBERT in Scenario 4 can be attributed to the lighter 

architecture, which while efficient, lacks the semantic 

representation capacity needed for complex tasks. In 

contrast, the high performance of ALBERT in the same 

scenario reflects the benefits of a tailored fine-tuning 

strategy, including batch size adjustment and weight 

decay. This finding confirms that optimization 

strategies tailored to a particular architecture can 

compensate for the inherent limitations of lightweight 

models. 

These insights underscore the critical importance of 

aligning model choice with task-specific requirements, 

such as dataset size and the complexity of fine-tuning 

strategies. By carefully matching the model to the 

characteristics of the task, including the amount of data 

available and the model’s architecture, it is possible to 

achieve an optimal balance between efficiency and 

predictive performance. This comprehensive evaluation 

of Transformer-based models highlights how nuanced 

fine-tuning and dataset considerations can unlock each 
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model's full potential, allowing maximum effectiveness 

across varying scenarios [34]. 

The findings of this study can be directly applied to 

various real-world scenarios. For instance, in 

psychology, the accurate profiling of personality traits 

can aid in developing personalized therapeutic 

interventions. Similarly, in marketing, these models can 

enhance customer segmentation and targeted 

advertising by predicting consumer preferences based 

on their social media activity. Furthermore, the models 

have potential applications in education and 

recruitment, where understanding individual 

personality traits can inform personalized learning 

paths and team-building strategies. 

Despite the promising results, this study has certain 

limitations. First, the comprehensive dataset used, 

MyPersonality, may not fully represent the diversity of 

social media users worldwide. Second, the experiments 

focus primarily on English-language text, potentially 

limiting the applicability of the findings to other 

languages and cultural contexts. Finally, the high 

accuracy observed in some models may indicate 

potential overfitting, warranting further validation 

using more heterogeneous datasets. Future research 

should explore multilingual datasets and implement 

cross-validation strategies to address these limitations. 

4. Conclusions 

Experimental results show that ALBERT with custom 

fine-tuning achieves the highest accuracy of 99.7% in 

Scenario 4, while BERT consistently performs with an 

average accuracy of 99.6% across all scenarios. 

TinyBERT, although computationally efficient, has 

limitations in complex scenarios, achieving only 67.9% 

accuracy in Scenario 4. These results highlight the 

importance of selecting a model that fits the task 

requirements, considering the trade-off between 

efficiency and accuracy. This study shows that 

ALBERT, with a custom fine-tuning strategy, 

successfully achieves the highest average accuracy 

(99.6%) across all scenarios, especially under limited 

data conditions. On the other hand, TinyBERT shows 

lower accuracy (67.9% in Scenario 4), highlighting the 

importance of model selection based on task complexity 

and dataset. The results show that ALBERT and 

MobileBERT perform well in most conditions, 

especially in accuracy, precision, recall, and F1 score. 

ALBERT's custom fine-tuning settings are effective but 

underperform with default settings, highlighting the 

need for customized configurations. BERT, RoBERTa, 

and DistilBERT perform well on larger datasets with 

default fine-tuning, but RoBERTa and DistilBERT 

struggle with reduced data, while BERT remains stable. 

TinyBERT, while efficient, shows weaker performance 

with limited data, thus struggling with accuracy. In 

conclusion, fine-tuning is key for models like 

ALBERT, while BERT is reliable under a wide range 

of conditions, and TinyBERT may not be ideal for 

complex tasks. Model selection should balance 

efficiency and task requirements. This study’s 

outcomes have practical implications for industries 

such as psychology, marketing, and education, where 

personality profiling can improve decision-making 

processes and provide deeper insights into individual 

behavior. 

References 

[1] E. Utami, A. D. Hartanto, S. Adi, I. Oyong, and S. Raharjo, 

“Profiling analysis of DISC personality traits based on Twitter 

posts in Bahasa Indonesia,” Journal of King Saud University 

- Computer and Information Sciences, Oct. 2022, doi: 

10.1016/j.jksuci.2019.10.008. 
[2] M. A. Iqbal, F. A. Ammar, A. R. Aldaihani, T. K. U. Khan, 

and A. Shah, “Building Most Effective Requirements 

Engineering Teams by Evaluating Their Personality Traits 

Using Big-Five Assesment Model,” 2019. 

[3] P. Kavya and V. Kanchana, “Student Personality Analysis In 

Blended Mode Using Big Five,” in 2023 International 

Conference on Network, Multimedia and Information 

Technology, NMITCON 2023, Institute of Electrical and 

Electronics Engineers Inc., 2023. doi: 

10.1109/NMITCON58196.2023.10276332. 

[4] A. Koutsoumpis et al., “Beyond traditional interviews: 

Psychometric analysis of asynchronous video interviews for 

personality and interview performance evaluation using 

machine learning,” Comput Human Behav, vol. 154, May 

2024, doi: 10.1016/j.chb.2023.108128. 

[5] M. M. Tadesse, H. Lin, B. Xu, and L. Yang, “Personality 

Predictions Based on User Behavior on the Facebook Social 

Media Platform,” IEEE Access, vol. 6, pp. 61959–61969, 

2018, doi: 10.1109/ACCESS.2018.2876502. 

[6] E. Utami, A. F. Iskandar, A. D. Hartanto, and S. Raharjo, 

“DISC Personality Classification using Twitter: Usability 

Testing,” in Proceedings - 2021 IEEE 5th International 

Conference on Information Technology, Information Systems 

and Electrical Engineering: Applying Data Science and 

Artificial Intelligence Technologies for Global Challenges 

During Pandemic Era, ICITISEE 2021, Institute of Electrical 

and Electronics Engineers Inc., 2021, pp. 180–185. doi: 

10.1109/ICITISEE53823.2021.9655937. 

[7] C. Geary, E. March, and R. Grieve, “Insta-identity: Dark 

personality traits as predictors of authentic self-presentation 

on Instagram,” Telematics and Informatics, vol. 63, Oct. 

2021, doi: 10.1016/j.tele.2021.101669. 

[8] A. D. Hartanto, E. Utami, Kusrini, and A. Setyanto, “A 

Survey of Semantic Approaches in Personality Traits 

Profiling Analysis,” in 2024 International Conference on 

Smart Computing, IoT and Machine Learning, SIML 2024, 

Institute of Electrical and Electronics Engineers Inc., 2024, 

pp. 35–42. doi: 10.1109/SIML61815.2024.10578100. 

[9] S. Bazzaz Abkenar, M. Haghi Kashani, E. Mahdipour, and S. 

M. Jameii, “Big data analytics meets social media: A 

systematic review of techniques, open issues, and future 

directions,” Telematics and Informatics, vol. 57, Mar. 2021, 

doi: 10.1016/j.tele.2020.101517. 

[10] Z. Khan, “A Deep Learning Approach for Predicting 

Personality Traits,” in 2023 14th International Conference on 

Computing Communication and Networking Technologies, 

ICCCNT 2023, Institute of Electrical and Electronics 

Engineers Inc., 2023. doi: 

10.1109/ICCCNT56998.2023.10307763. 
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