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Abstract  

Advancements in machine learning have enabled the development of more accurate and efficient health prediction models. 

This study aims to improve diabetes prediction performance using the Support Vector Machine (SVM) model optimized with 

the Hybrid Gradient Descent Gray Wolf Optimizer (HGD-GWO) method. SVM is a robust machine learning algorithm for 

classification and regression. Still, its performance depends significantly on selecting appropriate hyperparameters such as 

regularization (C), kernel coefficient (γ), and polynomial kernel degree (d). The HGD-GWO method synergizes Gradient 

Descent for local optimization and Gray Wolf Optimizer for global solution exploration. Using the Pima Indians Diabetes 

dataset, the process includes normalization, hyperparameter optimization, data division, and performance evaluation using 

accuracy, precision, recall, and F1-score metrics. The optimized SVM achieved an accuracy of 81.17%, with precision, recall, 

and F1-score values of 75.00%, 57.45%, and 65.06%, respectively, at a data ratio of 80%:20%. These findings highlight the 

potential of HGD-GWO in enhancing predictive models, particularly for early diabetes detection. 
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1. Introduction  

The development of more accurate and efficient 

prediction models, especially for complex data analysis, 

has been made possible by advances in science and 

technology. One area of artificial intelligence known as 

machine learning allows computers to learn patterns in 

data without the need for special programs [1]. To 

maximize the distance between the separating 

hyperplane and the closest data from each class, 

Support Vector Machine (SVM) is an ideal margin-

based classification method [2]. The advantage of 

SVMs lies in their ability to use kernel tricks, which 

allow mapping data to larger dimensions without the 

need for explicit computation, allowing non-linear data 

separation with high efficiency. As a result, SVM is 

often used to solve prediction problems in many fields, 

such as medical analysis [3]. 

However, the choice of hyperparameters, such as 

regulation parameters (C), kernel coefficients (γ), and 

degree (d) for polynomial kernels, greatly affects the 

performance of SVM. Hyperparameters determine the 

generalization and complexity of the model. Failure to 

optimize it can lead to overfitting or underfitting. 

Therefore, the main challenge in processing complex 

data is hyperparameter optimization [4]. 

Previous studies have used k-Nearest Neighbor (KNN) 

and Naïve Bayes algorithms to predict diabetes on the 

Pima Indians Diabetes dataset, and research findings 

show that Naïve Bayes is very accurate [5]. 

Nevertheless, this technique can still be improved 

through the use of more sophisticated machine learning 

techniques and more efficient hyperparameter 

optimization. 

To overcome this, optimization techniques such as 

Gradient Descent (GD) can be used. The GD 
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optimization method is commonly used to minimize the 

loss function in machine learning by iteratively 

updating parameters based on the direction of the 

negative gradient. Thus, GD helps the model converge 

more quickly and stably [6-7]. However, this technique 

often experiences slow convergence because it is 

limited to local data [8]. Consequently, to solve this 

problem, you can leverage the advantages of 

metaheuristic optimization methods such as Gray Wolf 

Optimizer (GWO). This method is based on the hunting 

habits of gray wolf packs, which can be explored widely 

and find the best solution [9-10].  

The Hybrid HGD-GWO approach is expected to 

overcome the limitations of each method by combining 

the global exploration advantages of GWO and the local 

convergence efficiency of GD [11]. HGD-GWO uses 

initial global exploration of GWO to explore a wide 

parameter space, then performs local refinement using 

GD to reach an optimal solution with faster 

convergence [11]. This method has shown that it has 

great potential to improve the accuracy of predictor 

models in various applications [12].  

This research aims to improve the accuracy of diabetes 

prediction on the Pima Indians Diabetes dataset by 

integrating the HGD-GWO method in SVM 

hyperparameter optimization. By leveraging GWO's 

global exploration capabilities and GD's convergence 

efficiency, this research has the potential to aid the early 

detection of diabetes and help develop better machine 

teaching algorithms. 

2. Research Methods 

This research was conducted with an experimental 

approach as shown in Figure 1, using the Pima Indians 

Diabetes dataset which is publicly available 

https://www.kaggle.com/datasets/uciml/pima-indians-

diabetes-database?resource=download.   

2.1 Dataset  

The dataset used is Pima Indians Diabetes which 

consists of 768 samples with 8 numerical features. 

These features include pregnancies (number of 

pregnancies), glucose (glucose levels), blood pressure 

(diastolic blood pressure), skin thickness (triceps 

skinfold thickness), insulin (insulin level), BMI (body 

mass index), diabetes pedigree function (diabetes 

genealogy function), and age.  

The outcome label indicates diabetes status, with a one 

(1) for positive diabetes and a zero (0) for negative 

diabetes. This dataset is sourced from Kaggle and is 

used to predict a person's likelihood of suffering from 

diabetes based on their medical characteristics. 

2.2 Preprocessing Data 

The preprocessing stage begins with identifying and 

addressing missing values in the dataset. These missing 

values will be filled using the median of the 

corresponding column, which helps maintain the 

stability of the data distribution. The median is selected 

for this purpose because it effectively reduces distortion 

that may arise from outliers while keeping the data 

distribution stable and unbiased [13]. This step is 

crucial for improving data quality and ensuring the 

reliability of analysis results, as missing values can 

negatively impact model performance during the 

training process. Proper preprocessing is essential for 

developing machine learning models that are both 

accurate and capable of generalizing well [14]. 

 

 

Figure 1. Data Preprocessing Flow 

Next, all numerical features are normalized using the 

Min-Max scaling method to ensure that all features fall 

within the same range of [0, 1] [15]. This normalization 

is important to minimize noise and irrelevant data, 

thereby enhancing performance in the classification 

process. Additionally, this approach changes the data 

without losing any information, simplifying the overall 

data processing [16]. Equation 1 obtains values from 

normalization results using min-max normalization 

[17]. 

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database?resource=download
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database?resource=download


 Sri Rossa Aisyah Puteri Baharie, Sugiyarto Surono, Aris Thobirin 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 148 

 

𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                    (1) 

 𝑥′ is the normalized data, 𝑥 is the initial data, 𝑚𝑖𝑛(𝑥) 

is the minimum value and  𝑚𝑎𝑥(𝑥) is the maximum 

value. This process aims to reduce the risk of bias due 

to imbalanced data scales, which can impact model 

performance during training. A good implementation of 

normalization allows the model to learn optimally, 

reduces the risk of overfitting, and increases 

generalization ability on new data. 

2.3 Split Data 

After the normalization stage, the dataset is divided into 

independent variables (X) and dependent variables (Y). 

The independent variables consist of eight numerical 

features: pregnancy, glucose, blood pressure, skin 

thickness, insulin, BMI, diabetes pedigree function, and 

age. The dependent variable indicates diabetes status, 

with a value of 1 representing positive diabetes and 0 

representing negative diabetes. Separating the 

independent and dependent variables is a crucial step in 

machine learning modeling, as it helps prevent data 

confusion during training and evaluation [18].  

The dataset is divided into two parts: training data, 

which is used to build the model, and testing data, which 

is used to evaluate the model's performance on 

previously unseen data [19]. This division is conducted 

using various training and testing ratios, such as 

80%:20%, 70%:30%, and even 10%:90%, to ensure the 

model's stability across different data distributions. A 

larger training ratio, like 80%:20%, allows the model to 

recognize patterns more effectively, though it may 

reduce its validation on the test data. Conversely, a 

smaller training ratio, such as 10%:90%, challenges the 

model to learn patterns from a limited dataset. The 

primary goal of this division is to ensure the model can 

generalize well, leading to accurate and reliable 

predictions. [19].  

2.4 Parameter Optimization 

To enhance the performance of machine learning 

models, parameter optimization is a crucial step in the 

training process. This research focuses on optimizing 

three key hyperparameters for SVM: regularization 
(𝐶), kernel coefficient (𝛾), and the 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑑) of the 

polynomial kernel [18]. The parameter 𝐶 is essential for 

controlling the margin of the hyperplane, which helps 

prevent overfitting. The kernel coefficient indicates the 

influence of each data point within the radial basis 

function (RBF) kernel, while the 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑑) captures 

the complexity of non-linear data, particularly in 

polynomial kernels [20].  

The optimization process was carried out using the 

HGD-GWO method, which combines global 

exploration from GWO with local convergence from 

GD [21]. GWO exploits gray wolf hunting behavior to 

iteratively update optimal population positions. Each 

position is updated based on the average of alpha, beta, 

and delta positions as formulated in Equation 2 [22]. 

�⃗�(𝑡 + 1) =
�⃗⃗�𝛼+�⃗⃗�𝛽+�⃗⃗�𝛿

3
              (2) 

Following the global exploration conducted by GWO, 

the optimal solution (alpha) is refined using GD to 

minimize the loss function based on negative gradients, 

as described in Equation 3 [7].  

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐽(𝜃)              (3) 

Using 20 iterations, with five wolves and a learning rate 

of η = 0.01, this algorithm seeks to find the optimal 

combination of parameters 𝐶, 𝛾, and 𝑑. These 

parameters are evaluated based on prediction accuracy 

on test data, serving as the fitness function. 

The HGD-GWO algorithm begins with an initial 

population that represents various combinations of 

parameters. Each individual is refined through 

interactions among alpha, beta, and delta individuals, 

followed by local refinement using gradient descent. 

The resulting optimal parameter combinations differ 

depending on the training data ratio, as shown in Table 

1. 

These optimal parameters form the foundation for 

developing an SVM model with a polynomial kernel, 

which aims to achieve the best performance in detecting 

diabetes, assessed through metrics such as accuracy, 

precision, recall, and F1-score. 

2.5 Implementation of the SVM model 

After determining the optimal parameters 𝐶, 𝛾, and 𝑑 

through an optimization process, these values are 

applied to the SVM model using a polynomial kernel. 

The polynomial kernel transforms the data into a high-

dimensional feature space, enabling the model to 

identify the optimal hyperplane that separates non-

linear data classes [23]. The polynomial kernel formula 

utilized in this research is shown in Equation 4. 

𝐾(𝑥, 𝑥′) = (𝑥 ∙ 𝑥′ + 𝑐)𝑑                (4) 

where 𝑥 and 𝑥′are two data vectors, 𝑐 is the bias, and 𝑑 

is the kernel 𝑑𝑒𝑔𝑟𝑒𝑒.  

The parameter 𝐶 is used to control the balance between 

the maximum margin and the tolerance for 

misclassification. The formulation of the SVM 

objective function with regularization (𝐶) can be seen 

in Equation 5 [18].  

𝑚𝑖𝑛
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1               (5) 

with the condition 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, where 𝜉𝑖Is a 

slack variable that allows the model to accept some 

classification errors without sacrificing the margin [19].  

The parameter 𝛾 regulates the influence of each data 

point in the kernel which aims to determine the shape 

of the decision boundary in the higher data space. 

Mathematically, the formula for 𝛾 can be seen in 

Equation 6. 

𝛾 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
              (6) 
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Meanwhile, 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑑) is used to capture the 

complexity of non-linear data, especially in polynomial 

kernels. Mathematically, the degree is set at a minimum 

of 2 (𝑑 ≥ 2). 

This parameter optimization process was carried out 

using the HGD-GWO method, as shown in Table 1. 

2.6 Model Evaluation 

The confusion matrix is a tool used to assess the 

performance of a classification model by illustrating the 

relationship between the model's predictions and the 

actual values (ground truth). It shows the number of 

correct and incorrect predictions made by the 

classification model for each class [24].  

 
Figure 2. Confusion Matrix 

The four main components of model evaluation are 

illustrated in Figure 2. True Positive (TP) refers to the 

number of positive cases that the model correctly 

predicts, while True Negative (TN) indicates the 

number of negative cases that the model accurately 

predicts. A False Positive (FP) occurs when the model 

incorrectly classifies negative cases as positive, and a 

False Negative (FN) happens when the model fails to 

identify positive cases [25]. To assess the performance 

of the classification model, we can use a confusion 

matrix. This matrix enables us to calculate several 

important metrics: accuracy, precision, recall, and F1 

score. As outlined in Equation 7, accuracy is defined as 

the proportion of correct predictions made by the model 

out of all predictions. Precision measures the 

correctness of positive predictions, while recall 

evaluates the model's capability to identify all positive 

cases, as indicated in Equation 8. Equation 9 further 

explains how recall quantifies the model's effectiveness 

in detecting all positive instances. Finally, the F1 score, 

presented in Equation 10, represents the harmonic 

average of precision and recall [26]. 

𝐴𝑘𝑢𝑟𝑎𝑠𝑖 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
           (7) 

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
              (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
               (9) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
          (10) 

3. Results and Discussions 

This research employs the HGD-GWO method to 

optimize the parameters of a SVM. The study evaluates 

the model's performance in predicting diabetes using 

the Pima Indians Diabetes dataset. Performance 

metrics, including accuracy, precision, recall, and F1-

score, are used to assess the model. Additionally, 

confusion matrix analysis is performed based on the 

optimal proportion of training data. The primary 

objective of this process is to enhance the model's 

performance in predicting diabetes. 

3.1 Optimization of SVM Parameters with HGD-GWO 

Table 1 shows the results of optimizing parameters 𝐶, 

𝛾, and 𝑑 on various ratios of training and testing data. 

Table 1. Optimal Parameters 

Training 

Percentage 
𝐶 𝛾 𝑑 

80%:20% 2.24 0.55 1.00 

70%:30% 5.43 0.40 2.00 

60%:40% 4.57 0.53 2.00 

50%:50% 2.62 0.78 3.00 

40%:60% 7.54 0.79 2.00 

30%:70% 2.29 0.38 2.00 

20%:80% 3.59 0.80 3.00 

10%:90% 2.26 0.99 3.00 

Average 3.82 0.65 2.25 

Changes in the values of parameters 𝐶, 𝛾, and 𝑑 at 

various training and testing data ratios demonstrate the 

impact of data distribution on optimal parameter 

selection. For instance, with a data ratio of 80% for 

training and 20% for testing, the optimal parameters are 

𝐶 = 2.24, 𝛾 = 0.55, and 𝑑 = 1.00. In contrast, at a 

40% training and 60% testing ratio, the values shift to 

𝐶 = 7.54, 𝛾 = 0.79, and 𝑑 = 2.00. This indicates that 

a larger training data ratio tends to result in smaller 

values for 𝐶 and 𝑑, reflecting the algorithm's stability 

when handling more training data.  

3.2 Model Evaluation 

The performance evaluation results of the SVM model, 

optimized using HGD-GWO, are shown in Table 2. The 

evaluation included measuring accuracy, precision, 

recall, and F1-score for each ratio of training and testing 

data. 

Table 2. Evaluation Results After Optimization 

Training 

Percentage 
Accuracy Precision Recall F1-Score 

80%:20% 81.17% 75.00% 57.45% 65.06% 

70%:30% 77.06% 70.59% 48.65% 57.60% 

60%:40% 77.60% 76.56% 47.57% 58.68% 

50%:50% 77.86% 78.05% 48.86% 60.09% 

40%:60% 77.87% 75.21% 54.66% 63.31% 

30%:70% 76.77% 77.05% 49.21% 60.06% 

20%:80% 76.42% 75.00% 50.68% 60.49% 

10%:90% 75.87% 68.75% 58.37% 63.13% 

Average 77.58% 74.53% 51.93% 61.05% 

Table 2 shows that the model achieves the highest 

performance at a data ratio of 80%:20% with accuracy 

of 81.17%, precision of 75.00%, recall of 57.45%, and 

F1-score of 65.06%. These results show that the larger 
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the training data used, the better the model's ability to 

learn data patterns, resulting in more optimal 

performance. This is to the statement that the more 

training data, the better the model is at understanding 

data distribution without relying on testing data. 

However, the smaller training data ratio still provides 

competitive performance. For example, at a data ratio 

of 40%:60%, the model achieved 77.87% accuracy with 

75.21% precision, 54.66% recall, and 63.31% F1-score. 

This shows that the HGD-GWO algorithm is still able 

to find optimal parameters that support model 

performance, even when the amount of training data is 

limited. 

Overall, the average results show that the model 

achieves 77.58% accuracy, 74.53% precision, 51.93% 

recall, and 61.05% F1-score across all data ratios. This 

pattern indicates that the model can perform 

consistently with different data distributions, which is 

an advantage of parameter optimization using HGD-

GWO. 

3.3 Comparison of Evaluation Before and After 

Optimization 

The evaluation results of the SVM model before and 

after optimization with the HGD-GWO algorithm show 

significant improvements in various evaluation metrics. 

Table 3 presents the evaluation results before 

optimization, while Table 2 presents the evaluation 

results after optimization. From these two tables, it can 

be observed that optimizing parameters C, γ, and d 

succeeded in increasing accuracy, precision, recall, and 

F1-score at all ratios of training and testing data. 

Table 3. Evaluation Results Before Optimization 

Training 

Percentage 
Accuracy Precision Recall F1-Score 

80%:20% 78.57% 69.44% 53.19% 60.24% 

70%:30% 76.62% 70.00% 47.30% 56.45% 

60%:40% 76.62% 73.85% 46.60% 57.14% 

50%:50% 76.04% 71.91% 48.86% 58.18% 

40%:60% 77.22% 75.93% 50.93% 60.97% 

30%:70% 76.02% 73.13% 51.31% 60.31% 

20%:80% 75.61% 72.55% 50.68% 59.68% 

10%:90% 73.99% 65.26% 56.73% 60.70% 

Average 76.34% 71.51% 50.70% 59.21% 

At a data ratio of 80%:20%, accuracy increased from 

78.57% to 81.17%, while precision increased from 

69.44% to 75.00%. Recall also increased from 53.19% 

to 57.45%, reflecting the model's ability to detect 

positive cases of diabetes. The F1-score increases from 

60.24% to 65.06%, indicating a better balance between 

precision and recall after optimization. 

The comparison graph of the results before and after 

optimization shows a consistent pattern, where the 

increase in model performance occurs at all data ratios. 

This indicates that the HGD-GWO algorithm is not only 

adaptive to changes in data distribution but also 

provides advantages in balancing sensitivity (recall) 

and prediction accuracy (precision). 

 

Figure 3. Accuracy Comparison 

The graph in Figure 3 illustrates that the model's 

accuracy after optimization (represented by the orange 

line) surpasses its accuracy prior to optimization 

(shown by the blue line) in nearly all training and testing 

data ratios. The most significant improvement was 

observed at a data ratio of 80% training to 20% testing, 

indicating that the HGD-GWO algorithm effectively 

enhanced the model's ability to learn data patterns. 

 

Figure 4. Precision Comparison 

Figure 4 shows an increase in precision in all ratios of 

training and testing data. For example, at a data ratio of 

80%:20%, precision increases from 69.44% (blue line) 

to 75.00% (orange line), which means that the model 

after optimization is more effective in identifying 

positive samples, with an error rate in classification 

lower positive than before optimization. 

 

Figure 5. Recall Comparison 

Figure 5 shows the increase in recall in almost all ratios 

of training and testing data after optimization. For 

example, at a data ratio of 80%:20%, recall increases 

from 53.19% (blue line) to 57.45% (orange line). 
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Although this improvement is not as large as in other 

metrics, the consistency of this improvement indicates 

that the optimized model can detect positive samples 

better, thereby increasing the sensitivity of the model. 

 

Figure 6. F1-score Comparison 

Figure 6 illustrates the improvement in the F1-score, 

indicating a better balance between precision and recall 

after optimization. For instance, with a data ratio of 

80%:20%, the F1-score increases from 60.24% (shown 

by the blue line) to 65.06% (represented by the orange 

line). This demonstrates that the optimized model 

exhibits a more stable and balanced performance in data 

classification. 

The results of this evaluation confirm that the HGD-

GWO algorithm effectively enhances the performance 

of the SVM model across various metrics, including 

accuracy, precision, recall, and the F1-score. This 

improvement highlights the algorithm's capability to 

optimize model parameters, thereby maximizing 

generalization abilities. Furthermore, the success of the 

HGD-GWO algorithm in enhancing model 

performance on medical datasets, such as those related 

to diabetes, opens up significant opportunities for its 

application in other classification problems. 

3.4 Confusion Matrix 

For the best data rasio (80%:20%), the SVM model 

produces a confusion matrix that shows the distribution 

of predictions for the positive (diabetes) and negative 

(no-diabetes) classes. This matrix provides a 

visualization of the model's performance in classifying 

data accurately. 

Based on Figure 7, the model achieved a TN count of 

98, meaning it correctly predicted 98 negative cases (no 

diabetes). In contrast, the model had a FP count of 9, 

indicating that 9 negative cases were incorrectly 

classified as positive (diabetes). For the positive class, 

the model reported a FN count of 20, which represents 

the number of positive cases (diabetes) that were 

mistakenly classified as negative (no diabetes). Lastly, 

the model achieved a TP count of 27, showing that it 

correctly predicted 27 positive cases (diabetes). 

The results indicate that the model demonstrates strong 

classification capabilities, particularly in identifying the 

negative class (no diabetes). Confusion matrices are 

valuable tools for understanding model performance 

across different prediction scenarios. This is especially 

important in medical applications, such as early 

diabetes detection, where sensitivity to positive cases is 

a critical factor. 

 

Figure 7. Confusion Matrix 

4. Conclusions 

This research demonstrates the effectiveness of the 

HGD-GWO optimization method in enhancing the 

performance of the SVM model for diabetes prediction. 

By integrating the global exploration capability of the 

GWO algorithm with the local exploitation efficiency 

of GD, this approach generates optimal parameters that 

quantitatively improve model performance. The best 

results were achieved with a training data ratio of 

80%:20%, yielding an accuracy of 81.17%, a precision 

of 75.00%, a recall of 57.45%, and an F1-score of 

65.06%. This represents an improvement over the pre-

optimization results, which showed 78.57% accuracy, 

69.44% precision, 53.19% recall, and an F1-score of 

60.24%. Specifically, there were increases of 3.3% in 

accuracy, 5.6% in precision, 4.3% in recall, and 4.8% in 

the F1-score. Consistent results were observed with 

other training data ratios, such as 70%:30% and 

60%:40%, with average increases in accuracy of 2.7% 

and 3.0%, respectively, compared to the pre-

optimization results. The HGD-GWO approach also 

demonstrates advantages in balancing predictive ability 

(precision) with model sensitivity (recall), which is 

crucial for medical applications, particularly for the 

early detection of diabetes. By optimizing parameters 

such as 𝐶, 𝛾, and 𝑑, the model captures more complex 

data patterns without overfitting, as evidenced by 

performance improvements across all evaluation 

metrics. Future research could examine the application 

of the HGD-GWO method to high-dimensional datasets 

or those with unbalanced distributions. Additionally, 

this method can be integrated with modern techniques 

such as ensemble learning or deep learning to address 

challenges in other medical prediction scenarios. 

Overall, the results of this study indicate that the HGD-

GWO method is an effective and promising approach 
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for enhancing the performance of classification models 

on complex medical datasets. 
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