Integration Integration of AHP and TOPSIS Methods for Small and Medium Industries Development Decision Making

  • Anton Yudhana Universitas Ahmad Dahlan
  • Rusdi Umar Universitas Ahmad Dahlan
  • Aldi Bastiatul Fawait Fawait Universitas Ahmad Dahlan
Keywords: Decision Making, AHP, TOPSIS, CRITERIA, SMIs

Abstract

Financial problems are one of the reasons why small and medium-sized industries (SMIs) in West Kutai have not developed optimally. Government assistance programs are one of the solutions. This program must be appropriate, so a decision-making tool is needed to help choose the right SMIs to be assisted later. The weight of the criteria was determined using the Analytical Hierarchy Process (AHP) technique, and the priority of the SMIs as the preferred proposal for the recipients of development assistance was determined using the Technique for Other Reference by Similarly to Ideal Solution (TOPSIS) approach. Labor, investment, production capacity, production value, and raw materials were used to determine the priorities of SMIs beneficiaries. Furthermore, TOPSIS prioritizes the development of alternative small and medium-sized industries with types of handicraft commodities. Integration of AHP and TOPSIS methods has been successfully used in the IKM Development Priority Determination Application, with 83.3% precision and 96.4% accuracy achieved by using a confusion matrix so that the IKM ranking can be known. The results of the study found that integration of the two methods was successfully used for Small and Medium Industries Development Decision Making.

Downloads

Download data is not yet available.

References

E. Susena, A. Y. Ratnawati, and E. Susanto, “Analisis Dan Perancangan Sistem Informasi Manajemen Pendataan Industri Kecil Dan Menengah (Sim-IKM),” J. AKSI (Akuntansi dan Sist. Informasi), vol. 4, no. 1, pp. 11–18, 2019, doi: 10.32486/aksi.v4i1.313.

L. izzati, berlian; fajrillah, asti; saputri, rahmania; oktavian, ivana; widyasti, “Perancangan IT Blueprint Menggunakan TOGAF ADM untuk Mendukung Transformasi Digital pada UMKM,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 3, pp. 404–417, 2021.

A. Yudhana, A. Fadlil, and E. Prianto, “Performance analysis of hashing mathods on the employment of app,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, pp. 3512–3522, 2018, doi: 10.11591/ijece.v8i5.pp3512-3522.

UU RI No. 13, “Undang-Undang Republik Indonesia No.13 Tahun 2003 Tentang Ketenagakerjaan,” no. 1. pp. 147–173, 2003.

A. M. R. Tortora, A. Maria, D. P. Valentina, R. Iannone, and C. Pianese, “A survey study on Industry 4.0 readiness level of Italian small and medium enterprises,” Procedia Comput. Sci., vol. 180, pp. 744–753, 2021, doi: 10.1016/j.procs.2021.01.321.

A. Yudhana, A. Fadlil, and M. Rosidin, “Indonesian words error detection system using nazief adriani stemmer algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 12, pp. 219–225, 2019, doi: 10.14569/ijacsa.2019.0101231.

N. Ansori, A. Widyanti, and Yassierli, “The Role of Safety Silence Motives to Safety Communication and Safety Participation in Different Sectors of Small and Medium Enterprises: Investigation Results on Two Kinds of Industries in Indonesia,” Saf. Health Work, vol. 12, no. 2, pp. 192–200, 2021, doi: 10.1016/j.shaw.2020.10.001.

A. Mon and H. R. Del Giorgio, “Analysis of Industry 4.0 Products in Small and Medium Enterprises,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 914–923, 2022, doi: 10.1016/j.procs.2022.01.289.

A. Yudhana and A. C. Kusuma, “Water quality monitoring at paddies farming based on android,” IOP Conf. Ser. Mater. Sci. Eng., vol. 403, no. 1, 2018, doi: 10.1088/1757-899X/403/1/012042.

E. Rauch, M. Unterhofer, R. A. Rojas, L. Gualtieri, M. Woschank, and D. T. Matt, “A maturity level-based assessment tool to enhance the implementation of industry 4.0 in small and medium-sized enterprises,” Sustain., vol. 12, no. 9, 2020, doi: 10.3390/SU12093559.

A. Yudhana, J. Rahmayanti, S. A. Akbar, S. Mukhopadhyay, and I. R. Karas, “Modification of manual raindrops type observatory ombrometer with ultrasonic sensor HC-SR04,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 12, pp. 277–281, 2019, doi: 10.14569/ijacsa.2019.0101238.

Y. Li, L. Wu, Q. Han, X. Wang, T. Zou, and C. Fan, “Estimation of remote sensing based ecological index along the Grand Canal based on PCA-AHP-TOPSIS methodology,” Ecol. Indic., vol. 122, p. 107214, 2021, doi: 10.1016/j.ecolind.2020.107214.

K. H. Hanif, A. Yudhana, and A. Fadlil, “Analisis Penilaian Guru Memakai Metode Analityc Heararchy Process ( AHP ),” Seri Pros. Semin. Nas. Din. Inform., vol. 4, no. 1, pp. 186–189, 2020.

M. Marzouk and M. Sabbah, “AHP-TOPSIS social sustainability approach for selecting supplier in construction supply chain,” Clean. Environ. Syst., vol. 2, no. March, p. 100034, 2021, doi: 10.1016/j.cesys.2021.100034.

S. Brata, A. Yudhana, and Herman, “Perbandingan metode technique for order by similarity to ideal solution (TOPSIS) dan a new additive ratio assessmen (ARAS) dalam penerapan customer relationship management (CRM) pada KL LAZISMU,” vol. 22, no. 2, pp. 185–192, 2021.

C. de Souza Rocha Junior, M. Â. L. Moreira, and M. dos Santos, “Selection of interns for startups: An approach based on the AHP-TOPSIS-2N method and the 3DM computational platform,” Procedia Comput. Sci., vol. 199, no. 2021, pp. 984–991, 2021, doi: 10.1016/j.procs.2022.01.124.

M. H. Al Hazza, A. Abdelwahed, M. Y. Ali, and A. B. A. Sidek, “An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework,” Int. J. Technol., vol. 13, no. 1, pp. 16–25, 2022, doi: 10.14716/ijtech.v13i1.4700.

J. Aguarón, M. T. Escobar, and J. M. Moreno-Jiménez, “Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process,” Eur. J. Oper. Res., vol. 288, no. 2, pp. 576–583, 2021, doi: 10.1016/j.ejor.2020.06.014.

D. Yu, G. Kou, Z. Xu, and S. Shi, “Analysis of Collaboration Evolution in AHP Research: 1982-2018,” Int. J. Inf. Technol. Decis. Mak., vol. 20, no. 1, pp. 7–36, 2021, doi: 10.1142/S0219622020500406.

X. Liu et al., “Feasibility evaluation of hydraulic fracturing in hydrate-bearing sediments based on analytic hierarchy process-entropy method (AHP-EM),” J. Nat. Gas Sci. Eng., vol. 81, p. 103434, 2020, doi: 10.1016/j.jngse.2020.103434.

S. Chakraborty, “TOPSIS and Modified TOPSIS: A comparative analysis,” Decis. Anal. J., vol. 2, no. September 2021, p. 100021, 2022, doi: 10.1016/j.dajour.2021.100021.

J. A. Pinzon Amorocho and T. Hartmann, “A multicriteria decision-making framework for residential building renovation using pairwise comparison and TOPSIS methods,” J. Build. Eng., vol. 53, no. April, p. 104596, 2022, doi: 10.1016/j.jobe.2022.104596.

J. Jiang, M. Ren, and J. Wang, “Interval number multi-attribute decision-making method based on TOPSIS,” Alexandria Eng. J., vol. 61, no. 7, pp. 5059–5064, 2022, doi: 10.1016/j.aej.2021.09.031.

D. Guswandi, M. Yanto, M. Hafizh, and L. Mayola, “Analisis Hybrid Decision Support System dalam Penentuan Status,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 158, pp. 1127–1136, 2021, doi: https://doi.org/10.29207/resti.v5i6.3587.

D. H. Muhsen, H. T. Haider, Y. M. Al-Nidawi, and T. Khatib, “Domestic load management based on integration of MODE and AHP-TOPSIS decision making methods,” Sustain. Cities Soc., vol. 50, no. June, p. 101651, 2019, doi: 10.1016/j.scs.2019.101651.

A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, 2019, doi: 10.1016/j.patcog.2019.02.023.

Published
2022-10-01
How to Cite
Anton Yudhana, Rusdi Umar, & Fawait, A. B. F. (2022). Integration Integration of AHP and TOPSIS Methods for Small and Medium Industries Development Decision Making. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 719 - 727. https://doi.org/10.29207/resti.v6i5.4223
Section
Information Systems Engineering Articles