Integration of YOLOv5 Algorithm and OpenCV in Innovative Smart Parking Management Approach

  • Akmal Hidayah Hidayah Universitas Handayani
  • Sitti Zuhriyah Universitas Handayani
  • Billy Eden William Asrul Universitas Handayani
  • Yuyun Yuyun Badan Riset dan Inovasi Nasional
  • Esa Prakasa Badan Riset dan Inovasi Nasional
Keywords: smart parking, YOLOv5, OpenCV, vehicle detection, parking space identification, object recognition technology

Abstract

The problem of automatic parking lot identification and vehicle detection in open areas is becoming increasingly important due to the increase in the number of vehicles in Indonesia, particularly in big cities, resulting in difficulties in finding parking spaces during peak hours. In this condition, drivers often have to compete for parking spaces. This research aims to develop a smart parking system that integrates YOLOv5 and OpenCV algorithms. This approach thoroughly combines both algorithms to identify parking spaces and detect vehicles in real time in various parking scenarios. It is carried out in an open area with reference to parking conditions at the BRIN Bandung office. This study collected data from three different parking lot conditions, namely empty, partially occupied, and full. In each condition, the system successfully detected the parking lots and vehicles accurately. The novel contribution of this research is the development of a smart parking system that uses an integrated approach, providing an effective solution to the challenges of parking lot availability and vehicle detection. Using the advantages of both algorithms, we successfully created a system that can identify parking spaces and detect vehicles accurately and efficiently under various parking circumstances. Therefore, this research makes a significant contribution to the development of smart and adaptive parking management technology.

 

Downloads

Download data is not yet available.

References

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep Learning for Computer Vision: A Brief Review,” Comput Intell Neurosci, vol. 2018, 2018, doi: 10.1155/2018/7068349.

F. Borisyuk, A. Gordo, and V. Sivakumar, “Rosetta: Large scale system for text detection and recognition in images,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–79, 2018, doi: 10.1145/3219819.3219861.

J. Liang, X. Chen, M. L. He, L. Chen, T. Cai, and N. Zhu, “Car detection and classification using cascade model,” IET Intelligent Transport Systems, vol. 12, no. 10, pp. 1201–1209, 2018, doi: 10.1049/iet-its.2018.5270.

C. Lin and A. Kumar, “Contactless and partial 3D fingerprint recognition using multi-view deep representation,” Pattern Recognit, vol. 83, pp. 314–327, 2018, doi: 10.1016/j.patcog.2018.05.004.

N. Sugianto, D. Tjondronegoro, and B. Tydd, “Deep Residual Learning for Analyzing Customer Satisfaction using Video Surveillance,” Proceedings of AVSS 2018 - 2018 15th IEEE International Conference on Advanced Video and Signal-Based Surveillance, pp. 1–6, 2018, doi: 10.1109/AVSS.2018.8639478.

F. M. Wibowo and F. T. Syifa, “Rancang Bangun Sistem Pencarian Posisi Kendaraan di Area Parkir,” Jurnal RESTI, vol. 4, no. 1, pp. 77–79, 2020.

A. Geitgey, “Snagging Parking Spaces with Mask R-CNN and Python,” Medium.Com. [Online]. Available: https://medium.com/@ageitgey/snagging-parking-spaces-with-mask-r-cnn-and-python-955f2231c400

Jupiyandi Saniputra, F. R. Pratama, and Yoga Dharmawan, “Pengembangan Deteksi Citra Mobil Untuk Mengetahui Jumlah Tempat Parkir Menggunakan Cuda Dan Modified Yolo Development of Car Image Detection To Find Out the Number of Parking Space Using Cuda and Modified Yolo,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 6, no. 4, pp. 413–419, 2019, doi: 10.25126/jtiik.201961275.

S. Bangar, “Arsitektur jaringan saraf konvolusional (CNN) yang dikenal sebagai AlexNet,” Medium.Com. [Online]. Available: https://medium.com/@siddheshb008/alexnet-architecture-explained-b6240c528bd5

E. Tanuwijaya and C. Fatichah, “Penandaan Otomatis Tempat Parkir Menggunakan YOLO untuk,” BRILIANT: Jurnal Riset dan Konseptual, vol. 5, pp. 189–198, 2020.

Primasdika Yunia Putra, A. S. Arifianto, Zilvanhisna Emka Fitri, and Trismayanti Dwi Puspitasari, “Deteksi Kendaraan Truk pada Video Menggunakan Metode Tiny-YOLO v4,” Jurnal Informatika Polinema, vol. 9, no. 2, pp. 215–222, 2023, doi: 10.33795/jip.v9i2.1243.

A. Muzaki et al., “Deteksi Ketersediaan Lahan Parkir Dengan Menggunakan OpenCV,” vol. 3, pp. 237–244, 2024.

F. P. P. dan I. Susilawati, “Prototipe Sistem Deteksi Ketersediaan Lahan Parkir Menggunakan Metode Algoritma Canny Edge,” Jurnal Information System & Artificial Intelligence, vol. 1, no, pp. 94–99, 2021.

P. Adusumalli, H., Kalyani, D., Sri, RK, Pratapteja, M., & Rao, “Deteksi Masker Wajah Menggunakan OpenCV,” in Konferensi Internasional Ketiga tentang Teknologi Komunikasi Cerdas dan Jaringan Seluler Virtual (ICICV), IEEE, 2021, pp. 1304–1309.

R. T. H. Hasan and A. B. Sallow, “Face Detection and Recognition Using OpenCV,” Journal of Soft Computing and Data Mining, vol. 2, no. 2, pp. 86–97, 2021, doi: 10.30880/jscdm.2021.02.02.008.

P. Jagtap, AM, Kangale, V., Unune, K., & Gosavi, “Studi fitur mirip LBPH, Eigenface, Fisherface dan Haar untuk Pengenalan wajah menggunakan OpenCV,” in Sistem Berkelanjutan Cerdas (ICISS), IEEE, 2019, p. (hal.219-224).

S. Rahman and H. Dafitri, “Pengembangan Convolutional Neural Network untuk Klasifikasi Ketersediaan Ruang Parkir,” Explorer (Hayward), vol. 2, no. 1, pp. 1–6, 2022, doi: 10.47065/explorer.v2i1.148.

Maulana Nur Hidayah, Febryanti Sthevanie, and Kurniawan Nur Ramadhani, “Deteksi Penggunaan Masker Pada Citra Menggunakan YOLOv5 Dengan CNN,” vol. 10, no. 5, pp. 4903–4909, 2023.

D. Thuan, “Evolution of Yolo Algorithm and Yolov5: the State-of-the-Art Object Detection Algorithm,” Oulu University of Applied Sciences, p. 61, 2021.

R. Iyer, P. Shashikant Ringe, R. Varadharajan Iyer, and K. Prabhulal Bhensdadiya, “Comparison of YOLOv3, YOLOv5s and MobileNet-SSD V2 for Real-Time Mask Detection,” Int J Res Eng Technol, vol. 8, no. 7, pp. 1156–1160, 2021, [Online]. Available: https://www.researchgate.net/publication/353211011

Y. Yunefri, Sutejo, Y. E. Fadrial, K. Anggraini, M. Ramadhani, and R. Hardianto, “Implementation of Object Detection With You Only Look Once Algorithm in Limited Face-To-Face Times in Pandemic,” Journal of Applied Engineering and Technological Science, vol. 4, no. 1, pp. 400–404, 2022, doi: 10.37385/jaets.v4i1.1161.

Published
2024-06-22
How to Cite
Hidayah, A. H., Sitti Zuhriyah, Billy Eden William Asrul, Yuyun, Y., & Esa Prakasa. (2024). Integration of YOLOv5 Algorithm and OpenCV in Innovative Smart Parking Management Approach. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(3), 413 - 422. https://doi.org/10.29207/resti.v8i3.5728
Section
Information Technology Articles