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Abstract  

Indoor positioning plays a crucial role in various applications, including smart homes, healthcare, robotics, and asset tracking. 

However, achieving high positioning accuracy in indoor environments remains a significant challenge due to obstacles that 

introduce NLOS conditions and multipath effects. These conditions cause signal attenuation, reflection, and interference, 

leading to decreased localization precision. This research addresses these challenges by optimizing feature selection LOS, 

NLOS, and multipath classification within Ultra-Wideband (UWB) ranging systems. A systematic feature selection approach 

based on Pearson correlation is employed to identify the most relevant features from an open-source dataset, ensuring efficient 

classification while minimizing computational complexity. The selected features are used to train multiple machine-learning 

classifiers, including Random Forest, Ridge Classifier, Gradient Boosting, K-Nearest Neighbor, and Logistic Regression. 

Experimental results demonstrate that the proposed feature selection method significantly reduces model training and testing 

times without compromising accuracy. The Random Forest and Gradient Boosting models exhibit superior performance, 

maintaining classification accuracy above 90%. The reduction in computational overhead makes the proposed approach highly 

suitable for real-time applications, particularly in edge-computing environments where processing efficiency is critical. These 

findings highlight the effectiveness of Pearson correlation-based feature selection in improving UWB-based indoor positioning 

systems. The optimized feature set facilitates robust LOS, NLOS, and multipath classification while reducing resource 

consumption, making it a promising solution for scalable and real-time indoor localization applications.  
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1. Introduction  

Positioning technology has become an indispensable 

tool across a broad spectrum of sectors, including 

logistics, the military, and various industrial 

applications. This technology is critical in enabling 

function’s location-based services, such as monitoring 

goods within smart environments like homes and 

buildings [1], managing inventories in warehouses, 

industrial navigation robots [2], [3], asset tracking [4], 

and tunnel or underground positioning [5]. Positioning 

technology implementation is also utilized in large 

areas such as hospitals [6], shops [7], and museums [8]. 

The need for position information on the 

implementation of positioning and tracking in various 

fields is the motivation for conducting this research. 

Positioning is a process for estimating the position of a 

tag installed on a moving object, such as a mobile 

phone, drone, wearable device, robot, or vehicle in an 

observation area. A tag is a device that emits a signal or 

sends a message captured by a set of anchors to estimate 

the tag's position. Meanwhile, an anchor is a device that 

is given position knowledge as a reference for 

estimating the tag position. 

Indoor positioning systems require accuracy and 

precision [9] due to the relatively confined nature of the 

environments in which they operate. One of the primary 

challenges in indoor positioning is dealing with 

obstacles that block direct signal paths, a situation 

known as Non-Line of Sight (NLOS). In NLOS 

conditions, signals do not travel directly between the 
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transmitter and receiver, leading to potential delays and 

attenuation. This issue is exacerbated by signal 

multipath interference caused by reflections off walls 

and other surfaces, which results in a complex signal 

pattern characterized by fading, deep shadowing 

effects, and delays—all of which compromise the 

reliability of indoor communication channels [10], as 

depicted in Figure 1. Such challenges necessitate 

innovative solutions to overcome the limitations 

imposed by the indoor environment and ensure the 

efficacy of positioning systems. 

Ultra-wideband (UWB) is one of the signals used for 

indoor positioning. UWB has high data speeds and can 

reach 100 Mbps. The frequency channel used in the 

indoor communication system ranges from 3100 to 

10600 MHz, and the operation is limited to the UWB 

transmitter for indoor operation only. The wide 

bandwidth means that UWB is also reliable against 

narrowband signal interference narrow-band[11]. UWB 

is a signal with accuracy ranging from meter to 

centimeter scale for use in indoor positioning and 

includes signals with a short range of around 10-80m 

[12] -Klik atau ketuk di sini untuk memasukkan teks. 

[14]. Although UWB is said to be reliable in terms of 

positioning accuracy, until now, accuracy in the NLOS 

environment is still a challenge to be solved by 

researchers. 

 

Figure 1. LOS, NLOS, and Multipath propagation signal 

Many innovative solutions have been explored within 

the research community to address the complexities 

posed by NLOS conditions in positioning systems. 

Additionally, some of these strategies are integrated 

with processes designed to mitigate the impact of 

NLOS conditions, enhancing the overall reliability and 

accuracy of the positioning systems.  A critical 

component in distinguishing Line of Sight (LOS) from 

NLOS conditions is the analysis of the Channel Impulse 

Response (CIR) of the signal. Specific characteristics of 

the CIR, such as the Receive Signal Strength (RSS), are 

instrumental in this differentiation process. Notably, 

researchers such as Barral [15] and Flueratoru [16] have 

highlighted the utility of RSS in their studies, 

demonstrating its effectiveness in enhancing the 

accuracy of NLOS/LOS classification.  

Moreover, the estimation of the distance between the 

anchor and the tag remains a crucial variable in the 

effective implementation of positioning systems. 

Advanced ranging methods, including Time Difference 

of Arrival (TDoA) [3], Two-Way Ranging (TWR) [17], 

and Time of Flight (ToF) [18], are employed to achieve 

precise measurements. These techniques are essential 

for accurate distance estimation, playing a pivotal role 

in the performance and reliability of positioning 

systems under varying environmental conditions. 

In recent years, the utilization of Ultra-Wideband 

(UWB) technology has become increasingly prevalent 

in machine learning applications aimed at enhancing 

positioning accuracy. The use of UWB Channel 

Impulse Response (UWB-CIR) is instrumental in 

performing essential tasks such as feature selection and 

feature extraction, significantly contributing to the 

refinement of machine learning models [19]-Klik atau 

ketuk di sini untuk memasukkan teks.[21]. 

Machine learning has been prominently featured in 

recent studies aiming to identify and classify NLOS 

propagation scenarios. Various types of machine 

learning methods have been proposed to perform NLOS 

and LOS classification, including Support Vector 

Machine (SVM) [22], KNN [23], CNN [24], support 

vector regression [25], and Random Forest (RF) [17]. 

Recent advances have explored the potential of machine 

learning to enhance the accuracy and efficiency of 

UWB systems under these challenging conditions. 

However, a more nuanced area of study involves the 

detailed classification of multipath effects, which has 

been less extensively explored. Only a select group of 

researchers, including Sebastian Kram[26], Jun Chang 

Sun [27], and Cun Liang Sang [17], have specifically 

addressed multipath effects. This specialized focus not 

only advances the theoretical understanding of 

multipath phenomena but also enhances practical 

applications in environments where signal interference 

is a significant challenge. 

Cung Lian Sang explicitly classifies LOS, NLOS, and 

Multipath signals using CIR (Channel Impulse 

Response). This study differentiates LOS signals. 

NLOS and Multipath are based on CIR. A machine 

learning approach is used to identify LOS, NLOS, and 

Multipath. However, a large number of features can 

result in longer and make the model complex. Some 

implementations require models with low complexity 

but high accuracy. For example, communication 

between anchors in the self-calibration process. The 

speed of the anchor calibration process determines the 

performance of the calibration speed during the 

deployment process. Especially if the positioning 

system is implemented in an edge computing system. 

This paper presents the classification of LOS, NLOS, 

and Multipath propagation signals by selecting features 

from open-source secondary datasets from previous 

research [17]. This study aims to explore the 

effectiveness of Pearson correlation for feature 

selection in classifying LOS, NLOS, and multipath 

signals in a UWB indoor positioning system. By 

identifying and utilizing the most relevant features. We 
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anticipate not only an improvement in positioning 

accuracy but also a reduction in computational 

demands, enabling more scalable and real-time 

applications. The dataset with the best features is then 

used for test data and training data using machine 

learning classifier techniques, namely Logistic 

Regression (LR), K-Nearest Neighbor (KNN), Ridge 

Classifier (RC), Random Forest (RF) and Gradient 

Boosting (GB).  

The contribution of this research is the selected features 

in the UWB ranging dataset so that the complexity of 

the dataset is lower but still has high accuracy. A 

compact dataset can reduce learning time so that 

positioning can be done faster, especially in real-time 

systems[28].  Besides, the system does not require large 

memory capacity if it is implemented in an edge 

computing system[29]. The result of this research will 

be applied to build a primary dataset and model for self-

calibration using a hardware concept that has been 

published [30].  

2. Research Methods 

Figure 2 illustrates a structured methodological 

framework for optimizing machine learning-based 

classification in UWB-ranging systems using CIR 

features dataset [31]. The framework consists of five 

sequential stages, visually represented as a directional 

flowchart with interconnected blocks, emphasizing the 

stepwise approach to feature selection, model building, 

and performance evaluation. The process begins with 

the selection and preprocessing of a secondary dataset 

comprising CIR features. This dataset serves as the 

input for feature selection and model training, providing 

essential signal characteristics required for 

distinguishing between Line of Sight (LOS), Non-Line 

of Sight (NLOS), and multipath conditions.  

This stage involves identifying the most informative 

features within the dataset using a statistical correlation-

based approach, such as Pearson correlation. The 

objective is to eliminate redundant or irrelevant 

features, thereby reducing dimensionality and 

improving the computational efficiency of subsequent 

machine learning models. 

After the selected features are generated, a machine 

learning model is built using the dataset with the 

selected features. Model creation uses several machine 

learning techniques for classification, including KNN, 

Random Forest, Logistic Regression, Ridge Classifier, 

and Gradient Boosting. The performance of each model 

is analyzed and compared, selecting the best model with 

accurate ranging.  

The trained models are assessed based on various 

performance metrics, including accuracy, recall, 

precision, F1-score, and computational efficiency. A 

comparative analysis is conducted to determine the 

trade-offs between accuracy and processing time. 

The stages of the method process are shown in Figure 

2. The process begins by collecting a dataset of CIR 

features. The feature selection process is then carried 

out on the dataset in addition to reducing complexity as 

well as eliminating features that become noise in the 

dataset. The dataset used in this study is the UWB 

ranging dataset from Cung Lian Sang's research [17]. 

The dataset consists of 12 features that are measured 

using the DWM1000 UWB module.  Feature selection 

is then carried out using Pearson. Pearson is one method 

to validate the correlation of the best features. Analysis 

is performed on the correlation value generated from 

each feature to determine the best feature to be used as 

a dataset. 

 

Figure 2. Research Method   

2.1 Channel Impulse Response (CIR) 

Channel Impulse Response (CIR) is the characteristic 
response of a signal on a channel. In several studies, 
CIR is analyzed to extract certain characteristics that 
will be used as input features or variables to measure 
environmental conditions. One of them is Receive 
Signal Strength CIR (RSS-CIR), which is a signal 
characteristic related to signal power. Other CIR 
variables can be related to variable time intervals or 
delays that occur in the signal received at the receiver. 

The secondary dataset consists of a ranging dataset 
measured using the UWB DW1000 module. Ranging is 
the measured distance between UWB modules (anchors 
and tags). The DW1000 is a low-power, single-chip 
CMOS radio transceiver compliant with the IEEE 
802.15.4-2011 standard. DW1000 is equipped with a 
variable feature to analyze the quality of the received 
signal based on CIR and time stamp data. 

DW1000 makes it possible to calculate the estimated 
power of the first path signal or First Path Power Level 
(FPPL) using Formula 1. A is a constant value of 113.77 
for PRF16 MHz or 121.74 for PRF 64MHz. Estimating 
Receive Signal Power symbolized by the variable RX-
Power (RXP) is another status variable that can be used 
to detect NLOS signals. RXP can be calculated using 
Formula 2. In Formula 3, the difference between RXP 
and FPPL (Diff_P) can be used to determine the state of 
the LOS and NLOS channels. If the difference is < 6dB, 
then the channel is LOS; otherwise, if the difference is 
> 10 dB, then the channel is NLOS. 

A graph is first plotted from the signal on LOS, NLOS, 
and Multipath from the dataset to prove that 𝐷𝑖𝑓𝑓𝑃 can 
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be used to indicate LOS, NLOS, and Multipath 
propagation signals. Figure 3 shows the results of 
graphic plotting, which shows differences in signal 
characteristics, especially in the amplitude of signal 
fluctuations in each Difference of LOS, NLOS, and 
Multipath signal. Based on this, 𝐷𝑖𝑓𝑓𝑃 can be used to 
indicate the difference between LOS, NLOS, and 
Multipath. 

Figure 3 effectively illustrates the signal variations in 
different UWB propagation scenarios and can 
significantly affect indoor positioning accuracy. The 
results emphasize the importance of signal 
classification in indoor positioning applications, 
particularly in mitigating NLOS errors and multipath 
distortions. Advanced machine learning models can be 
trained in these signal characteristics to improve real-
time localization accuracy and enable robust UWB-
based navigation systems. 

𝐹𝑃𝑃𝐿 = 10𝑥𝑙𝑜𝑔10 (
𝐹1

2+𝐹2
2+𝐹3

2

𝑅𝑋𝑃𝐴𝐶𝐶2 ) − 𝐴   dBm           (1) 

𝑅𝑋𝑃 = 10𝑥𝑙𝑜𝑔10 (
𝐶𝑥217

𝑅𝑋𝑃𝐴𝐶𝐶2) − 𝐴     dBm               (2) 

𝐷𝑖𝑓𝑓𝑃 = 𝑅𝑋𝑃 − 𝐹𝑃𝑃𝐿                (3) 

 

2.2 Dataset and Feature Selection 

The dataset consists of LOS, NLOS, and Multipath 

datasets with the same amount of data (balance data). 

This data set with selected features is then used as 

training data for training the classification model. The 

dataset totals 185790 imbalanced data consisting of 

61930 LOS data, 61930 NLOS data, and 61930 

Multipath data. 

The features in the dataset are CIR signal 

characteristics, which consist of 12 features, including: 

Distance measured between UWB modules (ranging 

measurement); Harmonic combining of  FP1, FP2, FP3 

(FP); Amplitude of the first harmonic (F1); Amplitude 

of the second harmonic (F2); Amplitude of the third 

harmonic (F3); Amplitudaof CIR (CIR-PWR); 

Preamble Accumulation count recorded on the 

DW1000 chip (RXPACC); Estimated power level of FP 

(FPPL); Estimation of power level from RX (RXP); 

Difference in value between Estimated power level 

from FP and Estimated power level from RX (𝐷𝑖𝑓𝑓𝑃); 

Recorded noise standards on the DW1000 chip (SNR); 

Maximum noise recorded on the DW1000 chip (Pmax 

Noise) 

Distance is the estimated distance between the anchor 

and the tag measured on the UWB module. The 

estimated distance can be formulated using equation 

(3). Variable d ̂is the estimated distance between the 

anchor and the tag, ToA is the Time of Arrival or signal 

transmission time between the anchor and the tag, while 

c is the speed of light, namely 𝑐 = 3𝑥108 𝑚
𝑠⁄ . 

F1, F2, and F3 are the first path amplitudes at point 1, 

point 2, and point 3. CIR-PWR is a feature whose 

maximum CIR power value. RXPACC is the count of 

received preamble symbols. Pmax Noise is the 

maximum noise value indicated by the LED algorithm. 

FP is the index of the first path detected in the 

accumulator register.

 

Figure 3. 𝐷𝑖𝑓𝑓𝑃 Signal characteristics in LOS, NLOS, and Multipath 
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One of the quality-related status variables on the 

DW1000 that can be used to test the quality of the 

received signal is The Standard Deviation of Channel 

Impulse Response Estimate (CIRE) Noise value, which 

is contained in the SNR variable in the Register file: 

0x12-Rx Frame Quality Information. This variable can 

be used to measure noise and measure the timestamp of 

the received frame. SNR can be used as an absolute 

value, or this value can be compared with the First Path 

Amplitude Value. A higher absolute value of CIRE 

means the quality of the received timestamp is poor. 

High noise means the actual first path is buried in noise. 

The F1, F2, F3, CIR, RCPACC, Pmax Noise, FP, and 

SNR features are obtained from the diagnostic register 

on the DW1000 UWB module. 

The selection of features in the dataset does not include 

features that have been part of the FPPL and RXP 

formula calculations, namely features F1, F2, F3, 

RXPACC, and 𝐷𝑖𝑓𝑓𝑃). Meanwhile, CIR is still 

included in correlation validation because CIR is a 

feature that represents signal amplitude power which, if 

it decreases, can represent NLOS propagation. 

Therefore, the features validated in the feature selection 

process are FP, Distance, CIR, FPPL, RXP, and 

STDNoise. 

After obtaining the selected features, then prepare a 

dataset with these selected features for training and 

model testing. Several combinations of comparisons 

between training data and test data are carried out to get 

the best performance on the model being tested. A 

comparison of test and training data that shows the best 

performance will be used for performance analysis 

based on the confusion matrix. 

The model was built using Logistic Regression (LR), 

K-Nearest Neighbor (KNN), Ridge Classifier (RC), 

Random Forest (RF) and Gradient Boosting (GB). 

Performance analysis to determine the best classifier is 

carried out by analyzing the Accuracy, Recall, 

Confusion Matrix, Precision, and f1-score parameters. 

At this stage, comparisons are made between each 

machine learning technique to determine the classifier 

with the best accuracy for LOS, NLOS, and multipath 

classification. 

3. Results and Discussions 

This section describes the result and analysis of feature 

selection. An analysis was also carried out on the model 

built using features selected based on accuracy and 

learning time. 

The CIR dataset uses the Cung Lian Sang data set by 

using the FP, Distance, CIR, FPPL, RXP, and SNR 

features. Then, correlation testing is carried out on the 

dataset to carry out feature selection. Figure 4 shows a 

correlation heatmap representing the Pearson 

correlation coefficients between various features in a 

dataset.  

The correlation matrix quantifies the linear 

relationships between different variables, with values 

ranging from -1 to 1, where 1 represents a perfect 

positive correlation, -1 indicates a perfect negative 

correlation, and values close to 0 suggest no correlation. 

The color gradient from dark blue (negative correlation) 

to bright orange (positive correlation) visually 

represents the strength and direction of relationships 

between the features.  

3.1 Feature Selection 

 

Figure 4. Correlation Matrix 

As shown in Figure 4, CIR and FPPL exhibit the highest 

positive correlation (0.86), suggesting that the First Path 

Power Level strongly influences the Channel Impulse 

Response amplitude. CIR and Distance show a strong 

negative correlation (-0.57), implying that as the 

measured distance increases, the CIR amplitude tends 

to decrease due to signal attenuation and path loss. 

Distance is negatively correlated with FPPL (-0.43) and 

RXP (-0.28), reflecting the expected trend where signal 

strength diminishes as the distance between transmitter 

and receiver increases. SNR exhibits a moderate 

correlation with CIR (0.66) and FPPL (0.49), 

suggesting that stronger received signals generally lead 

to higher signal-to-noise ratios. FP (First Path index) 

has relatively weak correlations with other features, 

indicating that it may be less influential in defining the 

overall positioning accuracy, so we remove FP from the 

feature. 

The results on LOS, NLOS, and Multipath correlation 

maps show high correlation values for several features 

including Distance, CIR, RXP, FPPL, and SNR. Based 

on the Pearson correlation results, these features will be 

used next to conduct model training and model testing. 

3.2 Classification of LOS, NLOS, and Multipath 

Methods 

Model training uses machine learning techniques for 

classification, including LR, KNN, RC RF, and GB. 

The total amount of data is divided into training data 

and test data. Accuracy observations are carried out by 
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testing several comparisons between the training data 

and the data set (Test Size) as in Formula 4. 

𝑇𝑒𝑠𝑡 𝑆𝑖𝑧𝑒 =
𝐷𝑎𝑡𝑎 𝑇𝑒𝑠𝑡

𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔
             (4) 

Figure 5 shows the results of the accuracy of each Test 

Size value. The best accuracy results are obtained on 

Test Size 0.1, especially on KNN, RF, and GB. There is 

an increase in accuracy as the amount of training data 

increases in KNN, RF, and GB. Meanwhile, in LR and 

RC, increasing the amount of training data results in 

accuracy that sometimes decreases or increases even 

though the value is not large. From the results of this 

test, further training and testing of the model will use a 

test size of 0.1. 

The next test is to test the performance of the 

classification results of each model. Figure 5 shows the 

results of the normalized confusion matrix for each 

classifier using the selected features. RF and GB show 

almost the same results, namely the results of LOS, 

NLOS, and Multipath classification above 90%. 

Meanwhile, the KNN algorithm shows lower LOS 

classification results than NLOS and Multipath. Low 

performance in LOS, NLOS, and Multipath 

classification results in the LR and RC algorithms, 

especially in the results of multipath classification. 

From the results of this test, RF shows the best 

performance in accuracy, followed by GB and KNN. 

Next, a comparison of accuracy was carried out 

between before and after feature selection. This is done 

to determine whether the classification performance is 

still reliable after feature selection. The accuracy 

comparison is shown in Figure 5, where RF is the best 

classifier both before and after feature selection. There 

is a 1% decrease in the F1-Score value and 0.52% in the 

accuracy value. The GB classifier produces the same 

F1_Score value, but there is a decrease in accuracy of 

0.28%. The same thing happened to the LR and RC 

classifiers, which also experienced a decrease in 

accuracy of 0.39% after feature selection. Unlike the 

case with KNN, which actually experienced an increase 

in the value of the F1-Score and its accuracy after 

feature selection was carried out. 

 

Figure 5. Accuracy based on test size 

Complexity testing is carried out by calculating the 

length of execution time when machine learning trains 

the LOS, NLOS, and Multipath classification models. 

Testing was carried out by comparing the execution 

time for the classification process of 12 features (before 

feature selection) and 5 features (after feature 

selection). The test results of the training time are 

shown in Table 1.  

Table 1. Execution Time of Classification 

Classifier 
Training Time of  

5 feature (second) 

Training Time using  

12 feature (second) 

Test  Time using  

 5 feature (second) 

Test  Time using  

12 feature (second) 

KNN 0.24168 ± 0.01956 0.41377  ± 0.03785 0.42218  ± 0.03411 1.01603  ± 0.09205 

RF 15.13889 ± 0.64458 26.36599  ± 1.02798 0.29320  ± 0.01788 0.31537  ± 0.02689 

GB 46.57136  ± 2.90652 97.06870  ±2.73955 0.07777  ± 0.00568 0.08546  ± 0.01136 

LR 2.29269  ± 0.11382 4.79339  ±0.12986 0.00300  ± 0.00148 0.00385  ± 0.00042 

RC 0.35484  ± 0.02866 0.38696  ± 0.02821 0.00262  ± 0.00060 0.00397  ± 0.00024 

From Table 1, feature selection significantly affects 

training and testing times. Gradient Boosting (GB) has 

the highest computational cost, with training times 

increasing from 46.57s (5 features) to 97.06s (12 

features). Random Forest (RF) also sees a rise from 

15.13s to 26.36s, though test times remain relatively 

small. Logistic Regression (LR) and Ridge Classifier 

(RC) require significantly less time, with LR training in 

just 2.29s (5 features) to 4.79s (12 features) and 

minimal test times (0.00262s–0.00397s). KNN, though 

computationally simpler, sees its training time rise from 

0.24s to 0.41s and test time from 0.42s to 1.01s, making 

it inefficient for large datasets. Overall, feature 

selection reduces computational overhead while 
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maintaining efficiency, benefiting tree-based and 

regression models. 

Figure 6 presents a comparative analysis of F1-scores 

and accuracy for five different machine learning 

classifiers: RF, KNN, GB, LR, and RC. RF and GB, 

being tree-based models, demonstrate robustness to 

feature reduction with minimal accuracy degradation. 

However, LR and RC show relatively lower scores, 

suggesting that these models may not be as effective in 

handling the complexity of UWB indoor positioning 

data. The improvement in KNN’s accuracy and F1-

score suggests that reducing the feature set eliminates 

redundant information, leading to better distance-based 

classification. 

 

Figure 6. Accuracy and F1-Scores of LOS, NLOS and Multipath 

classification 

 

              (a)                                                            (b) 

 

           (c)                        (d) 

 

(e) 

Figure 7. Confusion Matrix of LOS, NLOS, and Multipath : (a) RF, (b) KNN, (c) GB, (d) LR, and (e) RC  

The detail of the confusion matrix is present in Figure 

7. Figures 7(a) and 7(c) show the highest classification 

accuracy of RF and GB, with high values along the 

diagonal (above 0.30), indicating their strong capability 
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in distinguishing LOS, NLOS, and MP. KNN (b) and 

LR (d) exhibit moderate classification performance, 

with slightly higher misclassification rates, particularly 

in distinguishing MP from LOS and NLOS. RC (e) has 

the lowest performance, with noticeable 

misclassifications, particularly between MP and LOS. 

These results suggest that tree-based models (RF and 

GB) are the most effective for UWB-based signal 

classification, while linear models (LR and RC) 

struggle with distinguishing multipath conditions. 

The proposed study demonstrates the effectiveness of 

Pearson correlation-based feature selection in 

classifying LOS, NLOS, and multipath (MP) signals in 

Ultra-Wideband (UWB) indoor positioning while 

reducing computational complexity. Compared to paper 

[17], which used all 12 features, the proposed method 

selects the most relevant five features (Distance, CIR, 

RXP, FPPL, and SNR), maintaining high classification 

accuracy while significantly reducing training and 

testing times. Random Forest (RF) and Gradient 

Boosting (GB) maintain over 90% accuracy, similar to 

the full-feature model, while training time for GB 

decreases from 97.06s to 46.57s and for RF from 26.36s 

to 15.13s. KNN benefits the most, improving accuracy 

after feature selection. The findings highlight that 

feature selection optimizes performance, making 

UWB-based indoor positioning more efficient for real-

time applications, particularly in edge computing 

environments 

4. Conclusions 

This study demonstrates the effectiveness of Pearson 

correlation-based feature selection in improving the 

classification of LOS, NLOS, and Multipath signals in 

Ultra-Wideband (UWB) ranging systems. The selected 

features Distance, CIR, RXP, FPPL, and SNR exhibit 

strong correlations, contributing to more efficient and 

accurate machine learning classification. Experimental 

results show that RF and GB outperform other 

classifiers, achieving over 90% classification accuracy, 

making them the most suitable for real-time UWB 

positioning applications. KNN benefits significantly 

from feature selection, improving its accuracy and F1-

score. However, LR and RC show relatively lower 

performance, highlighting their limitations in complex 

indoor environments. Feature selection also reduces 

computational complexity, leading to faster model 

training and testing, particularly benefiting real-time 

and edge computing applications. Despite RF and GB 

having high accuracy, their training times remain longer 

than other models, presenting a trade-off between 

accuracy and efficiency. Future research can focus on 

developing a primary dataset using selected features, 

optimizing classification models for self-calibration in 

real-time indoor positioning systems, and improving 

execution speed while maintaining high accuracy. 
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