Comparison of Image Enhancement Methods for Diabetic Retinopathy Screening

  • Dafwen Toresa Universitas Lancang Kuning
  • Fana Wiza Universitas Lancang Kuning
  • Keumala Anggraini Universitas Lancang Kuning
  • Taslim Taslim Universitas Lancang Kuning
  • Edriyansyah Universitas Hang Tuah Pekanbaru
  • Lisnawita Lisnawita Universitas Lancang Kuning
Keywords: Diaebetic retinopathy, Fundus image, Image enhancement, Image Processing

Abstract

The most common factor contributing to visual abnormalities that result in blindness is known as diabetic retinopathy (DR). Retinal fundus scanning, a non-invasive method that is integral to the picture pre-processing phase, can be used to identify and monitor DR. Low intensity, irregular lighting, and inhomogeneous color are some of the main issues with DR fundus photographs. Analysis of aberrant characteristics on retinal fundus images to identify diabetic retinopathy is one of the key responsibilities of image enhancement. However, a variety of approaches have been created and it is unknown whether one is best suited for use with images of the retinal fundus. This study investigated various image enhancement methods in order to see aberrant abnormalities on retinal fundus pictures more clearly. This study investigated various image enhancement methods in order to see aberrant abnormalities on retinal fundus pictures more clearly. The contrast-limited adaptive histogram equalization (CLAHE) method, the gray-level slicing method, the median filtering method, and the low light method are image improvement methods used to enhance images of the retinal fundus. The parameters Natural Image Quality Evaluator (NIQE), Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and entropy will be used to assess each image enhancement technique's performance. An ophthalmologist from Sains University Hospital (HUSM) provided the image data. The findings indicate that while each technique has its own benefits, the CLAHE technique, with a standard deviation MSE of 0.0004, is the best. 

Downloads

Download data is not yet available.

References

Y. Sonang, Sahat; Yunus, “Image Transformation With Lung Image Thresholding and Segmentation Method,” vol. 5, no. 158, pp. 278–285, 2023.

Wicaksono Yuli Sulistyo, Imam Riadi, and Anton Yudhana, “Comparative Analysis of Image Quality Values on Edge Detection Methods,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 2, pp. 345–351, 2020, doi: 10.29207/resti.v4i2.1827.

Erwin, R. Zulfahmi, D. S. Noviyanti, G. R. Utami, A. N. Harison, and P. S. Agung, “Improved Image Quality Retinal Fundus with Contrast Limited Adaptive Histogram Equalization and Filter Variation,” Proc. - 1st Int. Conf. Informatics, Multimedia, Cyber Inf. Syst. ICIMCIS 2019, pp. 49–54, 2019, doi: 10.1109/ICIMCIS48181.2019.8985198.

T. Melo, A. M. Mendonça, and A. Campilho, “Microaneurysm detection in color eye fundus images for diabetic retinopathy screening,” Comput. Biol. Med., vol. 126, no. September, 2020, doi: 10.1016/j.compbiomed.2020.103995.

Y. Kumaran and C. M. Patil, “A brief review of the detection of diabetic retinopathy in human eyes using pre-processing & segmentation techniques,” Int. J. Recent Technol. Eng., vol. 7, no. 4, pp. 310–320, 2018.

I. D. G. H. Rastama, I. M. O. Widyantara, and Linawati, “Teknik Kompresi Citra Medis dengan Transformasi Diskrit Wavelet dan Pengkodean Entropy,” J. RESTI, vol. 4, no. 1, pp. 155–162, 2020.

Y. Yunus, J. Harlan, J. Santony, R. Hidayat, and J. Na’am, “Enhancement on enlarge image for identification lumbar radiculopathy at magnetic resonance imaging,” TEM J., vol. 9, no. 2, pp. 649–655, 2020, doi: 10.18421/TEM92-30.

J. Deng, P. Tang, X. Zhao, T. Pu, C. Qu, and Z. Peng, “Local Structure Awareness-Based Retinal Microaneurysm Detection with Multi-Feature Combination,” Biomedicines, vol. 10, no. 1, pp. 1–15, 2022, doi: 10.3390/biomedicines10010124.

D. Toresa, M. Azrul, E. Shahril, N. Hazlyna, J. Abu, and H. Amnur, “Automated Detection and Counting of Hard Exudates for Diabetic Retinopathy by using Watershed and Double Top-Bottom Hat Filtering Algorithm,” vol. 5, no. September, pp. 242–247, 2021.

E. Y. K. Ng, U. R. Acharya, A. Campilho, and J. S. Suri, Image analysis and modeling in ophthalmology. 2014.

N. A. Binti Mohd Sharif et al., “Performance of Image Enhancement Methods for Diabetic Retinopathy based on Retinal Fundus Image,” ISCAIE 2020 - IEEE 10th Symp. Comput. Appl. Ind. Electron., pp. 18–23, 2020, doi: 10.1109/ISCAIE47305.2020.9108707.

Y. Zhang et al., “Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies,” Diabetologia, vol. 63, no. 1, pp. 21–33, 2020, doi: 10.1007/s00125-019-04985-9.

S. Pachade, P. Porwal, M. Kokare, L. Giancardo, and F. Meriaudeau, “Retinal vasculature segmentation and measurement framework for color fundus and SLO images,” Biocybern. Biomed. Eng., vol. 40, no. 3, pp. 865–900, 2020, doi: 10.1016/j.bbe.2020.03.001.

N. Salamat, M. M. S. Missen, and A. Rashid, “Diabetic retinopathy techniques in retinal images: A review,” Artif. Intell. Med., vol. 97, no. April 2019, pp. 168–188, 2019, doi: 10.1016/j.artmed.2018.10.009.

M. K. Behera and S. Chakravarty, “Diabetic Retinopathy Image Classification Using Support Vector Machine,” 2020 Int. Conf. Comput. Sci. Eng. Appl. ICCSEA 2020, pp. 17–20, 2020, doi: 10.1109/ICCSEA49143.2020.9132875.

H. Xia, Y. Lan, S. Song, and H. Li, “A multi-scale segmentation-to-classification network for tiny microaneurysm detection in fundus images[Formula presented],” Knowledge-Based Syst., vol. 226, p. 107140, 2021, doi: 10.1016/j.knosys.2021.107140.

D. Toresa, K. Anggraini, and P. P. Putra, “Optimization Of Histogram Equation With The Cuckoo Algorithm to Improve Fundus Image Quality,” vol. 9, no. 1, pp. 47–54, 2023, doi: 10.24014/coreit.v9i1.23348.

V. Mayya, S. Kamath S․, and U. Kulkarni, “Automated microaneurysms detection for early diagnosis of diabetic retinopathy: A Comprehensive review,” Comput. Methods Programs Biomed. Updat., vol. 1, p. 100013, 2021, doi: 10.1016/j.cmpbup.2021.100013.

M. W. Khan, “Diabetic retinopathy detection using image processing,” Int. J. Emerg. Technol. Res., vol. 8, no. 6 Special Issue, pp. 937–941, 2019, doi: 10.35940/ijeat.F1179.0886S19.

R. R. Akut, “FILM: finding the location of microaneurysms on the retina,” Biomed. Eng. Lett., vol. 9, no. 4, pp. 497–506, 2019, doi: 10.1007/s13534-019-00136-6.

D. Palani, K. Venkatalakshmi, A. Reshma Jabeen, and V. M. Arun Bharath Ram, “Effective detection of diabetic retinopathy from human retinal fundus images using modified FCM and IWPSO,” 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, pp. 1–5, 2019, doi: 10.1109/ICSCAN.2019.8878786.

J. E. O. Astorga, L. Wang, S. Yamada, Y. Fujiwara, W. Du, and Y. Peng, “Automatic Detection of Microaneurysms in Fundus Images,” Int. J. Softw. Innov., vol. 11, no. 1, pp. 1–14, 2022, doi: 10.4018/IJSI.315658.

S. Subramanian, S. Mishra, S. Patil, K. Shaw, and E. Aghajari, “Machine Learning Styles for Diabetic Retinopathy Detection: A Review and Bibliometric Analysis,” Big Data Cogn. Comput., vol. 6, no. 4, 2022, doi: 10.3390/bdcc6040154.

R. Haldar, S. Aruchamy, A. Chatterjee, and P. Bhattacharjee, “Diabetic Retinopathy Image Enhancement using Vessel Extraction in Retinal Fundus Images by programming in Raspberry Pi Controller Board,” Int. Conf. Inter Discip. Res. Eng. Technol., vol. 20, no. 5, pp. 21–23, 2016, doi: 10.1108/14777280610688014.

D. S. Sundhara Raja, S. Vasuki, and D. Rajesh Kumar, “Performance Analysis of Retinal Image Blood Vessel Segmentation,” Adv. Comput. An Int. J., vol. 5, no. 2/3, pp. 17–23, 2014, doi: 10.5121/acij.2014.5302.

D. Toresa et al., “The Cuckoo Algorithm Enhanced Visualization Of Morphological Features of Diabetic,” vol. 4, no. 2, pp. 929–939, 2023.

N. Prabhu, D. Bhoir, and U. Rao, “Performance evaluation of different preprocessing techniques for blood vessel extraction in fundus images,” Int. Conf. Adv. Comput. Commun. Control 2017, ICAC3 2017, vol. 2018-Janua, pp. 1–4, 2018, doi: 10.1109/ICAC3.2017.8318765.

M. Pundikal and M. S. Holi, “Microaneurysms Detection Using Grey Wolf Optimizer and Modified K-Nearest Neighbor for Early Diagnosis of Diabetic Retinopathy,” Int. J. Intell. Eng. Syst., vol. 15, no. 1, pp. 130–140, 2022, doi: 10.22266/IJIES2022.0228.13.

I. Soares, M. Castelo-Branco, and A. Pinheiro, “Microaneurysms detection in retinal images using a multi-scale approach,” Biomed. Signal Process. Control, vol. 79, no. P2, p. 104184, 2023, doi: 10.1016/j.bspc.2022.104184.

M. Alhussein, K. Aurangzeb, and S. I. Haider, “An unsupervised retinal vessel segmentation using hessian and intensity based approach,” IEEE Access, vol. 8, pp. 165056–165070, 2020, doi: 10.1109/ACCESS.2020.3022943.

S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. Ur Rehman, “Research on particle swarm optimization based clustering: A systematic review of literature and techniques,” Swarm Evol. Comput., vol. 17, pp. 1–13, 2014, doi: 10.1016/j.swevo.2014.02.001.

H. Zhuang and N. Ettehadi, “Classification of Diabetic Retinopathy via Fundus Photography: Utilization of Deep Learning Approaches to Speed up Disease Detection,” 2020.

J. Na`am, J. Harlan, I. Putra, R. Hardianto, and M. Pratiwi, “An automatic ROI of the fundus photography,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, pp. 4545–4553, 2018, doi: 10.11591/ijece.v8i6.pp4545-4553.

M. Tavakoli, A. Mehdizadeh, A. Aghayan, R. P. Shahri, T. Ellis, and J. Dehmeshki, “Automated Microaneurysms Detection in Retinal Images Using Radon Transform and Supervised Learning: Application to Mass Screening of Diabetic Retinopathy,” IEEE Access, vol. 9, pp. 67302–67314, 2021, doi: 10.1109/ACCESS.2021.3074458.

U. Bhimavarapu and G. Battineni, “Automatic Microaneurysms Detection for Early Diagnosis of Diabetic Retinopathy Using Improved Discrete Particle Swarm Optimization,” J. Pers. Med., vol. 12, no. 2, 2022, doi: 10.3390/jpm12020317.

A. Imran, J. Li, Y. Pei, J.-J. Yang, and Q. Wang, “Comparative Analysis of Vessel Segmentation Techniques in Retinal Images,” IEEE Access, vol. 7, pp. 114862–114887, 2019, doi: 10.1109/access.2019.2935912.

R. C. Gonzalez et al., Digital Image. 2017.

M. Grundland and N. A. Dodgson, “Decolorize : Fast, contrast enhancing, color to grayscale conversion,” vol. 40, pp. 2891–2896, 2007, doi: 10.1016/j.patcog.2006.11.003.

S. K. Yadav, S. Kumar, B. Kumar, and R. Gupta, “Comparative analysis of fundus image enhancement in detection of diabetic retinopathy,” IEEE Reg. 10 Humanit. Technol. Conf. 2016, R10-HTC 2016 - Proc., pp. 1–5, 2017, doi: 10.1109/R10-HTC.2016.7906814.

Y. Wang, W. Song, G. Fortino, L. Z. Qi, W. Zhang, and A. Liotta, “An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging,” IEEE Access, vol. 7, pp. 140233–140251, 2019, doi: 10.1109/ACCESS.2019.2932130.

Published
2023-10-01
How to Cite
Toresa, D., Wiza, F., Anggraini, K., Taslim, T., Edriyansyah, & Lisnawita, L. (2023). Comparison of Image Enhancement Methods for Diabetic Retinopathy Screening. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(5), 1111 - 1117. https://doi.org/10.29207/resti.v7i5.5193
Section
Information Technology Articles