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Abstract  

Face recognition is one of the main challenges in the development of computer vision technology. This study aims to develop 

a face recognition system using a Faster R-CNN architecture, optimized through hyperparameter tuning. This research utilizes 

the "Face Recognition Dataset" from Kaggle, which comprises 2,564 face images across 31 classes. The development process 

involves creating bounding boxes using the LabelImg application and implementing the Grid Search method. The Grid Search 

is applied with predefined hyperparameter combinations (3 epochs [10, 25, and 50] × 3 learning rates [0.001, 0.0001, and 

0.00001] × 3 optimizers [SGD, Adam, and RMS], resulting in 27 models). The evaluation metrics used were accuracy, 

precision, recall, and F1-score. The experimental results show that the selection of hyperparameters significantly affects the 

model performance. Based on the experimental results, the combination of the learning rate 0.00001, 50 epochs, and Adam 

optimizer yielded the highest accuracy and improvement of 8.33% compared to the baseline model. The results indicate that 

hyperparameter optimization enhances the ability of the model to recognize faces. Compared to conventional models, a Faster 

R-CNN performs better in detecting faces more accurately. Future research could further enhance the face recognition 

efficiency and accuracy by exploring other deep learning architectures and more advanced hyperparameter optimization 

techniques. 
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1. Introduction 

Face recognition is one of the primary applications in 

digital image analysis. This technology is used to 

identify and verify human faces using computer 

technology. In the context of image processing, a face 

recognition system analyzes the unique features of an 

individual's face [1]. With the advancement of 

technology, face recognition applications have been 

implemented in various fields, such as security, 

surveillance, and human-computer interaction. 

Accuracy is a crucial factor in face recognition, as it 

reflects the system's ability to correctly identify or 

verify an individual's identity [2]. 

Advancements in machine learning and deep learning 

have driven the development of more sophisticated 

techniques in face recognition [3]. Convolutional 

Neural Networks (CNN) have become one of the most 

widely used architectures due to their ability to 

automatically extract facial features [4]. However, 

despite the strong performance of CNNs, challenges 

remain, particularly in recognizing faces under varying 

conditions such as poor lighting, different facial 

expressions, or unusual orientations [5]. 

Faster R-CNN is an architecture that integrates object 

detection and classification into a single framework. 

This approach utilizes a Region Proposal Network 

(RPN) to generate object candidates, which are then 

further processed for classification and bounding box 

regression [6]. Although Faster R-CNN has proven to 

be effective, its performance heavily depends on the 

proper configuration of hyperparameters, such as 

learning rate, number of epochs, and optimizer type [7]. 

In the context of face recognition using Faster R-CNN, 

hyperparameter optimization can enhance the model's 

accuracy [8]. 

Previous studies have used default configurations or 

simple optimization methods in face recognition with 

Faster R-CNN [6]. This limits the model's potential in 
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achieving its best performance. Furthermore, there has 

been limited research exploring the impact of 

hyperparameter variations on datasets with high 

variability, such as changes in position, lighting, and 

facial expressions. 

This study proposes hyperparameter optimization using 

the Grid Search approach to enhance the performance 

of Faster R-CNN in face recognition tasks. The "Face 

Recognition Dataset" from Kaggle is utilized for this 

purpose [9] It is used as test data with complex 

condition variations. By selecting the optimal 

hyperparameter combinations, this study aims to 

contribute to improving face recognition accuracy. 

2. Methods 

Several face recognition studies use deep learning, as 

shown in Table 1. The previous studies have made 

significant contributions to the development of related 

methods and approaches that have been proposed. On 

[6] proposed the face detection method using Faster R-

CNN, so to improve performance, this study proposes 

the impact of hyperparameter optimization on the Faster 

R-CNN architecture for face recognition. 

Table 1. Related Work 

No Title Method Contribution 
1 Deep Face 

Recognition: A 

Survey [2] 

Deep 

Learning  

Deep learning methods that 

can be applied to face 

recognition. 

2 Deep Learning 

Convolutional 

Neural 

Network for 

Face 

Recognition: A 

Review [10] 

Convolutional 
Neural 

Network 

Discusses face recognition 

using deep learning 

techniques. 

3 Recent 

Advances in 

Deep Learning 

Techniques for 

Face 

Recognition [5] 

Deep 

Learning  

Provides insights into other 

deep learning models 

relevant to face recognition. 

4 Review of 

Deep Learning: 

concepts, 

CNN architectu

res, challenges, 

application, 
future directions 
[11] 

Deep 

Learning  

Understanding the 

fundamental concepts of 

Deep Learning and 

Convolutional Neural 

Networks (CNN). 

5 A new face 

detection 

method based 

on Faster 

RCNN [6] 

Faster RCNN This paper proposes a new 

face detection method using 

Faster R-CNN. 

2.1 Face Recognition 

Face recognition is the process of identifying or 

verifying an individual based on facial features such as 

the distance between the eyes, nose, and mouth, the 

proportions of various facial elements (such as the 

width and height of the face, the contours and 

protrusions that form the individual's facial 

characteristics, skin color information, and the texture 

of the facial surface), and the overall shape of the face 

(including oval, square, or round) [2],[12]. Face 

recognition technology is commonly used in various 

applications such as security, surveillance, and human-

computer interaction. In a more technical context, face 

recognition involves algorithms and machine learning 

methods to analyze and classify facial features [6]. Face 

recognition encompasses a range of technologies used 

to build face recognition systems, including face 

detection, facial landmarking, identity recognition, and 

image pre-processing. The face detection process works 

to locate the coordinate system of all faces within an 

image, while facial landmarking algorithms identify the 

positions of facial features within that coordinate 

system [13].  

This study focuses on the application of a Faster R-

CNN architecture with ResNet-50 as the Feature 

Pyramid Network (FPN) in a face recognition system. 

Faster R-CNN is a deep learning-based object detection 

method capable of providing precise face detection 

through the use of a Region Proposal Network (RPN). 

By leveraging ResNet-50, this model can extract deeper 

and more complex facial features, thereby improving 

identification accuracy. 

Previous studies have shown that ResNet-50 has high 

capabilities in face classification. One study used 

ResNet-50 to explore facial features by utilizing a 

modified dataset with OpenCV, such as random 

brightness adjustments [14]. This study also discusses 

the development of face recognition technology prior to 

ResNet-50 by comparing methods such as Eigenfaces 

and Fisherfaces. The results showed that the ResNet-

50-based model achieved the highest accuracy of 

98.75%, demonstrating its robustness under various 

lighting conditions. 

2.2 Faster R-CNN 

Faster R-CNN is an object detection method that 

combines Region Proposal Networks (RPN) with Fast 

R-CNN to generate region proposals, classification, and 

bounding box regression [15]. As shown in Figure 1, 

this architecture works by processing the image through 

the backbone (ResNet-50) to generate a feature map. 

The RPN uses this feature map to generate anchor 

boxes, which are evaluated using Intersection Over 

Union (IoU) against the ground truth. 

 
Figure 1. Faster R-CNN Architecture [15] 
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Anchors with high scores are further processed by 

Region Of Interest (ROI) Pooling or ROI Align to 

generate fixed-size features. These features are then 

classified to determine the object type and processed by 

the bounding box regressor to refine the coordinates. 

With components such as the Feature Pyramid Network 

(FPN), Faster R-CNN is capable of detecting objects at 

various scales, making it highly accurate for object 

detection tasks. 

ResNet-50 is a deep neural network with 50 layers 

designed to handle degradation in deep networks and is 

well-known for its performance in image classification. 

[16],[17]. Feature Pyramid Network (FPN) enhances 

detection accuracy by combining features from multiple 

resolution levels to support multi-scale object detection 

[18]. 

Region Proposal Network (RPN) works by applying a 

sliding window to the feature map to generate anchor 

boxes at each location. These anchors are evaluated 

using IoU against the ground truth, where IoU > 0.7 is 

considered positive, IoU < 0.3 is considered negative, 

and the rest are ignored. This process uses a combined 

loss function: objectness loss to detect the presence of 

an object and bounding box regression loss to refine the 

anchor coordinates [19]. 

Fast R-CNN is used to classify the region proposals 

from the RPN and perform bounding box regression 

[20]. Fast R-CNN uses a convolutional neural network 

(CNN) to compute features for the entire image and all 

region proposals in a single processing step. 

Additionally, Fast R-CNN employs a RoI pooling layer 

to extract features from each region proposal, 

eliminating the need to re-crop the region proposals 

from the image. Subsequently, Fast R-CNN uses fully-

connected layers (fcl) at the end of the network to 

perform object detection and classification on the 

region proposals [20]. 

An anchor is a reference box on the feature map with 

specific scale and aspect ratio used to predict the 

locations of varying objects [15] as shown in Figure 2. 

 

 

Figure 2. Anchor Boxes 

An anchor is centered on the sliding window and has 

specific scale and aspect ratio, as shown in Figure 2. By 

default, the anchor box has 3 scales and 3 aspect ratios, 

resulting in k = 9 anchors at each sliding position [15].  

Intersection over Union (IoU) is a metric used to 

measure how well an object detection model’s 

prediction matches the ground truth (true label). IoU is 

calculated by comparing the area of intersection 

between the predicted box and the ground truth box to 

the area of their union. The intersection is the 

overlapping area between the predicted box and the 

ground truth box. The union is the total combined area 

of both boxes. IoU is used to determine whether an 

anchor (candidate box) should be retained as a bounding 

box proposal. Typically, an IoU > 0.7 is considered 

positive, while IoU < 0.3 is considered negative [21]. 

The IoU calculation is based on Equation 1. 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
               (1) 

Where:  

Area of Overlap is the area of intersection between the 

model’s prediction (predicted bounding box) and the 

ground truth label (actual bounding box). 

Area of Union is the combined area of the predicted 

bounding box and the ground truth bounding box 

(without double-counting the overlapping area). 

IoU Interpretation: 

IoU = 0: There is no overlap between the prediction and 

ground truth. 

IoU = 1: The predicted bounding box and the ground 

truth perfectly match. 

IoU values are generally considered good if IoU > 0.5, 

but this threshold may vary depending on the 

application. 

Figure 3 shows Non-Maximum Suppression (NMS), 

which is an algorithm that retains the detection with the 

highest score and eliminates duplicate detections [22]. 

 

Figure 3. Non-Maximum Suppression 

NMS is used in object detection to filter prediction 

results, ensuring that only the best bounding box (with 

the highest confidence score) is retained for each 

detected object. 

Region Of Interest Pooling g is used to reduce features 

from region proposals to a fixed size. However, in 
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modern implementations, ROI Pooling is often replaced 

by ROI Align to improve precision by better preserving 

spatial relationships through bilinear interpolation [23]. 

The bounding box regressor is a component that 

optimizes the bounding box parameters to align with the 

ground truth [24]. 

The classifier is a model that classifies data based on 

learned patterns to determine the object category [15]. 

2.3 Hyperparameter Optimization 

Hyperparameter optimization is the process of finding 

optimal values for parameters set before the model 

training begins. Hyperparameters have a significant 

impact on detection accuracy and training speed in the 

context of object detection [25], [7]. In hyperparameter 

optimization, several key components need to be 

considered to improve the performance of a face 

recognition model using Faster R-CNN, including: 

Grid search is a method used to try various 

combinations of parameters to be tested, with each 

combination being evaluated to determine which one 

yields the best performance [26]. 

An epoch is an algorithm that determines how many 

times the model will iterate through the entire training 

dataset. Each epoch allows every dataset sample to 

update the model’s parameters [27].  

The effect of the number of epochs on model 

performance can be explained through the training 

process in machine learning. An epoch refers to one 

complete cycle in which the model is trained using the 

entire training dataset. Each epoch provides the model 

with an opportunity to update its weights and 

parameters based on the errors produced in previous 

predictions. During training, the model learns from the 

data by optimizing the loss function. As the number of 

epochs increases, the model can correct errors and learn 

more effectively from the available data, potentially 

improving accuracy. However, setting the number of 

epochs too high may lead to overfitting. This occurs 

when the model becomes overly adapted to the training 

data, thereby losing its ability to generalize to new, 

unseen data [27]. 

The learning rate is a parameter in machine learning 

algorithms that controls how much the model’s weights 

are adjusted during the training process [28]. In the use 

of learning rate, the model demonstrated better 

performance compared to a fixed learning rate, with 

higher AUC values observed for the dynamic learning 

rate. This indicates that selecting an appropriate 

learning rate can enhance the effectiveness of the 

optimizer used during model training. Therefore, 

adjusting the learning rate is a crucial step toward 

achieving optimal results [28]. 

An optimizer is an algorithm used to update the model’s 

weights in a neural network during the training process. 

The goal is to minimize the loss function and improve 

the model’s accuracy. Commonly used optimizers 

include Stochastic Gradient Descent (SGD), Adam, and 

RMSprop [25]. Each optimizer has a different way of 

operating and performance stability, as well as an 

optimal learning rate that affects the final results [29]. 

The use of optimizers has a significant impact on the 

final results of the model training process. Each 

optimizer may yield different performance outcomes 

depending on the learning rate applied. Based on the 

conducted experiments, SGD demonstrated the best 

performance at a learning rate of 0.1, achieving a test 

score of 74.80% and a test cost of 72.55%. In contrast, 

RMSProp and Adam performed poorly at the same 

learning rate. At a learning rate of 0.01, RMSProp 

outperformed both SGD and Adam, although the results 

were still below expectations. Subsequently, at a 

learning rate of 0.001, both RMSProp and Adam 

delivered improved performance, whereas SGD 

remained unsuitable for this learning rate. These 

findings indicate that selecting the appropriate 

optimizer and tuning the learning rate are key factors in 

enhancing model performance [29]. 

2.4 Model Evaluation 

Evaluation metrics in the context of object detection 

algorithms refer to the tools used to assess and 

characterize the performance of a detection system. 

These metrics are often based on the concept of true 

positives, which refers to prediction units that 

successfully detect an object [30]. Evaluation metrics 

are used to assess how well the model performs object 

detection. These metrics help measure how effectively 

an algorithm can detect objects in images or videos [31]. 

The evaluation metrics used to measure the 

performance of the model include: 

Accuracy is the correct prediction that depends on 

whether the bounding box and object class match the 

ground truth, as shown in Equation 2. 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
               (2) 

Precision measures how much of the area that is 

correctly part of the face, compared to the pixels 

incorrectly labeled as a face, as shown in Equation 3. 

𝑃𝑅𝐸𝐶 =  
𝑇𝐶

𝑇𝐶+𝐹𝐶
               (3) 

Recall measures how much of the area that is actually 

part of the face is correctly predicted by the model, 

compared to all the pixels that make up the face, as 

shown in Equation 4. 

𝑅𝐸𝐶 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (4) 

F1-Score combines both recall and precision. This 

metric is useful when aiming to balance between 

precision and recall, providing a single value that 

accounts for both, as shown in Equation 5. 
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𝐹1 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙
              (5) 

2.5 Dataset 

 

Figure 4. Face Recognition Dataset 

Figure 4 shows examples of images from the “Face 

Recognition Dataset” from Kaggle, consisting of 2,564 

face images with 31 classes [9]. This dataset includes 

variations in face position, expression, and lighting to 

ensure that the model can recognize faces under 

different conditions. Each image is labeled with a 

bounding box using the LabelImg application, which 

generates an XML file containing the coordinates of the 

face and the class label.  

The dataset used in this study has previously been 

utilized in a research project involving facial 

recognition using the ResNet-50 architecture [32]. In 

that study, a CNN-based facial classification model was 

trained using the same dataset. The evaluation results 

demonstrated relatively high performance on the 

training and validation sets, with a training accuracy of 

98.09% and a validation accuracy of 98.09%. However, 

when tested on the unseen data (testing set), the model’s 

accuracy dropped significantly to 67.76%. 

These results indicate that although the model was able 

to learn patterns effectively during training and 

validation, it exhibited a considerable degree of 

overfitting, as it failed to maintain its performance on 

the testing data. This outcome serves as a motivation to 

explore alternative approaches such as face detection 

using Faster R-CNN to improve the model’s 

generalization capability in facial recognition tasks on 

the same dataset. 

In the face recognition process using Faster R-CNN, the 

first step is to annotate the dataset with bounding boxes 

to mark the location of faces in the images. The 

application used for this research is LabelImg, a GUI-

based annotation tool. 

Figure 5 shows the annotation process. Each image in 

the dataset is opened one by one, and a bounding box is 

drawn around the face area using the selection tool in 

LabelImg. After the bounding box is created, the 

appropriate label, such as "Elizabeth Olsen," is assigned 

to each face in the image. LabelImg saves the 

annotations in the Pascal VOC format (.xml). 

After all images in the dataset have been annotated, 

Figure 6 shows the file generated by LabelImg, which 

contains important information such as bounding box 

coordinates, object labels, and image size. This file will 

be used as the ground truth when training the Faster R-

CNN model, helping the neural network recognize 

facial patterns based on manually marked bounding 

boxes. The dataset was then divided into three parts: 

70% for training, 20% for validation, and 10% for 

testing. 

 

Figure 5. LabelImg Application 

<annotation> 

 <folder>Alexandra Daddario</folder> 

 <filename>Alexandra 

Daddario_0.jpg</filename> 

 <path>E:\Kuliah\BISMILLAH TUGAS 

AKHIR 2024\archive\ Original Images\Original 

Images\Alexandra Daddario\Alexandra 

Daddario_0.jpg</path> 

 <source> 

  <database>Unknown</database> 

 </source> 

 <size> 

  <width>853</width> 

  <height>1280</height> 

  <depth>3</depth> 

 </size> 

 <segmented>0</segmented> 

 <object> 

  <name>Alexandra 

Daddario</name> 

  <pose>Unspecified</pose> 

  <truncated>0</truncated> 

  <difficult>0</difficult> 

  <bndbox> 

   <xmin>303</xmin> 

   <ymin>211</ymin> 

   <xmax>587</xmax> 

   <ymax>511</ymax> 

  </bndbox> 

 </object> 

</annotation> 

Figure 6. Annotation results of the LabelImg application 

2.6 Flowchart and System Flow 

In Figure 7, the Faster R-CNN flowchart illustrates the 

object detection workflow consisting of several key 

stages. The process begins with the input image, 

followed by pre-processing (normalization and 

resizing). Feature extraction is performed on each 

image using the backbone (ResNet-50 with FPN) to 

generate feature maps at various scales. The next stage 

is the Region Proposal Network (RPN), which uses a 
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sliding window to generate anchor boxes with different 

scales and ratios. Anchors are evaluated using 

Intersection over Union (IoU). For IoU > 0.7, the 

anchor is considered positive, for IoU < 0.3, it is 

considered negative, and the rest are ignored. The Non-

Maximum Suppression (NMS) process filters out 

redundancies, resulting in approximately 2,000 of the 

best proposals. RPN uses a loss function consisting of 

objectness loss (to differentiate between objects and 

non-objects) and bounding box regression loss (to 

refine coordinates). 

 

Figure 7. Flowchart of Face Recognition System Using Faster R-CNN Architecture 

The region proposals filtered by the NMS are processed 

by RoI Pooling/RoI Align to generate features with 

fixed sizes. These features were then passed to the 

classifier to determine the object class and bounding 

box regressor to refine the coordinates. The final output 

is the object detection, which includes both class 

information and location coordinates of the detected 

objects. 

 

Figure 8. Block diagram of Face Recognition System Using Faster R-CNN Architecture 
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Figure 8 shows the block diagram of the Face 

Recognition System using the Faster R-CNN 

architecture. In the training and validation sections, the 

process begins with facial image data for training and 

validation as inputs. These data then underwent pre-

processing, which included resizing the images to 512 

pixels, normalizing the pixel values to a range of 0-1, as 

well as labeling the bounding boxes, and splitting the 

dataset. After pre-processing, hyperparameter 

optimization was carried out, involving the selection of 

the learning rate, number of epochs, and type of 

optimizer used. Once the hyperparameters were 

optimized, the model was trained using Faster R-CNN 

to generate the best face recognition model. The 

performance of the trained model was evaluated using 

evaluation metrics including accuracy, precision, recall, 

and F1-score. 

The testing section begins with facial image data for 

testing as input. Similar to the training stage, the images 

undergo pre-processing, which includes resizing to 512 

pixels and normalizing the pixel values. The processed 

data is then tested using the previously trained Faster R-

CNN model. The result of this testing is the face 

detection, which includes classification and bounding 

box determination on the images. Finally, the face 

detection results are evaluated using the same metrics 

as in the training stage, namely accuracy, precision, 

recall, and F1-score. 

2.7 Training Scheme 

In the model training process using grid search, as 

shown in Table 2.  

Table 2. Training Scheme 

Model Learning Rate Epoch Optimizer 

 Model 1 0.001 10 SGD 

Model 2 0.001 10 ADAM 

Model 3 0.001 10 RMS 

Model 4 0.001 25 SGD 

Model 5 0.001 25 ADAM 

Model 6 0.001 25 RMS 

Model 7 0.001 50 SGD 

Model 8 0.001 50 ADAM 

Model 9 0.001 50 RMS 

Model 10 0.0001 10 SGD 

Model 11 0.0001 10 ADAM 

Model 12 0.0001 10 RMS 

Model 13 0.0001 25 SGD 

Model 14 0.0001 25 ADAM 

Model 15 0.0001 25 RMS 

Model 16 0.0001 50 SGD 

Model 17 0.0001 50 ADAM 

Model 18 0.0001 50 RMS 

Model 19 0.00001 10 SGD 

Model 20 0.00001 10 ADAM 

Model 21 0.00001 10 RMS 

Model 22 0.00001 25 SGD 

Model 23 0.00001 25 ADAM 

Model 24 0.00001 25 RMS 

Model 25 0.00001 50 SGD 

Model 26 0.00001 50 ADAM 

Model 27 0.00001 50 RMS 

 

The first step is to set up the model architecture, in this 

case using Faster R-CNN, which is configured to accept 

parameters such as learning rate, optimizer, and the 

number of epochs. Next, the hyperparameter space to 

be explored is determined, including learning rate 

[0.001, 0.0001, 0.00001], epochs [10, 25, 50], and 

optimizer [SGD, ADAM, RMS]. Grid search is 

implemented with various hyperparameter 

combinations, resulting in a total of 27 combinations.  

Each model is trained using the training dataset to build 

a model that corresponds to the given hyperparameters. 

Each built model is then evaluated using the validation 

image dataset to achieve the best accuracy performance. 

3. Results and Discussions 

3.1 Training Results 

Based on the training results of various developed 

models, the performance of each model was evaluated 

using several metrics, namely Accuracy, Precision, 

Recall, F1-Score, and Loss. Table 3 shows that several 

models exhibited no performance at all, with all metrics 

scoring 0.000, such as models 3, 5, 6, 8, 9, 10, 12, 13, 

15, 18, 19, 22, and 25. This indicates that these models 

failed during the learning process or were unable to 

recognize patterns within the provided data. In addition, 

there are models with low performance, such as models 

2 and 21, which have very low Accuracy and F1-Score 

values. Several models achieved moderate 

performance, with Accuracy values ranging between 

0.75 and 0.95, including models 1, 4, 11, 14, 16, 20, and 

24. 

There are five (5) models that demonstrated excellent 

performance, namely models 7, 17, 23, 26, and 27, with 

Accuracy scores above 0.95, F1-Scores close to 1.000, 

and very small Loss values, below 0.05. These models 

were able to correctly identify the majority of the data, 

resulting in only a few prediction errors. The best-

performing models were models 7, 23, and 26, which 

achieved perfect scores of 1.000 in Accuracy, Precision, 

Recall, and F1-Score, indicating that they were able to 

recognize all data flawlessly without any errors. 

Moreover, model 26 recorded the lowest Loss value 

(0.023), making it the most optimal model in this 

experiment. 

Regarding the models that failed to demonstrate any 

performance (all metrics equal to 0.000), several 

hypotheses can be proposed to explain the cause. One 

of the possible reasons is the inappropriate combination 

of hyperparameters (such as learning rate, number of 

epochs, and optimizer), which prevented the models 

from learning from the data. The selection of an 

excessively large learning rate, an insufficient number 

of epochs, or an unsuitable optimizer may have caused 

the models to be unable to capture patterns from the 

data. 
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This hypothesis is supported by several previous 

studies. Choi et al. (2019) emphasized the importance 

of optimizer sensitivity to hyperparameter tuning 

protocols, which can significantly influence model 

performance [33]. Nurdiati et al. (2022) also reported 

that optimizers such as Adam, Nadam, and AdamW 

performed better than other optimizers in facial 

expression recognition tasks [34]. Furthermore, Kim et 

al. (2022), in the AdaFace study, demonstrated that 

adaptive approaches to input quality can enhance model 

performance, indicating that low-quality input or poor 

initial weights may result in model failure [35]. Ali and 

Kumar (2022) also highlighted the significance of 

selecting the appropriate architecture and activation 

functions in achieving optimal performance in face 

recognition systems [36]. 

Thus, the appropriate selection and combination of 

hyperparameters, proper data preprocessing, and 

optimal choice of model architecture and optimizer are 

crucial in determining the success of model training in 

facial recognition tasks. 

Table 3. Training Results 

Model 

 

Training 
Accuracy Precision Recall F1-Score Loss 

Model 1 0,857 0,462 0,429 0,500 0.214 

Model 2 0,614 0,047 0,077 0,059 0.224 

Model 3 0,000 0,000 0,000 0,000 0,000 

Model 4 0,767 0,673 0,639 0,617 0.148 

Model 5 0,000 0,000 0,000 0,000 0,000 

Model 6 0,000 0,000 0,000 0,000 0,000 

Model 7 0,995 0,996 0,933 0,994 0.049 

Model 8 0,000 0,000 0,000 0,000 0,000 

Model 9 0,000 0,000 0,000 0,000 0,000 

Model 10 0,000 0,000 0,000 0,000 0,000 

Model 11 0,810 0,746 0,643 0,644 0.108 

Model 12 0,037 0,001 0,032 0,002 2.904 

Model 13 0,000 0,000 0,000 0,000 0,000 

Model 14 0,838 0,861 0,838 0,832 0.072 

Model 15 0,000 0,000 0,000 0,000 0,000 

Model 16 0,941 0,630 0,667 0,647 0.231 

Model 17 0,983 0,982 0,980 0,981 0.047 

Model 18 0,000 0,000 0,000 0,000 0,000 

Model 19 0,000 0,000 0,000 0,000 0,000 

Model 20 0,855 0,760 0,684 0,694 0.132 

Model 21 0,519 0,275 0,278 0,227 0.137 

Model 22 0,000 0,000 0,000 0,000 0,000 

Model 23 0,999 1,000 0,999 0,999 0.039 

Model 24 0,839 0,871 0,825 0,832 0.076 

Model 25 0,000 0,000 0,000 0,000 0,000 

Model 26 1,000 1,000 1,000 1,000 0.023 

Model 27 0,976 0,979 0,973 0,975 0.045 

This explanation reinforces that the combination of 

specific parameters a small learning rate (0.00001), 50 

training epochs, and the use of the Adam optimizer 

significantly contributed to the optimal performance 

achieved by Model 26. These findings are also 

supported by several previous studies that have 

demonstrated how proper parameter selection directly 

influences model performance in face recognition tasks. 

First, the use of the Adam optimizer has been proven 

effective in various studies [37] showed that Adam 

achieved up to 97.93% accuracy in a 2.5D face 

recognition system based on the EfficientNet 

architecture. This highlights Adam's strengths in 

automatically adjusting the learning rate and avoiding 

the vanishing gradient problem, making it highly 

suitable for deep learning models in this domain. 

Second, a small learning rate allows the model to learn 

gradually and stably, enabling more precise 

convergence [38] reported that a small learning rate 

tends to produce lower loss values and more stable 

training, particularly when used with optimizers such as 

Adam or AdamW. This aligns with the results of Model 

26, which demonstrated a very low loss value (0.023) 

and perfect performance across all evaluation metrics. 

Third, training the model for 50 epochs proved to be an 

optimal choice in this experiment. This number of 

epochs is sufficient for the model to capture patterns in 

the data without overfitting or underfitting. Related 

literature has emphasized that too few epochs may lead 

to underfitting, while too many may result in 

overfitting, thereby reducing the model’s  

generalization ability [39], [40]. 

Fourth, these findings are further supported by a study 

conducted [34], which concluded that Adam 

outperformed other optimizers in facial expression 

recognition tasks due to its ability to accelerate 

convergence and maintain training stability. 

Finally, the success of Model 26 can serve as a 

benchmark for evaluating other models in the 

experiment that showed poor or failed performance 

(such as Models 3, 5, 6, etc.). The suboptimal 

performance of these models is likely due to less 

effective parameter configurations, such as a larger 

learning rate or the use of less adaptive optimizers like 

SGD without momentum. 

3.2 Training Model Performance 

 

Figure 9. Performance comparison of training models 

Figure 9 shows a comparison of the best models based 

on the parameters used, where a learning rate (lr) of 

0.00001 provided the most optimal results compared to 

0.001 or 0.0001. Models with a larger learning rate, 

such as 0.001 (Model 7), achieved high accuracy 

(0.995), but the resulting loss was higher than that of 

models with smaller learning rates. Meanwhile, a 

learning rate of 0.00001 (Model 23 and Model 26) 

demonstrated the best performance, with Model 26 
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even achieving perfect accuracy (1.000), although there 

was an initial indication of overfitting. 

From the number of epochs, Model 23 with 25 epochs 

was sufficient to achieve an accuracy of 0.999 with a 

smaller loss (0.039). In contrast, Model 26 with 50 

epochs achieved perfect results, although it was initially 

suspected of overfitting. However, after testing on the 

testing data, Model 26 demonstrated the highest 

evaluation metrics compared to other models, 

indicating that this model was still able to generalize 

well to unseen data. 

The choice of optimizer also affects the model's 

performance. ADAM proved to be the best choice, as 

seen in Model 23 and Model 26, which achieved 

optimal results with low loss. The use of the SGD 

optimizer (Model 7) was still quite good but less 

optimal compared to ADAM, while RMSProp (Model 

27) showed a performance with an accuracy of 0.976, 

indicating that this optimizer was less effective in this 

case. 

Although Model 23 was initially considered the best 

choice based on training results, testing evaluation 

showed that Model 26 is the most optimal model, as it 

has a small learning rate (0.00001), a relatively high 

number of epochs (50), and the ADAM optimizer, 

which helped the model learn better without losing 

generalization. The small learning rate allowed the 

model to update weights gradually without 

overshooting the optimal solution, while the higher 

number of epochs enabled the model to capture more 

complex patterns. The lower loss (0.023) compared to 

other models also indicates that Model 26 is more stable 

and has better optimization. 

3.3 Testing Model Performance 

Figure 10 shows a comparison between Model 7 

(baseline) and Model 26 (best), indicating that Model 

26 performs better in all evaluation metrics: accuracy, 

precision, recall, and F1-Score. The key difference 

between these two models lies in the choice of learning 

rate and optimizer, which have a significant impact on 

the stability and effectiveness of the model's training 

process. 

In Model 7, a learning rate of 0.001 is used with the 

SGD (Stochastic Gradient Descent) optimizer. This 

relatively large learning rate causes the weight updates 

to be made with larger steps, which risks the model 

skipping the optimal point and struggling with 

convergence. Additionally, the use of SGD as the 

optimizer has the drawback of high gradient 

oscillations, particularly if not combined with the 

proper momentum. This can cause the model to struggle 

in finding the optimal loss minimum, resulting in 

suboptimal performance. 

 

Figure 10. Performance comparison of testing models 

Meanwhile, Model 26 uses a much smaller learning rate 

of 0.00001 and the ADAM (Adaptive Moment 

Estimation) optimizer. The smaller learning rate allows 

for a smoother and more stable learning process, 

avoiding the risk of overshooting during the 

optimization process. The use of ADAM as the 

optimizer also offers advantages, as it combines the best 

features of Momentum SGD and RMSProp, making it 

more adaptive in adjusting learning based on the 

gradients obtained. ADAM has a mechanism that 

accelerates convergence without experiencing high 

oscillations like SGD, making it a better choice for deep 

learning models like Faster R-CNN. 

Although both models use the same number of epochs 

(50), the performance difference is significantly 

influenced by the choice of learning rate and optimizer. 

The Figure 10 shows that Model 26 achieves higher 

values for accuracy, precision, recall, and F1-Score 

compared to Model 7, indicating that this model is more 

optimal in recognizing faces with a better balance 

between precision and recall. Therefore, Model 26 is 

more effective at detecting faces without making too 

many mistakes in classifying faces as correct or 

incorrect. 

3.4 Model Evaluation 

Table 4 presents the Classification Report, which 

displays the evaluation of the model's performance in 

facial recognition across various individuals. The 

evaluation metrics used include precision, recall, F1-

Score, and Support for each class (individual name). 

Based on the information provided earlier, these are the 

evaluation results using Model 26, which achieved an 

accuracy of 1.000 on the training data. However, 

despite the model performing exceptionally well during 

training, there are variations in performance during 

testing, as seen in the values of precision, recall, and F1-

Score for different individuals. 

Images with good performance, such as those of 

Dwayne Johnson, Ellen Degeneres, and Lisa Kudrow, 

show precision, recall, and F1-Score values of 1.00, 

meaning the model recognizes them extremely well 

without errors. This high performance may be due to 

distinct facial features, such as unique facial structures 

that are easily distinguishable from other individuals. 
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Additionally, the consistent image quality, with good 

lighting and high resolution, enables the model to 

capture facial features accurately. 

Table 4. Classification Report 

Name Precision Recall F1-Score Support 

Akshay Kumar 0.62 0.71 0.67 7 
Alexandra Daddario 0.83 0.94 0.88 16 

Alia Bhatt 0.82  0.78  0.80 18 
Amitabh Bachchan 1.00  0.93  0.96 14 

Andy Samberg 0.82  0.88  0.85 16 
Anushka Sharma 0.88  0.93  0.90 15 

Billie Eilish 1.00  0.95  0.97 19 

Brad Pitt 0.84  0.84 0.84 19 

Camila Cabello 0.95  0.83  0.88 23 

Charlize Theron 0.93  0.68  0.79 19 

Claire Holt 0.76  0.95  0.84 20 

Courtney Cox 0.93  0.93  0.93 14 
Dwayne Johnson 1.00 1.00 1.00 12 

Elizabeth Olsen 0.91  1.00  0.95 21 

Ellen Degeneres 1.00 1.00 1.00 15 

Henry Cavill 0.90  0.95  0.92 19 

Hrithik Roshan 0.90 0.90 0.90 20 

Hugh Jackman 0.83  0.87  0.85 23 

Jessica Alba 0.94  0.89  0.91 18 

Kashyap 0.67  1.00  0.80 4 

Lisa Kudrow 1.00 1.00 1.00 9 

Margot Robbie 0.92  0.79  0.85 14 

Marmik 1.00  0.80  0.89 5 
Natalie Portman 0.86  1.00  0.93 19 
Priyanka Chopra 0.91  0.88  0.89 24 
Robert Downey Jr 0.95  0.91  0.93 22 

Roger Federer 0.94  0.94  0.94 18 

Tom Cruise 0.71  0.77  0.74 13 
Vijay Deverakonda 0.96  0.89  0.92 27 

Virat Kohli 0.88  0.78  0.82 9 

Zac Efron 1.00 1.00 1.00 21 

Accuracy   0.90 513 

Macro Avg 0.89 0.89 0.89 513 

Weighted Avg 0.90 0.90 0.90 513 

On the other hand, images with lower performance, 

such as those of Akshay Kumar, Kashyap, and Charlize 

Theron, exhibit lower values for precision, recall, and 

F1-Score compared to other individuals. One of the 

main factors contributing to this decreased performance 

is the smaller number of images in the dataset, with 

Akshay Kumar having only 7 images and Kashyap 5, 

limiting the model's ability to learn facial patterns 

effectively. Additionally, other factors such as 

significant pose variation, uneven lighting, or low-

quality images can further complicate accurate 

identification. 

From this analysis, the model performs very well on 

individuals with distinct facial features, good image 

quality, and sufficient data. However, individuals with 

lower-quality images, significant pose variation, or 

limited data experience a drop in accuracy. This 

indicates that while Model 26 shows high performance, 

there are still factors within the dataset that could be 

improved to enhance its overall performance. 

Improving dataset diversity, image quality, and 

ensuring a sufficient number of samples for each 

individual could help the model generalize better across 

various conditions. 

 

Figure 11. Confusion matrix 

From the evaluation results, the model has an accuracy 

of 0.90, meaning that 90% of the model's predictions 

match the correct labels. Overall, the macro average and 

weighted average values are 0.89 and 0.90, 

respectively, indicating that the model performs 

relatively consistently across all classes. To ensure 

dataset balance, a sample distribution analysis was 

conducted. The dataset consists of 31 classes, with the 

number of samples per class ranging from 4 to 27 

images. This analysis revealed that the dataset is 

imbalanced, with some classes having fewer samples 

than others. Therefore, a weighted loss method was 

employed to ensure that classes with fewer samples are 

proportionally considered during model training. 

Additionally, the model was evaluated using 

Intersection over Union (IoU). The best model showed 

an average IoU of 0.902, while models with lower 

performance had an IoU around 0.861. 

The confusion matrix in Figure 11 shows the 

performance of Model 26 for face recognition in 

classifying 31 different classes. Each row of the matrix 

represents the true labels, while each column represents 

the predicted labels by the model. The values on the 

main diagonal represent the number of correct 

predictions (true positives), with higher values 

indicating better performance in recognizing the correct 

faces. For example, for the class Elizabeth Olsen, the 

model successfully identified her face 21 times, 

indicating good performance for that particular class. 

However, there are some misclassifications indicated 

by the numbers outside the main diagonal. For example, 

for the class Akshay Kumar, although there were 5 

correct predictions, the model also misclassified his 

face into other classes multiple times. These 

misclassifications can occur due to similarities in faces 

between individuals or insufficient training data, which 

limits the model's ability to distinguish facial features 

accurately. 
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In terms of visualization, the darker the color of the 

boxes on the main diagonal, the higher the number of 

correct predictions in that category. Conversely, lighter 

colors outside the main diagonal indicate small 

mispredictions. Overall, the model performs quite well 

as most predictions are on the main diagonal, but there 

are still a few errors that need to be addressed. 

Figure 12 shows the testing results of the best model, 

Model 26, in detecting and classifying faces of several 

individuals. Each sample in the image displays a 

person's face with the model's prediction and the 

original label. Out of the six test images, Model 26 

correctly predicted the faces, and the generated 

bounding boxes accurately identified the faces 

corresponding to the original labels. This indicates that 

Model 26 performs very well in face recognition, which 

aligns with the previous evaluation results where the 

model achieved high precision, recall, and F1-Score 

(even reaching 1.00 for some individuals). 

 

Figure 12. Face recognition results using Model 26 

This high accuracy can be attributed to several factors, 

such as distinct facial features of the individuals, 

uniform lighting in the images, and sufficient data 

during training. For example, the faces of Camila 

Cabello and Zac Efron are recognized very well, likely 

because the model has been trained on a sufficient 

number of images of them with representative 

variations. 

However, even though this model shows excellent 

results, it is important to consider the potential for 

dataset bias for instance, if certain individuals have 

fewer images in the training data, the model might not 

perform as well for them. To further improve 

generalization, additional data could be added to ensure 

the model remains accurate under various lighting 

conditions, poses, and facial expressions. 

As shown in Figure 13, the misclassification of faces 

observed in the image is likely caused by several factors 

related to the dataset used. One of the primary factors is 

data imbalance, in which the number of images for each 

individual in the dataset is unevenly distributed. If 

certain individuals have significantly more samples 

than others, the model tends to classify faces with 

similar features into a more dominant category during 

training. This can lead to misidentification, particularly 

when the model encounters a face that is 

underrepresented in the training data. 

 

Figure 13. Face Recognition errors 

Additionally, similar facial features between different 

individuals are another major cause of 

misclassification. Face recognition models often rely on 

features such as facial shape, bone structure, or 

accessories (e.g., glasses and hats) to make 

classifications. Misclassifications, such as identifying 

Brad Pitt as Akshay Kumar or Tom Cruise as Henry 

Cavill, can occur due to the strong resemblance between 

their facial features in the images used. If the model is 

not trained with a sufficiently diverse set of images for 

each individual, these errors are more likely to occur. 

Another influencing factor is the variation in lighting 

conditions and facial angles within the dataset. If the 

model is trained using images with uniform lighting and 

limited facial angles, its performance declines when 

recognizing faces under dim lighting conditions or from 

different angles. As seen in some misclassification 

examples, faces captured under well-lit conditions are 

easier to recognize than those captured under dim 

lighting or tilted positions. This indicates that the model 

struggles to generalize variations in facial appearance 

across different conditions. 

4. Conclusions 

The results of this study indicate that the combination 

of hyperparameters in "Face Recognition Using Faster 

R-CNN Architecture with Hyperparameter 

Optimization," such as learning rate, number of epochs, 

and optimizer type, significantly influences the 

performance of the model. The model with a learning 

rate of 0.00001, 50 epochs, and Adam optimizer (Model 

26) achieved the best performance based on evaluation 

metrics such as accuracy, precision, recall, and F1-score 

on the test data. 

From the confusion matrix, it is evident that Model 26 

has a high accuracy in classifying faces, with minimal 
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errors in distinguishing between classes of faces that 

share similar lighting or expressions. This indicates that 

the model is effective in recognizing facial patterns but 

still faces challenges in differentiating faces with 

similar features. The IoU calculation showed that 

Model 26 had an average IoU value of 0.902. This 

indicates that the bounding boxes generated by the 

detection process closely matched the ground truth. The 

higher the IoU value, the more accurate the model is in 

placing the face detection boxes at the correct location. 

Visual analysis of the detection results showed that the 

model performed better in recognizing faces under good 

lighting conditions and when the face was in a 

straightforward position, as shown in Figure 12. 

However, under low-light conditions or when the face 

is tilted, detection errors still occur. This suggests that 

image characteristics such as lighting, angle, and image 

resolution significantly affect the performance of the 

model. From various experiments, it was observed that 

the selection of a learning rate of 0.00001 played a 

crucial role in determining the stability of the training 

process. A larger learning rate tends to make it difficult 

for the model to converge because of drastic weight 

changes, whereas a smaller learning rate slows down 

the learning process. A value of 0.00001 provides an 

optimal balance, allowing the model to learn gradually 

without overfitting or underfitting. Furthermore, the use 

of the Adam optimizer improves the training stability 

compared to SGD. 

Overall, this study demonstrates that hyperparameter 

optimization in the Faster R-CNN architecture 

significantly impacts facial recognition performance. 

Proper hyperparameter selection can improve the 

accuracy, ensure optimal bounding box detection, and 

adapt the model to varying image characteristics. 
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