

436

Available online at website: https://jurnal.iaii.or.id/index.php/RESTI

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 9 No. 3 (2025) 436 - 448 e-ISSN: 2580-0760

The Effect of Hyperparameters on Faster R-CNN

in Face Recognition Systems

 Jasman Pardede1*, Khairul Rijal2
1,2Department of Informatics, Faculty of Industrial Technology, Institut Teknologi Nasional, Bandung, Indonesia

1jasman@itenas.ac.id, 2rijalk64@mhs.itenas.ac.id

Abstract

Face recognition is one of the main challenges in the development of computer vision technology. This study aims to develop

a face recognition system using a Faster R-CNN architecture, optimized through hyperparameter tuning. This research utilizes

the "Face Recognition Dataset" from Kaggle, which comprises 2,564 face images across 31 classes. The development process

involves creating bounding boxes using the LabelImg application and implementing the Grid Search method. The Grid Search

is applied with predefined hyperparameter combinations (3 epochs [10, 25, and 50] × 3 learning rates [0.001, 0.0001, and

0.00001] × 3 optimizers [SGD, Adam, and RMS], resulting in 27 models). The evaluation metrics used were accuracy,

precision, recall, and F1-score. The experimental results show that the selection of hyperparameters significantly affects the

model performance. Based on the experimental results, the combination of the learning rate 0.00001, 50 epochs, and Adam

optimizer yielded the highest accuracy and improvement of 8.33% compared to the baseline model. The results indicate that

hyperparameter optimization enhances the ability of the model to recognize faces. Compared to conventional models, a Faster

R-CNN performs better in detecting faces more accurately. Future research could further enhance the face recognition

efficiency and accuracy by exploring other deep learning architectures and more advanced hyperparameter optimization

techniques.

Keywords: face recognition; faster R-CNN; hyperparameter optimization; deep learning; grid search

How to Cite: J. Pardede and K. Rijal, “The Effect of Hyperparameters on Faster R-CNN in Face Recognition Systems”, J. RESTI (Rekayasa

Sist. Teknol. Inf.) , vol. 9, no. 3, pp. 436 - 448, May 2025.

Permalink/DOI: https://doi.org/10.29207/resti.v9i3.6405

Received: February 19, 2025

Accepted: May 5, 2025

Available Online: May, 28, 2025

This is an open-access article under the CC BY 4.0 License
Published by Ikatan Ahli Informatika Indonesia

1. Introduction

Face recognition is one of the primary applications in

digital image analysis. This technology is used to

identify and verify human faces using computer

technology. In the context of image processing, a face

recognition system analyzes the unique features of an

individual's face [1]. With the advancement of

technology, face recognition applications have been

implemented in various fields, such as security,

surveillance, and human-computer interaction.

Accuracy is a crucial factor in face recognition, as it

reflects the system's ability to correctly identify or

verify an individual's identity [2].

Advancements in machine learning and deep learning

have driven the development of more sophisticated

techniques in face recognition [3]. Convolutional

Neural Networks (CNN) have become one of the most

widely used architectures due to their ability to

automatically extract facial features [4]. However,

despite the strong performance of CNNs, challenges

remain, particularly in recognizing faces under varying

conditions such as poor lighting, different facial

expressions, or unusual orientations [5].

Faster R-CNN is an architecture that integrates object

detection and classification into a single framework.

This approach utilizes a Region Proposal Network

(RPN) to generate object candidates, which are then

further processed for classification and bounding box

regression [6]. Although Faster R-CNN has proven to

be effective, its performance heavily depends on the

proper configuration of hyperparameters, such as

learning rate, number of epochs, and optimizer type [7].

In the context of face recognition using Faster R-CNN,

hyperparameter optimization can enhance the model's

accuracy [8].

Previous studies have used default configurations or

simple optimization methods in face recognition with

Faster R-CNN [6]. This limits the model's potential in

https://doi.org/10.29207/resti.v9i3.6405
https://creativecommons.org/licenses/by/4.0/
https://www.iaii.or.id/

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

437

achieving its best performance. Furthermore, there has

been limited research exploring the impact of

hyperparameter variations on datasets with high

variability, such as changes in position, lighting, and

facial expressions.

This study proposes hyperparameter optimization using

the Grid Search approach to enhance the performance

of Faster R-CNN in face recognition tasks. The "Face

Recognition Dataset" from Kaggle is utilized for this

purpose [9] It is used as test data with complex

condition variations. By selecting the optimal

hyperparameter combinations, this study aims to

contribute to improving face recognition accuracy.

2. Methods

Several face recognition studies use deep learning, as

shown in Table 1. The previous studies have made

significant contributions to the development of related

methods and approaches that have been proposed. On

[6] proposed the face detection method using Faster R-

CNN, so to improve performance, this study proposes

the impact of hyperparameter optimization on the Faster

R-CNN architecture for face recognition.

Table 1. Related Work

No Title Method Contribution
1 Deep Face

Recognition: A

Survey [2]

Deep

Learning

Deep learning methods that

can be applied to face

recognition.

2 Deep Learning

Convolutional

Neural

Network for

Face

Recognition: A

Review [10]

Convolutional
Neural

Network

Discusses face recognition

using deep learning

techniques.

3 Recent

Advances in

Deep Learning

Techniques for

Face

Recognition [5]

Deep

Learning

Provides insights into other

deep learning models

relevant to face recognition.

4 Review of

Deep Learning:

concepts,

CNN architectu

res, challenges,

application,
future directions
[11]

Deep

Learning

Understanding the

fundamental concepts of

Deep Learning and

Convolutional Neural

Networks (CNN).

5 A new face

detection

method based

on Faster

RCNN [6]

Faster RCNN This paper proposes a new

face detection method using

Faster R-CNN.

2.1 Face Recognition

Face recognition is the process of identifying or

verifying an individual based on facial features such as

the distance between the eyes, nose, and mouth, the

proportions of various facial elements (such as the

width and height of the face, the contours and

protrusions that form the individual's facial

characteristics, skin color information, and the texture

of the facial surface), and the overall shape of the face

(including oval, square, or round) [2],[12]. Face

recognition technology is commonly used in various

applications such as security, surveillance, and human-

computer interaction. In a more technical context, face

recognition involves algorithms and machine learning

methods to analyze and classify facial features [6]. Face

recognition encompasses a range of technologies used

to build face recognition systems, including face

detection, facial landmarking, identity recognition, and

image pre-processing. The face detection process works

to locate the coordinate system of all faces within an

image, while facial landmarking algorithms identify the

positions of facial features within that coordinate

system [13].

This study focuses on the application of a Faster R-

CNN architecture with ResNet-50 as the Feature

Pyramid Network (FPN) in a face recognition system.

Faster R-CNN is a deep learning-based object detection

method capable of providing precise face detection

through the use of a Region Proposal Network (RPN).

By leveraging ResNet-50, this model can extract deeper

and more complex facial features, thereby improving

identification accuracy.

Previous studies have shown that ResNet-50 has high

capabilities in face classification. One study used

ResNet-50 to explore facial features by utilizing a

modified dataset with OpenCV, such as random

brightness adjustments [14]. This study also discusses

the development of face recognition technology prior to

ResNet-50 by comparing methods such as Eigenfaces

and Fisherfaces. The results showed that the ResNet-

50-based model achieved the highest accuracy of

98.75%, demonstrating its robustness under various

lighting conditions.

2.2 Faster R-CNN

Faster R-CNN is an object detection method that

combines Region Proposal Networks (RPN) with Fast

R-CNN to generate region proposals, classification, and

bounding box regression [15]. As shown in Figure 1,

this architecture works by processing the image through

the backbone (ResNet-50) to generate a feature map.

The RPN uses this feature map to generate anchor

boxes, which are evaluated using Intersection Over

Union (IoU) against the ground truth.

Figure 1. Faster R-CNN Architecture [15]

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

438

Anchors with high scores are further processed by

Region Of Interest (ROI) Pooling or ROI Align to

generate fixed-size features. These features are then

classified to determine the object type and processed by

the bounding box regressor to refine the coordinates.

With components such as the Feature Pyramid Network

(FPN), Faster R-CNN is capable of detecting objects at

various scales, making it highly accurate for object

detection tasks.

ResNet-50 is a deep neural network with 50 layers

designed to handle degradation in deep networks and is

well-known for its performance in image classification.

[16],[17]. Feature Pyramid Network (FPN) enhances

detection accuracy by combining features from multiple

resolution levels to support multi-scale object detection

[18].

Region Proposal Network (RPN) works by applying a

sliding window to the feature map to generate anchor

boxes at each location. These anchors are evaluated

using IoU against the ground truth, where IoU > 0.7 is

considered positive, IoU < 0.3 is considered negative,

and the rest are ignored. This process uses a combined

loss function: objectness loss to detect the presence of

an object and bounding box regression loss to refine the

anchor coordinates [19].

Fast R-CNN is used to classify the region proposals

from the RPN and perform bounding box regression

[20]. Fast R-CNN uses a convolutional neural network

(CNN) to compute features for the entire image and all

region proposals in a single processing step.

Additionally, Fast R-CNN employs a RoI pooling layer

to extract features from each region proposal,

eliminating the need to re-crop the region proposals

from the image. Subsequently, Fast R-CNN uses fully-

connected layers (fcl) at the end of the network to

perform object detection and classification on the

region proposals [20].

An anchor is a reference box on the feature map with

specific scale and aspect ratio used to predict the

locations of varying objects [15] as shown in Figure 2.

Figure 2. Anchor Boxes

An anchor is centered on the sliding window and has

specific scale and aspect ratio, as shown in Figure 2. By

default, the anchor box has 3 scales and 3 aspect ratios,

resulting in k = 9 anchors at each sliding position [15].

Intersection over Union (IoU) is a metric used to

measure how well an object detection model’s

prediction matches the ground truth (true label). IoU is

calculated by comparing the area of intersection

between the predicted box and the ground truth box to

the area of their union. The intersection is the

overlapping area between the predicted box and the

ground truth box. The union is the total combined area

of both boxes. IoU is used to determine whether an

anchor (candidate box) should be retained as a bounding

box proposal. Typically, an IoU > 0.7 is considered

positive, while IoU < 0.3 is considered negative [21].

The IoU calculation is based on Equation 1.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (1)

Where:

Area of Overlap is the area of intersection between the

model’s prediction (predicted bounding box) and the

ground truth label (actual bounding box).

Area of Union is the combined area of the predicted

bounding box and the ground truth bounding box

(without double-counting the overlapping area).

IoU Interpretation:

IoU = 0: There is no overlap between the prediction and

ground truth.

IoU = 1: The predicted bounding box and the ground

truth perfectly match.

IoU values are generally considered good if IoU > 0.5,

but this threshold may vary depending on the

application.

Figure 3 shows Non-Maximum Suppression (NMS),

which is an algorithm that retains the detection with the

highest score and eliminates duplicate detections [22].

Figure 3. Non-Maximum Suppression

NMS is used in object detection to filter prediction

results, ensuring that only the best bounding box (with

the highest confidence score) is retained for each

detected object.

Region Of Interest Pooling g is used to reduce features

from region proposals to a fixed size. However, in

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

439

modern implementations, ROI Pooling is often replaced

by ROI Align to improve precision by better preserving

spatial relationships through bilinear interpolation [23].

The bounding box regressor is a component that

optimizes the bounding box parameters to align with the

ground truth [24].

The classifier is a model that classifies data based on

learned patterns to determine the object category [15].

2.3 Hyperparameter Optimization

Hyperparameter optimization is the process of finding

optimal values for parameters set before the model

training begins. Hyperparameters have a significant

impact on detection accuracy and training speed in the

context of object detection [25], [7]. In hyperparameter

optimization, several key components need to be

considered to improve the performance of a face

recognition model using Faster R-CNN, including:

Grid search is a method used to try various

combinations of parameters to be tested, with each

combination being evaluated to determine which one

yields the best performance [26].

An epoch is an algorithm that determines how many

times the model will iterate through the entire training

dataset. Each epoch allows every dataset sample to

update the model’s parameters [27].

The effect of the number of epochs on model

performance can be explained through the training

process in machine learning. An epoch refers to one

complete cycle in which the model is trained using the

entire training dataset. Each epoch provides the model

with an opportunity to update its weights and

parameters based on the errors produced in previous

predictions. During training, the model learns from the

data by optimizing the loss function. As the number of

epochs increases, the model can correct errors and learn

more effectively from the available data, potentially

improving accuracy. However, setting the number of

epochs too high may lead to overfitting. This occurs

when the model becomes overly adapted to the training

data, thereby losing its ability to generalize to new,

unseen data [27].

The learning rate is a parameter in machine learning

algorithms that controls how much the model’s weights

are adjusted during the training process [28]. In the use

of learning rate, the model demonstrated better

performance compared to a fixed learning rate, with

higher AUC values observed for the dynamic learning

rate. This indicates that selecting an appropriate

learning rate can enhance the effectiveness of the

optimizer used during model training. Therefore,

adjusting the learning rate is a crucial step toward

achieving optimal results [28].

An optimizer is an algorithm used to update the model’s

weights in a neural network during the training process.

The goal is to minimize the loss function and improve

the model’s accuracy. Commonly used optimizers

include Stochastic Gradient Descent (SGD), Adam, and

RMSprop [25]. Each optimizer has a different way of

operating and performance stability, as well as an

optimal learning rate that affects the final results [29].

The use of optimizers has a significant impact on the

final results of the model training process. Each

optimizer may yield different performance outcomes

depending on the learning rate applied. Based on the

conducted experiments, SGD demonstrated the best

performance at a learning rate of 0.1, achieving a test

score of 74.80% and a test cost of 72.55%. In contrast,

RMSProp and Adam performed poorly at the same

learning rate. At a learning rate of 0.01, RMSProp

outperformed both SGD and Adam, although the results

were still below expectations. Subsequently, at a

learning rate of 0.001, both RMSProp and Adam

delivered improved performance, whereas SGD

remained unsuitable for this learning rate. These

findings indicate that selecting the appropriate

optimizer and tuning the learning rate are key factors in

enhancing model performance [29].

2.4 Model Evaluation

Evaluation metrics in the context of object detection

algorithms refer to the tools used to assess and

characterize the performance of a detection system.

These metrics are often based on the concept of true

positives, which refers to prediction units that

successfully detect an object [30]. Evaluation metrics

are used to assess how well the model performs object

detection. These metrics help measure how effectively

an algorithm can detect objects in images or videos [31].

The evaluation metrics used to measure the

performance of the model include:

Accuracy is the correct prediction that depends on

whether the bounding box and object class match the

ground truth, as shown in Equation 2.

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (2)

Precision measures how much of the area that is

correctly part of the face, compared to the pixels

incorrectly labeled as a face, as shown in Equation 3.

𝑃𝑅𝐸𝐶 =
𝑇𝐶

𝑇𝐶+𝐹𝐶
 (3)

Recall measures how much of the area that is actually

part of the face is correctly predicted by the model,

compared to all the pixels that make up the face, as

shown in Equation 4.

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

F1-Score combines both recall and precision. This

metric is useful when aiming to balance between

precision and recall, providing a single value that

accounts for both, as shown in Equation 5.

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

440

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙
 (5)

2.5 Dataset

Figure 4. Face Recognition Dataset

Figure 4 shows examples of images from the “Face

Recognition Dataset” from Kaggle, consisting of 2,564

face images with 31 classes [9]. This dataset includes

variations in face position, expression, and lighting to

ensure that the model can recognize faces under

different conditions. Each image is labeled with a

bounding box using the LabelImg application, which

generates an XML file containing the coordinates of the

face and the class label.

The dataset used in this study has previously been

utilized in a research project involving facial

recognition using the ResNet-50 architecture [32]. In

that study, a CNN-based facial classification model was

trained using the same dataset. The evaluation results

demonstrated relatively high performance on the

training and validation sets, with a training accuracy of

98.09% and a validation accuracy of 98.09%. However,

when tested on the unseen data (testing set), the model’s

accuracy dropped significantly to 67.76%.

These results indicate that although the model was able

to learn patterns effectively during training and

validation, it exhibited a considerable degree of

overfitting, as it failed to maintain its performance on

the testing data. This outcome serves as a motivation to

explore alternative approaches such as face detection

using Faster R-CNN to improve the model’s

generalization capability in facial recognition tasks on

the same dataset.

In the face recognition process using Faster R-CNN, the

first step is to annotate the dataset with bounding boxes

to mark the location of faces in the images. The

application used for this research is LabelImg, a GUI-

based annotation tool.

Figure 5 shows the annotation process. Each image in

the dataset is opened one by one, and a bounding box is

drawn around the face area using the selection tool in

LabelImg. After the bounding box is created, the

appropriate label, such as "Elizabeth Olsen," is assigned

to each face in the image. LabelImg saves the

annotations in the Pascal VOC format (.xml).

After all images in the dataset have been annotated,

Figure 6 shows the file generated by LabelImg, which

contains important information such as bounding box

coordinates, object labels, and image size. This file will

be used as the ground truth when training the Faster R-

CNN model, helping the neural network recognize

facial patterns based on manually marked bounding

boxes. The dataset was then divided into three parts:

70% for training, 20% for validation, and 10% for

testing.

Figure 5. LabelImg Application

<annotation>

 <folder>Alexandra Daddario</folder>

 <filename>Alexandra

Daddario_0.jpg</filename>

 <path>E:\Kuliah\BISMILLAH TUGAS

AKHIR 2024\archive\ Original Images\Original

Images\Alexandra Daddario\Alexandra

Daddario_0.jpg</path>

 <source>

 <database>Unknown</database>

 </source>

 <size>

 <width>853</width>

 <height>1280</height>

 <depth>3</depth>

 </size>

 <segmented>0</segmented>

 <object>

 <name>Alexandra

Daddario</name>

 <pose>Unspecified</pose>

 <truncated>0</truncated>

 <difficult>0</difficult>

 <bndbox>

 <xmin>303</xmin>

 <ymin>211</ymin>

 <xmax>587</xmax>

 <ymax>511</ymax>

 </bndbox>

 </object>

</annotation>

Figure 6. Annotation results of the LabelImg application

2.6 Flowchart and System Flow

In Figure 7, the Faster R-CNN flowchart illustrates the

object detection workflow consisting of several key

stages. The process begins with the input image,

followed by pre-processing (normalization and

resizing). Feature extraction is performed on each

image using the backbone (ResNet-50 with FPN) to

generate feature maps at various scales. The next stage

is the Region Proposal Network (RPN), which uses a

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

441

sliding window to generate anchor boxes with different

scales and ratios. Anchors are evaluated using

Intersection over Union (IoU). For IoU > 0.7, the

anchor is considered positive, for IoU < 0.3, it is

considered negative, and the rest are ignored. The Non-

Maximum Suppression (NMS) process filters out

redundancies, resulting in approximately 2,000 of the

best proposals. RPN uses a loss function consisting of

objectness loss (to differentiate between objects and

non-objects) and bounding box regression loss (to

refine coordinates).

Figure 7. Flowchart of Face Recognition System Using Faster R-CNN Architecture

The region proposals filtered by the NMS are processed

by RoI Pooling/RoI Align to generate features with

fixed sizes. These features were then passed to the

classifier to determine the object class and bounding

box regressor to refine the coordinates. The final output

is the object detection, which includes both class

information and location coordinates of the detected

objects.

Figure 8. Block diagram of Face Recognition System Using Faster R-CNN Architecture

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

442

Figure 8 shows the block diagram of the Face

Recognition System using the Faster R-CNN

architecture. In the training and validation sections, the

process begins with facial image data for training and

validation as inputs. These data then underwent pre-

processing, which included resizing the images to 512

pixels, normalizing the pixel values to a range of 0-1, as

well as labeling the bounding boxes, and splitting the

dataset. After pre-processing, hyperparameter

optimization was carried out, involving the selection of

the learning rate, number of epochs, and type of

optimizer used. Once the hyperparameters were

optimized, the model was trained using Faster R-CNN

to generate the best face recognition model. The

performance of the trained model was evaluated using

evaluation metrics including accuracy, precision, recall,

and F1-score.

The testing section begins with facial image data for

testing as input. Similar to the training stage, the images

undergo pre-processing, which includes resizing to 512

pixels and normalizing the pixel values. The processed

data is then tested using the previously trained Faster R-

CNN model. The result of this testing is the face

detection, which includes classification and bounding

box determination on the images. Finally, the face

detection results are evaluated using the same metrics

as in the training stage, namely accuracy, precision,

recall, and F1-score.

2.7 Training Scheme

In the model training process using grid search, as

shown in Table 2.

Table 2. Training Scheme

Model Learning Rate Epoch Optimizer

 Model 1 0.001 10 SGD

Model 2 0.001 10 ADAM

Model 3 0.001 10 RMS

Model 4 0.001 25 SGD

Model 5 0.001 25 ADAM

Model 6 0.001 25 RMS

Model 7 0.001 50 SGD

Model 8 0.001 50 ADAM

Model 9 0.001 50 RMS

Model 10 0.0001 10 SGD

Model 11 0.0001 10 ADAM

Model 12 0.0001 10 RMS

Model 13 0.0001 25 SGD

Model 14 0.0001 25 ADAM

Model 15 0.0001 25 RMS

Model 16 0.0001 50 SGD

Model 17 0.0001 50 ADAM

Model 18 0.0001 50 RMS

Model 19 0.00001 10 SGD

Model 20 0.00001 10 ADAM

Model 21 0.00001 10 RMS

Model 22 0.00001 25 SGD

Model 23 0.00001 25 ADAM

Model 24 0.00001 25 RMS

Model 25 0.00001 50 SGD

Model 26 0.00001 50 ADAM

Model 27 0.00001 50 RMS

The first step is to set up the model architecture, in this

case using Faster R-CNN, which is configured to accept

parameters such as learning rate, optimizer, and the

number of epochs. Next, the hyperparameter space to

be explored is determined, including learning rate

[0.001, 0.0001, 0.00001], epochs [10, 25, 50], and

optimizer [SGD, ADAM, RMS]. Grid search is

implemented with various hyperparameter

combinations, resulting in a total of 27 combinations.

Each model is trained using the training dataset to build

a model that corresponds to the given hyperparameters.

Each built model is then evaluated using the validation

image dataset to achieve the best accuracy performance.

3. Results and Discussions

3.1 Training Results

Based on the training results of various developed

models, the performance of each model was evaluated

using several metrics, namely Accuracy, Precision,

Recall, F1-Score, and Loss. Table 3 shows that several

models exhibited no performance at all, with all metrics

scoring 0.000, such as models 3, 5, 6, 8, 9, 10, 12, 13,

15, 18, 19, 22, and 25. This indicates that these models

failed during the learning process or were unable to

recognize patterns within the provided data. In addition,

there are models with low performance, such as models

2 and 21, which have very low Accuracy and F1-Score

values. Several models achieved moderate

performance, with Accuracy values ranging between

0.75 and 0.95, including models 1, 4, 11, 14, 16, 20, and

24.

There are five (5) models that demonstrated excellent

performance, namely models 7, 17, 23, 26, and 27, with

Accuracy scores above 0.95, F1-Scores close to 1.000,

and very small Loss values, below 0.05. These models

were able to correctly identify the majority of the data,

resulting in only a few prediction errors. The best-

performing models were models 7, 23, and 26, which

achieved perfect scores of 1.000 in Accuracy, Precision,

Recall, and F1-Score, indicating that they were able to

recognize all data flawlessly without any errors.

Moreover, model 26 recorded the lowest Loss value

(0.023), making it the most optimal model in this

experiment.

Regarding the models that failed to demonstrate any

performance (all metrics equal to 0.000), several

hypotheses can be proposed to explain the cause. One

of the possible reasons is the inappropriate combination

of hyperparameters (such as learning rate, number of

epochs, and optimizer), which prevented the models

from learning from the data. The selection of an

excessively large learning rate, an insufficient number

of epochs, or an unsuitable optimizer may have caused

the models to be unable to capture patterns from the

data.

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

443

This hypothesis is supported by several previous

studies. Choi et al. (2019) emphasized the importance

of optimizer sensitivity to hyperparameter tuning

protocols, which can significantly influence model

performance [33]. Nurdiati et al. (2022) also reported

that optimizers such as Adam, Nadam, and AdamW

performed better than other optimizers in facial

expression recognition tasks [34]. Furthermore, Kim et

al. (2022), in the AdaFace study, demonstrated that

adaptive approaches to input quality can enhance model

performance, indicating that low-quality input or poor

initial weights may result in model failure [35]. Ali and

Kumar (2022) also highlighted the significance of

selecting the appropriate architecture and activation

functions in achieving optimal performance in face

recognition systems [36].

Thus, the appropriate selection and combination of

hyperparameters, proper data preprocessing, and

optimal choice of model architecture and optimizer are

crucial in determining the success of model training in

facial recognition tasks.

Table 3. Training Results

Model

Training
Accuracy Precision Recall F1-Score Loss

Model 1 0,857 0,462 0,429 0,500 0.214

Model 2 0,614 0,047 0,077 0,059 0.224

Model 3 0,000 0,000 0,000 0,000 0,000

Model 4 0,767 0,673 0,639 0,617 0.148

Model 5 0,000 0,000 0,000 0,000 0,000

Model 6 0,000 0,000 0,000 0,000 0,000

Model 7 0,995 0,996 0,933 0,994 0.049

Model 8 0,000 0,000 0,000 0,000 0,000

Model 9 0,000 0,000 0,000 0,000 0,000

Model 10 0,000 0,000 0,000 0,000 0,000

Model 11 0,810 0,746 0,643 0,644 0.108

Model 12 0,037 0,001 0,032 0,002 2.904

Model 13 0,000 0,000 0,000 0,000 0,000

Model 14 0,838 0,861 0,838 0,832 0.072

Model 15 0,000 0,000 0,000 0,000 0,000

Model 16 0,941 0,630 0,667 0,647 0.231

Model 17 0,983 0,982 0,980 0,981 0.047

Model 18 0,000 0,000 0,000 0,000 0,000

Model 19 0,000 0,000 0,000 0,000 0,000

Model 20 0,855 0,760 0,684 0,694 0.132

Model 21 0,519 0,275 0,278 0,227 0.137

Model 22 0,000 0,000 0,000 0,000 0,000

Model 23 0,999 1,000 0,999 0,999 0.039

Model 24 0,839 0,871 0,825 0,832 0.076

Model 25 0,000 0,000 0,000 0,000 0,000

Model 26 1,000 1,000 1,000 1,000 0.023

Model 27 0,976 0,979 0,973 0,975 0.045

This explanation reinforces that the combination of

specific parameters a small learning rate (0.00001), 50

training epochs, and the use of the Adam optimizer

significantly contributed to the optimal performance

achieved by Model 26. These findings are also

supported by several previous studies that have

demonstrated how proper parameter selection directly

influences model performance in face recognition tasks.

First, the use of the Adam optimizer has been proven

effective in various studies [37] showed that Adam

achieved up to 97.93% accuracy in a 2.5D face

recognition system based on the EfficientNet

architecture. This highlights Adam's strengths in

automatically adjusting the learning rate and avoiding

the vanishing gradient problem, making it highly

suitable for deep learning models in this domain.

Second, a small learning rate allows the model to learn

gradually and stably, enabling more precise

convergence [38] reported that a small learning rate

tends to produce lower loss values and more stable

training, particularly when used with optimizers such as

Adam or AdamW. This aligns with the results of Model

26, which demonstrated a very low loss value (0.023)

and perfect performance across all evaluation metrics.

Third, training the model for 50 epochs proved to be an

optimal choice in this experiment. This number of

epochs is sufficient for the model to capture patterns in

the data without overfitting or underfitting. Related

literature has emphasized that too few epochs may lead

to underfitting, while too many may result in

overfitting, thereby reducing the model’s

generalization ability [39], [40].

Fourth, these findings are further supported by a study

conducted [34], which concluded that Adam

outperformed other optimizers in facial expression

recognition tasks due to its ability to accelerate

convergence and maintain training stability.

Finally, the success of Model 26 can serve as a

benchmark for evaluating other models in the

experiment that showed poor or failed performance

(such as Models 3, 5, 6, etc.). The suboptimal

performance of these models is likely due to less

effective parameter configurations, such as a larger

learning rate or the use of less adaptive optimizers like

SGD without momentum.

3.2 Training Model Performance

Figure 9. Performance comparison of training models

Figure 9 shows a comparison of the best models based

on the parameters used, where a learning rate (lr) of

0.00001 provided the most optimal results compared to

0.001 or 0.0001. Models with a larger learning rate,

such as 0.001 (Model 7), achieved high accuracy

(0.995), but the resulting loss was higher than that of

models with smaller learning rates. Meanwhile, a

learning rate of 0.00001 (Model 23 and Model 26)

demonstrated the best performance, with Model 26

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

444

even achieving perfect accuracy (1.000), although there

was an initial indication of overfitting.

From the number of epochs, Model 23 with 25 epochs

was sufficient to achieve an accuracy of 0.999 with a

smaller loss (0.039). In contrast, Model 26 with 50

epochs achieved perfect results, although it was initially

suspected of overfitting. However, after testing on the

testing data, Model 26 demonstrated the highest

evaluation metrics compared to other models,

indicating that this model was still able to generalize

well to unseen data.

The choice of optimizer also affects the model's

performance. ADAM proved to be the best choice, as

seen in Model 23 and Model 26, which achieved

optimal results with low loss. The use of the SGD

optimizer (Model 7) was still quite good but less

optimal compared to ADAM, while RMSProp (Model

27) showed a performance with an accuracy of 0.976,

indicating that this optimizer was less effective in this

case.

Although Model 23 was initially considered the best

choice based on training results, testing evaluation

showed that Model 26 is the most optimal model, as it

has a small learning rate (0.00001), a relatively high

number of epochs (50), and the ADAM optimizer,

which helped the model learn better without losing

generalization. The small learning rate allowed the

model to update weights gradually without

overshooting the optimal solution, while the higher

number of epochs enabled the model to capture more

complex patterns. The lower loss (0.023) compared to

other models also indicates that Model 26 is more stable

and has better optimization.

3.3 Testing Model Performance

Figure 10 shows a comparison between Model 7

(baseline) and Model 26 (best), indicating that Model

26 performs better in all evaluation metrics: accuracy,

precision, recall, and F1-Score. The key difference

between these two models lies in the choice of learning

rate and optimizer, which have a significant impact on

the stability and effectiveness of the model's training

process.

In Model 7, a learning rate of 0.001 is used with the

SGD (Stochastic Gradient Descent) optimizer. This

relatively large learning rate causes the weight updates

to be made with larger steps, which risks the model

skipping the optimal point and struggling with

convergence. Additionally, the use of SGD as the

optimizer has the drawback of high gradient

oscillations, particularly if not combined with the

proper momentum. This can cause the model to struggle

in finding the optimal loss minimum, resulting in

suboptimal performance.

Figure 10. Performance comparison of testing models

Meanwhile, Model 26 uses a much smaller learning rate

of 0.00001 and the ADAM (Adaptive Moment

Estimation) optimizer. The smaller learning rate allows

for a smoother and more stable learning process,

avoiding the risk of overshooting during the

optimization process. The use of ADAM as the

optimizer also offers advantages, as it combines the best

features of Momentum SGD and RMSProp, making it

more adaptive in adjusting learning based on the

gradients obtained. ADAM has a mechanism that

accelerates convergence without experiencing high

oscillations like SGD, making it a better choice for deep

learning models like Faster R-CNN.

Although both models use the same number of epochs

(50), the performance difference is significantly

influenced by the choice of learning rate and optimizer.

The Figure 10 shows that Model 26 achieves higher

values for accuracy, precision, recall, and F1-Score

compared to Model 7, indicating that this model is more

optimal in recognizing faces with a better balance

between precision and recall. Therefore, Model 26 is

more effective at detecting faces without making too

many mistakes in classifying faces as correct or

incorrect.

3.4 Model Evaluation

Table 4 presents the Classification Report, which

displays the evaluation of the model's performance in

facial recognition across various individuals. The

evaluation metrics used include precision, recall, F1-

Score, and Support for each class (individual name).

Based on the information provided earlier, these are the

evaluation results using Model 26, which achieved an

accuracy of 1.000 on the training data. However,

despite the model performing exceptionally well during

training, there are variations in performance during

testing, as seen in the values of precision, recall, and F1-

Score for different individuals.

Images with good performance, such as those of

Dwayne Johnson, Ellen Degeneres, and Lisa Kudrow,

show precision, recall, and F1-Score values of 1.00,

meaning the model recognizes them extremely well

without errors. This high performance may be due to

distinct facial features, such as unique facial structures

that are easily distinguishable from other individuals.

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

445

Additionally, the consistent image quality, with good

lighting and high resolution, enables the model to

capture facial features accurately.

Table 4. Classification Report

Name Precision Recall F1-Score Support

Akshay Kumar 0.62 0.71 0.67 7
Alexandra Daddario 0.83 0.94 0.88 16

Alia Bhatt 0.82 0.78 0.80 18
Amitabh Bachchan 1.00 0.93 0.96 14

Andy Samberg 0.82 0.88 0.85 16
Anushka Sharma 0.88 0.93 0.90 15

Billie Eilish 1.00 0.95 0.97 19

Brad Pitt 0.84 0.84 0.84 19

Camila Cabello 0.95 0.83 0.88 23

Charlize Theron 0.93 0.68 0.79 19

Claire Holt 0.76 0.95 0.84 20

Courtney Cox 0.93 0.93 0.93 14
Dwayne Johnson 1.00 1.00 1.00 12

Elizabeth Olsen 0.91 1.00 0.95 21

Ellen Degeneres 1.00 1.00 1.00 15

Henry Cavill 0.90 0.95 0.92 19

Hrithik Roshan 0.90 0.90 0.90 20

Hugh Jackman 0.83 0.87 0.85 23

Jessica Alba 0.94 0.89 0.91 18

Kashyap 0.67 1.00 0.80 4

Lisa Kudrow 1.00 1.00 1.00 9

Margot Robbie 0.92 0.79 0.85 14

Marmik 1.00 0.80 0.89 5
Natalie Portman 0.86 1.00 0.93 19
Priyanka Chopra 0.91 0.88 0.89 24
Robert Downey Jr 0.95 0.91 0.93 22

Roger Federer 0.94 0.94 0.94 18

Tom Cruise 0.71 0.77 0.74 13
Vijay Deverakonda 0.96 0.89 0.92 27

Virat Kohli 0.88 0.78 0.82 9

Zac Efron 1.00 1.00 1.00 21

Accuracy 0.90 513

Macro Avg 0.89 0.89 0.89 513

Weighted Avg 0.90 0.90 0.90 513

On the other hand, images with lower performance,

such as those of Akshay Kumar, Kashyap, and Charlize

Theron, exhibit lower values for precision, recall, and

F1-Score compared to other individuals. One of the

main factors contributing to this decreased performance

is the smaller number of images in the dataset, with

Akshay Kumar having only 7 images and Kashyap 5,

limiting the model's ability to learn facial patterns

effectively. Additionally, other factors such as

significant pose variation, uneven lighting, or low-

quality images can further complicate accurate

identification.

From this analysis, the model performs very well on

individuals with distinct facial features, good image

quality, and sufficient data. However, individuals with

lower-quality images, significant pose variation, or

limited data experience a drop in accuracy. This

indicates that while Model 26 shows high performance,

there are still factors within the dataset that could be

improved to enhance its overall performance.

Improving dataset diversity, image quality, and

ensuring a sufficient number of samples for each

individual could help the model generalize better across

various conditions.

Figure 11. Confusion matrix

From the evaluation results, the model has an accuracy

of 0.90, meaning that 90% of the model's predictions

match the correct labels. Overall, the macro average and

weighted average values are 0.89 and 0.90,

respectively, indicating that the model performs

relatively consistently across all classes. To ensure

dataset balance, a sample distribution analysis was

conducted. The dataset consists of 31 classes, with the

number of samples per class ranging from 4 to 27

images. This analysis revealed that the dataset is

imbalanced, with some classes having fewer samples

than others. Therefore, a weighted loss method was

employed to ensure that classes with fewer samples are

proportionally considered during model training.

Additionally, the model was evaluated using

Intersection over Union (IoU). The best model showed

an average IoU of 0.902, while models with lower

performance had an IoU around 0.861.

The confusion matrix in Figure 11 shows the

performance of Model 26 for face recognition in

classifying 31 different classes. Each row of the matrix

represents the true labels, while each column represents

the predicted labels by the model. The values on the

main diagonal represent the number of correct

predictions (true positives), with higher values

indicating better performance in recognizing the correct

faces. For example, for the class Elizabeth Olsen, the

model successfully identified her face 21 times,

indicating good performance for that particular class.

However, there are some misclassifications indicated

by the numbers outside the main diagonal. For example,

for the class Akshay Kumar, although there were 5

correct predictions, the model also misclassified his

face into other classes multiple times. These

misclassifications can occur due to similarities in faces

between individuals or insufficient training data, which

limits the model's ability to distinguish facial features

accurately.

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

446

In terms of visualization, the darker the color of the

boxes on the main diagonal, the higher the number of

correct predictions in that category. Conversely, lighter

colors outside the main diagonal indicate small

mispredictions. Overall, the model performs quite well

as most predictions are on the main diagonal, but there

are still a few errors that need to be addressed.

Figure 12 shows the testing results of the best model,

Model 26, in detecting and classifying faces of several

individuals. Each sample in the image displays a

person's face with the model's prediction and the

original label. Out of the six test images, Model 26

correctly predicted the faces, and the generated

bounding boxes accurately identified the faces

corresponding to the original labels. This indicates that

Model 26 performs very well in face recognition, which

aligns with the previous evaluation results where the

model achieved high precision, recall, and F1-Score

(even reaching 1.00 for some individuals).

Figure 12. Face recognition results using Model 26

This high accuracy can be attributed to several factors,

such as distinct facial features of the individuals,

uniform lighting in the images, and sufficient data

during training. For example, the faces of Camila

Cabello and Zac Efron are recognized very well, likely

because the model has been trained on a sufficient

number of images of them with representative

variations.

However, even though this model shows excellent

results, it is important to consider the potential for

dataset bias for instance, if certain individuals have

fewer images in the training data, the model might not

perform as well for them. To further improve

generalization, additional data could be added to ensure

the model remains accurate under various lighting

conditions, poses, and facial expressions.

As shown in Figure 13, the misclassification of faces

observed in the image is likely caused by several factors

related to the dataset used. One of the primary factors is

data imbalance, in which the number of images for each

individual in the dataset is unevenly distributed. If

certain individuals have significantly more samples

than others, the model tends to classify faces with

similar features into a more dominant category during

training. This can lead to misidentification, particularly

when the model encounters a face that is

underrepresented in the training data.

Figure 13. Face Recognition errors

Additionally, similar facial features between different

individuals are another major cause of

misclassification. Face recognition models often rely on

features such as facial shape, bone structure, or

accessories (e.g., glasses and hats) to make

classifications. Misclassifications, such as identifying

Brad Pitt as Akshay Kumar or Tom Cruise as Henry

Cavill, can occur due to the strong resemblance between

their facial features in the images used. If the model is

not trained with a sufficiently diverse set of images for

each individual, these errors are more likely to occur.

Another influencing factor is the variation in lighting

conditions and facial angles within the dataset. If the

model is trained using images with uniform lighting and

limited facial angles, its performance declines when

recognizing faces under dim lighting conditions or from

different angles. As seen in some misclassification

examples, faces captured under well-lit conditions are

easier to recognize than those captured under dim

lighting or tilted positions. This indicates that the model

struggles to generalize variations in facial appearance

across different conditions.

4. Conclusions

The results of this study indicate that the combination

of hyperparameters in "Face Recognition Using Faster

R-CNN Architecture with Hyperparameter

Optimization," such as learning rate, number of epochs,

and optimizer type, significantly influences the

performance of the model. The model with a learning

rate of 0.00001, 50 epochs, and Adam optimizer (Model

26) achieved the best performance based on evaluation

metrics such as accuracy, precision, recall, and F1-score

on the test data.

From the confusion matrix, it is evident that Model 26

has a high accuracy in classifying faces, with minimal

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

447

errors in distinguishing between classes of faces that

share similar lighting or expressions. This indicates that

the model is effective in recognizing facial patterns but

still faces challenges in differentiating faces with

similar features. The IoU calculation showed that

Model 26 had an average IoU value of 0.902. This

indicates that the bounding boxes generated by the

detection process closely matched the ground truth. The

higher the IoU value, the more accurate the model is in

placing the face detection boxes at the correct location.

Visual analysis of the detection results showed that the

model performed better in recognizing faces under good

lighting conditions and when the face was in a

straightforward position, as shown in Figure 12.

However, under low-light conditions or when the face

is tilted, detection errors still occur. This suggests that

image characteristics such as lighting, angle, and image

resolution significantly affect the performance of the

model. From various experiments, it was observed that

the selection of a learning rate of 0.00001 played a

crucial role in determining the stability of the training

process. A larger learning rate tends to make it difficult

for the model to converge because of drastic weight

changes, whereas a smaller learning rate slows down

the learning process. A value of 0.00001 provides an

optimal balance, allowing the model to learn gradually

without overfitting or underfitting. Furthermore, the use

of the Adam optimizer improves the training stability

compared to SGD.

Overall, this study demonstrates that hyperparameter

optimization in the Faster R-CNN architecture

significantly impacts facial recognition performance.

Proper hyperparameter selection can improve the

accuracy, ensure optimal bounding box detection, and

adapt the model to varying image characteristics.

Acknowledgment

The author would like to thank the LPPM at Institut

Teknologi Nasional (Itenas) Bandung for supporting

this research project. The author declares no conflict of

interest.

References

[1] F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper,

“ElasticFace: Elastic Margin Loss for Deep Face

Recognition,” IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. Work., vol. 2022-June, pp. 1577–1586,

2022, doi: 10.1109/CVPRW56347.2022.00164.

[2] M. Wang and W. Deng, “Deep face recognition: A survey,”

Neurocomputing, vol. 429, pp. 215–244, 2021, doi:

10.1016/j.neucom.2020.10.081.

[3] P. Payal and M. M. Goyani, “A comprehensive study on face

recognition: methods and challenges,” Imaging Sci. J., vol.

68, no. 2, pp. 114–127, 2020, doi:

10.1080/13682199.2020.1738741.

[4] M. Feurer and F. Hutter, "Parameter Optimization, (eds)

Automated Machine Learning," The Springer Series on

Challenges in Machine Learning. Springer, Cham., doi:

10.1007/978-3-030-05318-5_1.

[5] M. T. H. Fuad et al., “Recent advances in deep learning

techniques for face recognition,” IEEE Access, vol. 9, no.

July, pp. 99112–99142, 2021, doi:

10.1109/ACCESS.2021.3096136.

[6] H. Yan, X. Wang, Y. Liu, Y. Zhang, and H. Li, “A new face

detection method based on Faster RCNN,” J. Phys. Conf.

Ser., vol. 1754, no. 1, 2021, doi: 10.1088/1742-

6596/1754/1/012209.

[7] M. Zhou, B. Li, and J. Wang, “Optimization of

Hyperparameters in Object Detection Models Based on

Fractal Loss Function,” Fractal Fract., vol. 6, no. 12, 2022,

doi: 10.3390/fractalfract6120706.

[8] J. Selvaganesan et al., “Enhancing face recognition

performance: a comprehensive evaluation of deep learning

models and a novel ensemble approach with hyperparameter

tuning,” Soft Comput., 2024, doi: 10.1007/s00500-024-

09954-y.

[9] Kaggle, “Face Recognition Dataset,” 2021, [Online].

Available:

https://www.kaggle.com/datasets/vasukipatel/face-

recognition-dataset/data

[10] R. J.Hassan and A. M. Abdulazeez, “Deep Learning

Convolutional Neural Network for Face Recognition: A

Review,” Int. J. Sci. Bus., vol. 5, no. 2, pp. 114–127, 2021,

doi: 10.5281/zenodo.4471013.

[11] L. Alzubaidi et al., "Review of deep learning: concepts, CNN

architectures, challenges, applications, future directions,"

Journal of Big Data, vol. 8, no. 53, 2021, doi:

10.1186/s40537-021-00444-8.

[12] S. B. Mane, N. Shah, V. Garje and A. Tejwani, "A

Comprehensive Survey of Face Recognition

Advancements," 2024 8th International Conference on

Computing, Communication, Control and Automation

(ICCUBEA), Pune, India, 2024, pp. 1-5, doi:

10.1109/ICCUBEA61740.2024.10774962.

[13] L. Li, X. Mu, S. Li, and H. Peng, “A Review of Face

Recognition Technology,” IEEE Access, vol. 8, pp. 139110–

139120, 2020, doi: 10.1109/ACCESS.2020.3011028.

[14] J. Liu, “Face recognition technology based on ResNet-50,”

Appl. Comput. Eng., vol. 39, no. 1, pp. 160–165, 2024, doi:

10.54254/2755-2721/39/20230593.

[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,

no. 6, pp. 1137–1149, Jun. 2015, doi:

10.1109/TPAMI.2016.2577031.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–

778, 2016, doi: 10.1109/CVPR.2016.90.

[17] B. Mandal, A. Okeukwu, and Y. Theis, “Masked Face

Recognition using ResNet-50,” arXiv, 2021, doi:

10.48550/arXiv.2104.08997

[18] G. Ghiasi, T. Y. Lin, and Q. V. Le, “NAS-FPN: Learning

scalable feature pyramid architecture for object detection,”

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., pp. 7029–7038, 2019, doi:

10.1109/CVPR.2019.00720.

[19] K. H. Shih, C. Te Chiu, J. A. Lin, and Y. Y. Bu, “Real-Time

Object Detection with Reduced Region Proposal Network

via Multi-Feature Concatenation,” IEEE Trans. Neural

Networks Learn. Syst., vol. 31, no. 6, pp. 2164–2173, 2020,

doi: 10.1109/TNNLS.2019.2929059.

[20] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput.

Vis., pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169.

[21] S. A. K. Mohammed, A. H. A. Rahman, M. A. Bakar, and

M. Z. A. Razak, “An Efficient Intersection Over Union

Algorithm with Angle Orientation for an Improved 3D

Object Detection,” 6th IEEE Int. Conf. Artif. Intell. Eng.

Technol. IICAIET 2024, pp. 312–316, 2024, doi:

10.1109/IICAIET62352.2024.10730667.

[22] J. Hosang, R. Benenson, and B. Schiele, “Learning non-

maximum suppression,” Proc. - 30th IEEE Conf. Comput.

Vis. Pattern Recognition, CVPR 2017, pp. 6469–6477, 2017,

doi: 10.1109/CVPR.2017.685.

[23] M. -C. Roh and J. -y. Lee, "Refining faster-RCNN for

Jasman et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

448

accurate object detection," 2017 Fifteenth IAPR

International Conference on Machine Vision Applications

(MVA), Nagoya, Japan, 2017, pp. 514-517, doi:

10.23919/MVA.2017.7986913.

[24] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and

S. Savarese, “Generalized intersection over union: A metric

and a loss for bounding box regression,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 658–

666, 2019, doi: 10.1109/CVPR.2019.00075.

[25] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A

Review of Algorithms and Applications,” arXiv, 2020, doi:

10.48550/arXiv.2003.05689

[26] A. Prasetya, C. Fatichah, and U. L. Yuhana, “Parsing the

semantic structure of Indonesian math word problems using

the recursive neural network,” Regist. J. Ilm. Teknol. Sist.

Inf., vol. 5, no. 2, pp. 106–115, 2019, doi:

10.26594/register.v5i2.1537.

[27] C. Hu, P. Coen-Pirani, and X. Jiang, “Empirical Study of

Overfitting in Deep FNN Prediction Models for Breast

Cancer Metastasis,” arXiv, 2022, doi:

10.48550/arXiv.2208.02150.

[28] A. Johny and K. N. Madhusoodanan, “Dynamic Learning

Rate in Deep CNN Model for Metastasis Detection and

Classification of Histopathology Images,” Comput. Math.

Methods Med., vol. 2021, 2021, doi: 10.1155/2021/5557168.

[29] D. Irfan, T. S. Gunawan, and W. Wanayumini, “Comparison

Of SGD, Rmsprop, and Adam Optimation In Animal

Classification Using CNNs,” Int. Conf. Inf. Sci. Technol.

Innov., vol. 2, no. 1, pp. 45–51, 2023, doi:

10.35842/icostec.v2i1.35.

[30] M. Breton and P. Eng, “Overview of two performance

metrics for object detection algorithms evaluation,” Def. Res.

Dev. Canada Ref. Doc., no. December, 2019.

[31] R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A Survey on

Performance Metrics for Object-Detection Algorithms,” Int.

Conf. Syst. Signals, Image Process., vol. 2020-July, no. July,

pp. 237–242, 2020, doi:

10.1109/IWSSIP48289.2020.9145130.

[32] Kaggle, “Face Recognition with Resnet50.” [Online].

Available:

https://www.kaggle.com/code/sushanshrestha0690/face-

recognition-with-resnet50

[33] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and

G. E. Dahl, “On Empirical Comparisons of Optimizers for

Deep Learning,” arXiv, 2020, doi:

10.48550/arXiv.1910.05446.

[34] S. Nurdiati, M. K. Najib, F. Bukhari, R. Revina, and F. N.

Salsabila, “Performance Comparison Of Gradient-Based

Convolutional Neural Network Optimizers For Facial

Expression Recognition,” BAREKENG: Journal of

Mathematics and Its Applications, vol. 16, no. 3, pp. 927–

938, 2022, doi: 10.30598/barekengvol16iss3pp927-938.

[35] M. Kim, A. K. Jain, and X. Liu, “AdaFace : Quality Adaptive

Margin for Face Recognition” arXiv, 2023, doi:

10.48550/arXiv.2204.00964.

[36] M. E. A. Ali and D. Kumar, “The Impact of Optimization

Algorithms on The Performance of Face Recognition Neural

Networks,” J. Adv. Eng. Comput., vol. 6, no. 4, p. 248, 2022,

doi: 10.55579/jaec.202264.370.

[37] M. E. Teo, L. Y. Chong, S. C. Chong, and P. Y. Goh, “2.5D

Face Recognition System using EfficientNet with Various

Optimizers,” Int. J. Informatics Vis., vol. 8, no. 4, pp. 2388–

2399, 2024, doi: 10.62527/joiv.8.4.3030.

[38] S. Hamid, H. Madni, H. Muhammad, F. Shahzad, S. Shah,

and M. Faheem, “Exploring optimizer efficiency for facial

expression recognition with convolutional neural networks,”

The Journal of Engineering, vol. 2025, no. 1, pp. 1–29,

2025, doi: 10.1049/tje2.70060.

[39] D. Bashir, G. D. Montañez, S. Sehra, P. S. Segura, and J.

Lauw, “An Information-Theoretic Perspective on

Overfitting and Underfitting,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 12576 LNAI, pp. 347–358, 2020, doi:

10.1007/978-3-030-64984-5_27.

[40] O. A. Montesinos López, A. Montesinos López, and J.

Crossa, "Multivariate Statistical Machine Learning Methods

for Genomic Prediction," Springer, 2022. doi: 10.1007/978-

3-030-89010-0.

