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Abstract  

The optimization of transportation problems plays a significant role in supply chain management (SCM), where minimizing 

costs and improving efficiency are mandatory. The transition from manual methods to advanced computational approaches, 

such as metaheuristic algorithms, enhances decision-making and consolidates operations within SCM. Malaysia's 

transportation system has been confronting crucial challenges, characterized by congested roadways, limited rail connectivity 

and inefficient port operations, which interfere with the fluidity of goods and supply chain efficiency. This highlights the critical 

need for optimization techniques to enhance competitiveness and efficiency in the evolving SCM landscape. The research aims 

to explore the application of metaheuristic algorithms, with the Modified Distribution (MODI) method as the benchmark while 

employing the NorthWest Corner Method (NWCM) to obtain an initial feasible solution, to evaluate their performance in 

optimizing transportation problems. Metaheuristic algorithms, specifically Simulated Annealing (SA) and Particle Swarm 

Optimization (PSO), are implemented to explore alternative near-optimal solutions and assess the performance in terms of 

cost accuracy and computational efficiency. The results indicate that SA achieves a deviation of 12.92% in cost accuracy 

compared to the optimal MODI method, making it suitable for scenarios where precision is critical, whereas PSO which is 

296.92 seconds faster, is ideal for time-sensitive applications. Finally, this study encourages future studies to explore additional 

algorithms, external factors and broader applications for enhanced real-world relevance and scalability to accentuate the 

potential of metaheuristic algorithms. 
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1. Introduction  

Optimization of transportation problems has 

traditionally been reckoned on manual calculations and 

expert judgment to determine the most efficient routes 

with lowest transportation costs [1]. These methods, 

though effective in the past, were labor-intensive and 

depended heavily on years of experience, which can be 

cumbersome and occasionally out of date. As supply 

chain management (SCM) sits at the core of a business's 

functional divisions, it plays a critical role in balancing 

operational efficiency with customer satisfaction, 

ultimately driving profitability [2]. Therefore, modern 

practices and technologies that outperform 

conventional methods by 40-80% across key criteria are 

necessary to be implemented in the transportation and 

supply chain industry for smooth processes and 

efficiency enhancement [3]. However, there is limited 

research comparing the practical applicability of 

metaheuristics algorithms against optimization methods 

like MODI within the context of Malaysia’s SCM 

challenges. 

In recent years, metaheuristic algorithms are 

increasingly applied to enhance SCM optimization. [4] 

and [5] highlighted Simulated Annealing (SA)'s 

popularity due to its straightforward implementation 

and effective convergence properties. [6] further 

supported this view, illustrating that SA’s global search 

capabilities make it a strong contender against other 

metaheuristic techniques like Ant Colony Optimization 

(ACO). Apart from that, Particle Swarm Optimization 

(PSO), inspired by social behavior, excels in solving 

large-scale transportation problem (TP), as 

demonstrated by [7] through novel variations balancing 

exploration and exploitation. These advancements 

https://doi.org/10.29207/resti.v9i3.6513
https://creativecommons.org/licenses/by/4.0/
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emphasize the emerging methodologies in SCM 

optimization, highlighting TP's real-world applicability 

and the significance of algorithmic approaches in cost 

reduction and operational efficiency.  

Malaysia's transportation system faces multifaceted 

challenges, including congested roadways, constrained 

rail connectivity and suboptimal port operations, all of 

which obstruct the flow of goods and supply chain 

efficiency [8]. For instance, berth delays in Port Klang 

due to congestion have not only elevated shipping costs 

but also disrupt supply chain [9]. These inefficiencies 

have a direct effect on Malaysian enterprises' ability to 

compete on the international stage by raising logistical 

costs and impeding timely delivery [10]. Moreover, the 

reliance on traditional, labor-intensive transportation 

management techniques further intensifies the issue, 

highlighting the urgent need for advanced optimization 

methods to enhance efficiency and adaptability in the 

supply chain [11].  

This study aims to address these challenges by 

exploring both optimization and metaheuristic 

techniques for solving transportation problems. It 

focuses on determining the initial feasible solution 

using the NorthWest Corner Method (NWCM) and 

achieving the optimal solution through the Modified 

Distribution (MODI) method to serve as a benchmark 

for evaluating metaheuristic algorithms. Additionally, 

metaheuristic algorithms, such as Simulated Annealing 

(SA) and Particle Swarm Optimization (PSO), will be 

applied to obtain near-optimal solutions for 

transportation problems involving supply, demand and 

cost matrices. The research then compares the 

performance of these metaheuristic algorithms against 

the benchmark optimal solutions provided by MODI 

methods, with the goal of identifying approaches that 

obtain results closest to the optimal outcomes. 

2. Methods 

2.1 Data Collection 

This research utilized two distinct supply chain datasets 

to investigate the optimization of costs in transportation 

problem. The samples of the data from the website are 

shown on Figure 1. 

 

(a) 

 

(b) 

 

Figure 1.  The sample data from (a) Fashion and beauty startup (b) Global microchip, illustrating the supply chain analysed for optimization 

The mandatory dataset, focused on a Fashion and 

Beauty startup, includes 24 variables and 100 samples. 

The dataset provides insights into supply chain analysis 

and is accessible in Kaggle platform at 

https://www.kaggle.com/code/amirmotefaker/supply-

chain-analysis. In this dataset, the ‘Supplier name’ 

refers to source, while the ‘Location’ indicates the 

destination. Stock levels and order quantities represent 

supply and demand values, respectively. The variables 

and descriptions are detailed in Table 1. 

https://www.kaggle.com/code/amirmotefaker/supply-chain-analysis
https://www.kaggle.com/code/amirmotefaker/supply-chain-analysis
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To ensure the validity of the research, a supplementary 

dataset was also incorporated. This dataset, 

https://www.kaggle.com/datasets/anisseezzebdi/supply

-chain-logistics-problem, was provided by a global 

microchip producer. It contains data on 9,215 outbound 

orders requiring routing through a supply chain network 

comprising 19 warehouses, 11 origin ports and one 

destination port. The data is organized into seven tables, 

each highlighting different components of the logistics 

network. A summary of these tables is presented in 

Table 2. 

Table 1. Data description of fashion and beauty startup dataset 

Features Descriptions Data Type 

Stock Level Quantities of stock available at 

each origin or hub. 

Numerical 

Order 

Quantities 

The number of goods 

requested to be shipped to 

each destination. 

Numerical 

Supplier 

Name 

The name of suppliers 

associated with the 

transportation process. 

Categorical 

Location Destinations Categorical 

Costs Transportation costs between 

origins and destinations for 

goods. 

Numerical 

Table 2. Data description of global microchip dataset 

Tables Descriptions 

FreightRates All available couriers, the weight gaps for 

each individual lane and rates associated. 

PlantPorts The allowed links between the warehouses 

and shipping ports in real world. 

ProductsPerPlant All supported warehouse-product 

combinations. 

VmiCustomers All special cases, where warehouse is only 

allowed to support specific customer 

WhCapacities Warehouse capacities measured in number of 

orders per day. 

WhCosts The cost associated in storing the products in 

given warehouse measured in dollars per unit. 

2.2 Data Preprocessing 

The main dataset used was thoroughly examined for 

data quality, with no missing values, duplicate entries 

or outliers identified, ensuring its readiness for analysis. 

For the supplementary global microchip dataset, while 

no missing values were found, three duplicate entries 

were detected and removed to maintain the data 

integrity. Both datasets were examined for outliers 

using the 95th percentile as a capping threshold, and 

revealed no outliers.  

The cleaned supplementary dataset was then updated in 

the ‘FreightRates’ variable and synchronized with the 

corresponding dictionary entry to ensure consistency 

across the data structure. 

2.3. Model Formulation 

The transportation problem (TP) focuses on efficiently 

moving goods from sources to destinations while 

meeting supply and demand constraints and it is widely 

applied in operations research [12]. Solving this 

problem involves two phases: determining the initial 

basic feasible solution (IBFS) and optimizing it for the 

best outcome [13], which in this research the two 

methods are NWCM and MODI respectively.  

The optimal solution obtained from the TP is then 

serves as a benchmark to evaluate the effectiveness of 

metaheuristic algorithms, specifically Simulated 

Annealing (SA) and Particle Swarm Optimization 

(PSO). The mathematical formulation of general TP is 

as shown in Equation 1 [14]: 

∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1                 (1) 

Subject to Equations 2 and 3. 

∑ 𝑥𝑖𝑗
𝑚
𝑖=1 = 𝐾𝑗, 𝑗 = 1,2,3, … 𝑛              (2) 

∑ 𝑥𝑖𝑗
𝑛
j=1 = 𝑅𝑖 , i = 1,2,3, … m              (3) 

𝑥𝑖𝑗is the number of units transported from source 𝑖 to 

destination 𝑗, 𝐶𝑖𝑗is the cost per unit goods transported 

from source 𝑖 to destination 𝑗, 𝑅𝑖is the total supply from 

all sources 𝑖, and 𝐾𝑗   is the total demand from all 

destination 𝑗 

2.4 Model Development 

The NorthWest Corner Method provides an initial 

feasible solution for the TP, which is then optimized 

using the Modified Distribution method to minimize 

costs. Metaheuristic algorithms which are Simulated 

Annealing and Particle Swarm Optimization are later 

applied to explore alternative near-optimal solutions as 

shown in Equations 4 and 5. 

Firstly, NWCM is the IBFS used as the collection of arc 

flows that fulfil every demand condition without 

providing more from any origin node than the supply 

available [15]. The allocation process is done based on 

the criteria when supply equals demand and is looped 

until all quantities are fully allocated. 

After getting IBFS by NWCM, MODI method will be 

applied to obtain the optimal solution. In this step, 

improvement index for unallocated cells is computed 

and iteratively adjust allocations until no further 

improvements can be made (no non-negative values 

exist), indicating the optimal solution is reached [16].  

Next, metaheuristic algorithms will be utilized to obtain 

near-optimal solutions for the TP. According to [5], SA 

algorithm can be divided into 4 steps which are 

described in Figure 2(a). Whereas PSO excels in two 

key areas: exploration and exploitation. In the 

exploration phase, the algorithm searches the space for 

promising regions, while in the exploitation phase, it 

fine-tunes the search to find the global optimum [17]. 

The pseudocode of PSO algorithm has been 

summarized in Figure 2(b). 

Vi(t + 1) = ω. Vi(t) + c1r1(Pi,best − Xi) +

c2r2(Pg,best − Xi)                                                      (4) 

Xi(t + 1) = Xi(t) + Vi(t + 1)                                  (5) 

𝑉𝑖 is the current velocity of the particle, 
𝜔 is the inertia weight, c1, c2 is the positive constants 

https://www.kaggle.com/datasets/anisseezzebdi/supply-chain-logistics-problem
https://www.kaggle.com/datasets/anisseezzebdi/supply-chain-logistics-problem
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known as acceleration coefficient, r1, r2 is the random 

variables with uniform distribution between zero and 

one, 𝑋𝑖 is the position of the particle at iteration t,  is the  

best position of the particle until the iteration 𝑡, and  
𝑃𝑔,𝑏𝑒𝑠𝑡  is the finest position of the whole swarm until 

the same iteration. 

 

(a) 

 

(b) 

Figure 2.  Pseudocode of Algorithms (a) SA [19]; (b) PSO [18], 

detailing the algorithmic structure applied in optimization 

2.5 Sensitivity Analysis 

The sensitivity analysis evaluates the SA algorithm's 

performance by varying the initial temperature using an 

exponential cooling rate by Equation 6 to optimize 

solution quality and convergence behavior.  

𝑇𝑒𝑚𝑝𝑛𝑒𝑤 = 𝑇𝑒𝑚𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒                 (6) 

𝑇𝑒𝑚𝑝𝑛𝑒𝑤 is the updated (new) temperature after the 

current iteration, 𝑇𝑒𝑚𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the temperature at the 

current iteration. 

This is grounded in the concept that SA is a stochastic 

optimization technique modelled after the annealing 

process in metallurgy where materials slowly cooled to 

achieve a well-ordered crystalline state. By employing 

thermodynamic principle, SA allows both uphill and 

downhill movements, aiming to escape local optima 

and find a global minimum. A high initial temperature 

enables broad exploration of solution spaces, including 

those with higher costs to avoid getting trapped in local 

minima while gradual cooling focused on fine-tuning 

the current solutions [18]. 

Furthermore, the model is tested on a larger dataset to 

assess its scalability and ensure its efficiency in real-

world applications. 

2.6 Comparative Analysis 

In the comparative analysis phase, the effectiveness of 

the metaheuristic methods was evaluated against the 

MODI method to determine which algorithm provides 

solutions closest to MODI’s optimal results.  

Based on the analyses conducted, the findings indicate 

that the selected metrics: convergence rate, execution 

time and optimized cost demonstrated the highest 

significance and relevance. These metrics serve as key 

performance indicators, offering valuable insights for 

researchers addressing transportation problems within 

the field of SCM. The comparison focused specifically 

on the performance of the SA and PSO algorithms. 

3. Results and Discussions 

3.1 Preliminary Analysis 

The descriptive statistics of Price, Stock Levels, Order 

Quantities and Costs have been tabulated in Table 3, 

providing key insights into variability and operational 

challenges in the supply chain. The high-cost variability 

(standard deviation of 258.30) stresses the importance 

of minimizing transportation costs, making costs 

reduction a primary objective in this TP. 

Table 3. Descriptive statistics for variables in the supply chain 

dataset 

 Price Stock 

levels 

Order 

quantities 

Costs 

Mean 49.4625 47.7700 49.2200 529.2458 

Standard 

Deviation 
31.1682 31.3694 26.7844 258.3017 

Min 1.6999 0 1.0000 103.9162 

Max 99.1713 100.0000 96.0000 997.4135 

 
To further explore the relationships among these key 

variables, the correlation matrix was analyzed and is 

presented in Figure 3. The correlation matrix highlights 

the strength and direction of relationships between 

variables. The general low correlations among variables 

suggest the complexity of real-world supply chains 

influenced by external factors. Specifically, the positive 

correlation (0.24) between costs and lead times marks 

the potential for higher costs due to extended lead times, 

such as increased holding expenses or expedited 

shipping [19]. 

Based on Figure 4, the relationships between suppliers 

and their respective locations can be visualized. The 

plot reveals overlapping suppliers serving multiple 

locations, indicating opportunities for optimizing routes 

and costs. Suppliers with dense interconnections may 

benefit from logistical models to reduce complexities, 

making them suitable for route or cost optimization 

models. 
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Figure 3. Correlation matrix of variables in supply chain dataset 

 

Figure 4. The Supplier and Location Connections 

3.2 The Modified Distribution (MODI) Method 

The MODI method optimizes the TP, minimizing costs 

to an objective function value of 2,169,315.56, identical 

to the NWCM result. Table 4 details the allocations 

from suppliers to destinations, with zero denote no 

allocation for that particular path. 

Table 4. Allocations for each route via MODI method 

Route Bangalore Chennai Delhi Kolkata Mumbai 

Supplier 

1 

167 205 0 0 809 

Supplier 

2 

0 904 78 206 0 

Supplier 

3 

0 0 655 0 0 

Supplier 

4 

0 0 0 1062 0 

Supplier 

5 

0 0 1 0 897 

Dummy 0 2 0 2 146 

Supplier 1 primarily supplies Bangalore, Chennai and 

Mumbai, Supplier 2 distributes across Chennai, Delhi 

and Kolkata, while Supplier 3 focus solely on Delhi. 

Supplier 4 exclusively supplies 1062 units to Kolkata 

and Supplier 5 mainly supplies Mumbai, highlighting 

distinct supply patterns critical for optimizing resource 

allocation and transportation efficiency.  

3.3 Simulated Annealing (SA) 

The SA algorithm optimized the TP to a cost of 

2,499,849.97, slightly higher than the MODI 

benchmark. The allocation matrix is tabulated in Table 

5.  

The algorithm utilizes a starting temperature of 1000 

determined through preliminary tests which aligns with 

optimal convergence behaviour within acceptable 

runtime limits to enable broad exploration and avoid 

local minima [20], while the final temperature of one 

ensures convergence through gradual cooling. A 

cooling rate of 0.95 balances exploration and 

exploitation, reducing the risk of premature 

convergence [18]. These parameters are fixed for this 

stage, with sensitivity analysis done to oversee the 

temperature impact to follow in Subtopic 3.5.  
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Table 5. Allocations for each route via SA method 

Route Bangalore Chennai Delhi Kolkata Mumbai 

Supplier 

1 

549.0 550.4 0 0 42.6 

Supplier 

2 

141.1 41.3 0 670.5 169.1 

Supplier 

3 

284.5 113.7 49.0 143.2 63.7 

Supplier 

4 

1036.2 0 0 24.8 0 

Supplier 

5 

199.8 301.4 193.6 104.1 99.2 

Dummy 549.0 550.4 0 0 42.6 

From Table 5, Supplier 4 is visualized to have allocated 

1036.2 units exclusively to Bangalore, indicating 

significant cost advantages in this route under the SA 

solution. Supplier 1 prioritized Bangalore, Chennai and 

Mumbai with 549.0, 550.4 and 42.6 units, respectively, 

leaving other destinations unserved. Next, Supplier 2 

supplied all destinations except Delhi, with notable 

allocations of 670.5 units to Kolkata and 169.1 to 

Mumbai. In contrast, Suppliers 3 and 5 demonstrated 

flexibility by distributing resources across all 

destinations, showcasing diverse supply strategies. 

3.4 Particle Swarm Optimization (PSO) 

The PSO algorithm optimized the transportation 

problem to a cost of 2,797,315.63, with iterative 

progress summarized in Table 6 and detailed resource 

allocations tabulated in Table 7.  

Table 6. Iterations with corresponding best costs of PSO algorithm 

Iterations Best Costs Iterations Best Costs 

Iteration 1 4,967,682.70 Iteration 33 2,249,104.72 

Iteration 2 4,967,682.70 Iteration 34 2,249,104.72 

Iteration 3 4,967,682.70 Iteration 35 2,169,315.56 

⁝ ⁝ Iteration 36 2,169,315.56 

Iteration 8 4,967,682.70 ⁝ ⁝ 

Iteration 9 4,877,656.14 Iteration 99 2,169,315.56 

Iteration 10 4,838,386.91 Iteration 100 2,169,315.56 

Table 7. Allocations for each route via PSO method 

Route Bangalore Chennai Delhi Kolkata Mumbai 

Supplier 

1 

0 0 0 452.6 347.9 

Supplier 

2 

24.4 239.3 0 1018.2 36.6 

Supplier 

3 

92.1 0 0 0 231.4 

Supplier 

4 

95.6 0 0 701.4 0 

Supplier 

5 

166.3 482.2 0 529.3 0 

Dummy 0 0 0 452.6 347.9 

PSO relies on three key parameters, inertia weight (w), 

cognitive constant (c1) and social constant (c2) to 

balance exploration and exploitation. Optimal values 

for these parameters, such as w=0.7, c1=2.0 and c2=2.0 

ensure effective convergence towards the best solution 

while maintaining swarm diversity. The default values 

have been supported by the plot showing a constant rate 

from 0.6 to 0.8 illustrating the effect of inertia weight 

on average optimized costs in Figure 5.  

 

Figure 5. Line plot for effect of inertia weight on costs 

With the PSO parameters set to their optimal default 

values, the algorithm was run for 100 iterations and the 

average of the best costs was calculated to ensure 

reliability. A sample of iterations and their 

corresponding best costs is shown in Table 6. 

The absence of allocations to Delhi highlights potential 

inefficiencies due to urban constraints [21], while 

significant allocations to Kolkata and diverse allocation 

strategies across suppliers emphasize cost-driven 

decisions. 

 

(a) 

 

(b) 

Figure 6. Particle Trajectory Plot (a) 2D plot; (b) 3D plot 



 

 Xin Ying et al                                 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025) 

 

461 

 

The particle trajectory plot in Figure 6 illustrates how 

particles converge towards optimal solutions over time 

[22]. The observed convergence after Iteration 35 

demonstrates the algorithm's high efficiency 

performance. A noticeable cluster of particles near the 

centre suggests that the swarm is converging towards 

the optimal solution showing exploitation as the 

particles refine their search to locate the best possible 

solution [18]. 

3.5 Sensitivity Analysis 

For optimization problems, sensitivity analysis is 

particularly valuable for identifying the stability of 

optimal solutions and ensuring the model's 

effectiveness amid real-world uncertainties [23]. 

In this research, while the preliminary configuration of 

the SA algorithm established a reasonable basis for 

convergence by fixing the initial temperature and 

stopping criterion, sensitivity analysis systematically 

assessed the stability and effectiveness of the cooling 

strategy. Specifically, the analysis involved observing 

temperature reduction across iterations under a fixed 

exponential cooling rate [20], thereby enabling a more 

comprehensive evaluation of the algorithm’s 

convergence behavior and solution quality over the 

course of the optimization process, rather than relying 

solely on predefined starting and ending conditions. 

Parameter tuning in this context was carried out by 

adjusting the temperature schedule within the SA 

algorithm. The initial temperature was set at 1000 and 

reduced iteratively using a constant cooling rate of 0.95, 

as formulated in Equation 7 for the first temperature 

update. The use of an exponential cooling schedule 

provided a more controlled and gradual reduction in 

temperature, which allowed for broader exploration in 

the early phases and more focused exploitation in the 

later stages of the search process [18]. This refined 

temperature control led to a lower final cost value, 

indicating improved convergence performance. 

𝑇𝑒𝑚𝑝𝑛𝑒𝑤 = 1000 × 0.95               (7) 

Iterations with the corresponding best costs for the SA 

algorithm with tuned parameters are summarized in 

Table 8. This data highlights the algorithm's iterative 

improvements in cost optimization, with final result of 

2,449,518.79 representing a 2.01% improvement 

compared to the previous result (2,499,849.97) 

demonstrating its effectiveness in refining solutions 

over successive iterations.  

Table 8. Iterations with corresponding best costs of SA tuned 

parameter 

Iterations Temperature Best Costs 

Iteration 1 950.0 2,652,926.05 

 Iteration 2 902.5 2,647,306.66 

 Iteration 3 857.4 2,647,306.66 

 ⁝ ⁝ ⁝ 

Iteration 98 6.9 2,451,101.77 

 Iteration 99 6.2 2,449,518.79 

 Iteration 100 5.9 2,449,518.79 

 

Throughout the study, parameter tuning was conducted 

exclusively for the SA algorithm, given its sensitivity to 

the temperature schedule, which directly influences its 

exploration and exploitation balance. Conversely, PSO 

was not subjected to parameter tuning, since this 

algorithm relies on particle interactions and memory of 

previous positions, its convergence behavior is more 

influenced by the global and local best solutions than by 

the direct control of temperature [24]. Hence, to assess 

PSO's performance and convergence behavior, the 

particle trajectory plot was performed and analyzed. 

Additionally, the scalability and efficiency of the 

optimization model were tested using a larger dataset of 

9,215 entries, compared to the original 100 entries. The 

results are summarized in Table 9. 

Table 9. Result of the alternate larger dataset 

Algorithm Simulated 

Annealing 

Particle Swarm 

Optimization 

Optimized Costs 5,783.13 7,134.08 

Execution Time 

(seconds) 

1,053.40 490.66 

SA achieved a significantly lower optimized cost of 

5,783.13 but required approximately 17 minutes to 

execute, demonstrating higher computational demand. 

With that, SA is validated to have optimized 

transportation costs by 28%. In contrast, PSO was 

faster, taking around 8 minutes but resulted in a higher 

cost of 7,134.08. This evaluation validates the model's 

effectiveness and applicability for handling larger 

datasets. 

3.6 Comparative Analysis 

This research evaluates the performance of SA and PSO 

based on convergence rate, solution quality and 

execution time. The convergence rate refers to how 

quickly the algorithm approaches an optimal or near-

optimal solution over iterations. SA exhibits a steady 

and smooth cost reduction due to its gradual cooling 

schedule [18]. In contrary, PSO shows a sharp cost 

decrease between Iterations 10–30 as particles explore 

the solution space, followed by stabilization around 

Iteration 35. Rapid early-stage convergence 

demonstrates its efficiency in identifying optimal 

regions. The convergence plots are shown in Figure 7. 

Next, the quality of the solution is assessed by 

comparing the minimized costs achieved by each 

algorithm. Table 10 summarizes the optimized costs 

and deviations from the MODI benchmark. From the 

table below, SA achieved a 12.92% optimized cost 

higher while PSO obtained a result 28.95% higher than 

the MODI benchmark. This result indicates that SA 

effectively approximates the benchmark but may settle 

at a near-optimal local minimum due to its probabilistic 

nature whereas the deviation highlights that PSO is less 

effective in addressing transportation problems 

requiring precise cost minimization. 
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(a) 

 

(b) 

Figure 7. Convergence plot (a) SA algorithm; (b) PSO algorithm, 

demonstrating algorithms’ efficiency in identifying optimal regions 

Table 10. Optimized costs among all three algorithms 

Algorithm Optimized Costs 
Deviation from 

MODI 

MODI 2,169,315.56 0% 

Simulated Annealing 

(SA) 

2,449,518.79 +12.92% 

Particle Swarm 

Optimization (PSO) 

2,797,315.63 +28.95% 

The last metric considered is the execution time which 

emphasize speed without compromising solution 

quality. Table 11 summarizes the execution times and 

their differences from the MODI benchmark. From the 

result shown, SA completed in 70.66 seconds, making 

it 255.6 seconds faster than MODI while PSO required 

only 29.34 seconds, outperforming both MODI and SA 

by being 296.92 seconds faster than MODI. The 

significantly shorter runtime demonstrates PSO's 

computational efficiency due to its parallel search 

capabilities and straightforward update equations, 

despite its limitations in achieving precise cost 

optimization. 

Table 11. Execution time among all three algorithms 

Algorithm Execution Time 

(seconds) 

Difference from 

MODI 

MODI 326.26 0 

Simulated Annealing 

(SA) 

70.66 -255.60 seconds 

Particle Swarm 

Optimization (PSO) 

29.34 -296.92 seconds 

3.7 Overall Comparison 

The overall comparison summarized the convergence 

rate, optimized costs and execution times of MODI, SA 

and PSO to evaluate their performance 

comprehensively. This analysis provides a balanced 

understanding of each algorithm's strengths and 

limitations, helping to identify the best choice for 

specific requirements. Table 12 provides a concise 

overview of each algorithm's performance. 

The MODI, as a deterministic method, offers the most 

accurate solution with an optimized cost of 

2,169,315.56 and an execution time of 326.26 seconds, 

without relying on iterative approximations, thus 

serving as the benchmark. SA produces a solution with 

a cost of 2,449,518.79, which is 12.92% higher than 

MODI’s optimal solution but it completes in 70.66 

seconds, 255.6 seconds faster than MODI. While SA’s 

cost accuracy is slightly lower than MODI, this trade-

off might be acceptable for mid-scale businesses where 

computational resources are limited. The algorithm 

maintains consistent progression until the stopping 

criteria are met, offering a balance between solution 

quality and computational efficiency. In contrast, PSO 

obtains a cost of 2,797,315.63, a deviation of 28.95% 

from MODI’s solution, but it is the fastest, requiring 

only 29.34 seconds which is 296.92 seconds faster than 

MODI. Apart from that, PSO achieves a stable result by 

Iteration 35, showing its rapid convergence.  

Table 12. Overall comparison among all three algorithms 

Results Convergence Rate Optimized Costs Execution Time 

Optimized Costs Deviation  

from MODI 

Runtime  

(seconds) 

Difference  

from MODI 

MODI Deterministic method  

(Does not rely on iterative 

approximations) 

2,169,315.56 0 326.26 0 

SA Maintain consistent progression 

until the stopping criteria are met 

2,449,518.79 +12.92% 70.66 -255.60 seconds 

PSO Achieved stable result by 

Iteration 35 

2,797,315.63 +28.95% 29.34 -296.92 seconds 

Hence, in summary, SA method will be utilised when 

accuracy is prioritized while use PSO when speed is 

more critical and slight deviations from optimality are 

acceptable. 

3.8 Research Validation 

The validity of the findings in this research is supported 

by both existing literature and participation in research 
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competitions. The findings obtained in this research are 

aligned and well-supported by the research ‘An 

intelligence-based hybrid PSO-SA for mobile robot 

path planning in warehouse’ by [25] and ‘Modified 

Particle Swarm Optimization Algorithm with Simulated 

Annealing Behavior and Its Numerical Verification’ by 

[28] published in Elsevier.  

In this research, SA demonstrates its capability to 

produce solutions with cost accuracy closely matching 

that of the benchmarked MODI method, deviating by 

12.92% which is consistent with the characteristics 

outlined in the Elsevier research, where SA is praised 

for its good solution quality [26]. Conversely, PSO 

demonstrates exceptional computational efficiency 

which is the fastest among 3 algorithms and with 296.92 

seconds faster than MODI. The remarkable speed of 

PSO aligns with findings from [25], where it is 

recognized for its fast convergence and suitability for 

high-dimensional optimization problems. 

Beyond that, this research, titled ‘Benchmarking 

Metaheuristic Algorithms Against Optimization 

Techniques for Transportation Problem in Supply 

Chain Management’ was further validated through 

participation in the Research and Teaching Innovation 

Competition 2024 (RTIC 2024), organized by 

Universiti Malaysia Terengganu (UMT) and the 

International Creative & Innovative Idea Competition 

2025 (ICIIC 2025), organized by MNNF Network. The 

research awarded two Gold Medals in these prestigious 

competitions, demonstrating its significant contribution 

to the field. 

4. Conclusions 

This study evaluates the effectiveness of different 

approaches in solving transportation problems, 

focusing on accuracy and efficiency, using the MODI 

method as a benchmark. The study revealed that SA 

outperforms PSO in terms of cost accuracy, but PSO has 

a faster execution time. The findings suggest that SA is 

more suitable when accuracy is prioritized, whereas 

PSO is preferred for speed, offering practical guidelines 

for selecting appropriate methods based on specific 

problem requirements. All objectives were successfully 

fulfilled through the results presented in Section 3. 

This research contributes a comparative analysis of SA 

and PSO, enhancing theoretical understanding by 

showcasing SA's reliability in precision and PSO’s 

adaptability in dynamic scenarios. Practically, it 

provides actionable insights for SMEs, helping them to 

choose between SA and PSO based on cost accuracy or 

computational speed and introduces the MODI method 

as a benchmark for evaluating emerging optimization 

approaches. In contrast to existing comparative studies, 

the localized emphasis on Malaysian SCM challenges 

addresses transportation routes and costs optimization 

via the utilization of real-world global microchip 

dataset, demonstrated the possibility of a 28% reduction 

in transportation costs, has emphasized the research’s 

unique contribution. Furthermore, a comprehensive 

sensitivity analysis including SA temperature tuning, 

ensures validity and scalability, while testing on that 

global microchip dataset comprising over 9,000 entries 

demonstrates the methods' practical applicability to 

complex, large-scale transportation problems. This 

study bridges the gaps in benchmarking optimization 

and metaheuristic algorithms in SCM, providing 

actionable insights for businesses to balance cost 

efficiency and computational speed.  

For limitations, this research is limited by the lack of 

access to real-world data, particularly sensitive business 

information related to routes and costs which restricted 

the use of comprehensive, real-time logistics data. 

Additionally, the study is based on fixed supply, 

demand and cost matrices, which may not reflect the 

dynamic and uncertain nature of real-world 

transportation problems. Future research could address 

these limitations by incorporating variability and 

uncertainty into the models. Furthermore, while many 

studies focus on individual optimization methods, there 

is limited research on comparing different approaches 

and evaluating the practicality of metaheuristic 

algorithms. 

On top of that, several recommendations have been 

suggested, including future research should integrate 

real-world constraints such as traffic conditions, 

regulatory constraints and fuel price fluctuations into 

the models to improve their relevance. Beyond 

optimization capabilities, future research could also 

evaluate more fields for the reliability and practicality 

of implementing metaheuristic algorithms in 

transportation problem. In other respects, actionable 

recommendations for businesses include SMEs could 

implement metaheuristic algorithms to optimize 

transportation routes and reduce fuel costs, promote 

collaboration with local businesses to share 

transportation resources and provide employee training 

on the use of these optimization tools to enhance 

operational efficiency and drive cost-saving initiatives. 

To put it in laconically, this research has provided a 

comprehensive analysis of the comparison between SA 

and PSO metaheuristic algorithm with the benchmark 

towards MODI method in solving transportation 

problems. 
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