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Abstract  

This paper presents a sign language recognition system for the Indonesian Sign Language System (SIBI) using image 

embeddings combined with a Random Forest classifier. A dataset comprising 5280 images across 24 classes of SIBI alphabet 

symbols was utilized. Image features were extracted using the Inception V3 image embedding, and classification was performed 

using Random Forest. Model evaluation conducted through K-Fold cross-validation demonstrated that the proposed method 

achieved an accuracy of 85.40%, an F1 score of 85.20%, a precision of 85.30%, and a recall of 85.40%. Moreover, the total 

computation time required by the proposed method is 1152.85 seconds. While the performance indicates room for improvement, 

this study lays the groundwork for enhancing sign language recognition systems to support the preservation and broader 

adoption of SIBI in Indonesia. 
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1. Introduction  

The communication gap is a significant challenge for 

people with disabilities, particularly those who are deaf. 

Due to difficulties communicating, the deaf often has to 

utilize alternative methods to convey their messages. 

Sign language is one effective way to communicate, 

where symbols are visualized in the form of hand 

gestures to express the intent or message to be 

conveyed. Sign language is used by deaf individuals to 

communicate, with the hands as the primary tool in 

conveying information [1]. 

The sign languages used by the deaf community in 

Indonesia are Sistem Isyarat Bahasa Indonesia (SIBI) 

and Bahasa Isyarat Indonesia (BISINDO) [2]. SIBI is a 

sign language widely used in Indonesia, where each 

letter A to Z is visualized through specific hand 

gestures. These patterns can be performed using one 

hand by showing specific finger patterns [3]. In 

comparison, some letters in BISINDO require two 

hands to be demonstrated [4]. 

Sign language recognition is a topic that has attracted 

much attention from researchers, with the primary goal 

of translating hand gestures into text to facilitate 

communication. For example, research by [5] used 

OpenCV and MediaPipe libraries to recognize four 

hand patterns, where hand key points were identified 

using a Support Vector Machine (SVM). This research 

resulted in an F1 score, recall, and precision of 98.75% 

each. Another study by [6] focused on BISINDO 

recognition, which proposed a combination of YOLO 

as a hand detector and CNN as a hand pattern classifier. 

The method proposed by [6] resulted in an accuracy of 

89%. Meanwhile, regarding SIBI recognition, [7] 

proposed the use of transfer learning with VGG16 and 

MobileNet architecture. The evaluation results show 

that MobileNet achieves the highest accuracy of 98%, 

although it requires a longer computation time than 

VGG16. A comparison of performance between 

machine learning and deep learning methods has also 

been studied in [8]. As a result, the deep learning 

method with Xception managed to achieve the highest 

F1 score, which is 99.57%, with a computation time of 

1387 seconds. 

Although some previous methods have recognized hand 

sign language successfully, there is still an opportunity 

to explore other method's performance. This research 

proposes image embedding combined with Random 

https://doi.org/10.29207/resti.v9i2.6156
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Forest to predict hand patterns in SIBI. In contrast to 

previous approaches that rely on training the CNN from 

scratch, the image embedding utilizes a pre-trained 

CNN model to result in feature vectors without 

retraining. The Random Forest is then used to classify 

these feature vectors into the appropriate classes. With 

this approach, it is expected that hand gesture 

recognition can be performed more efficiently in terms 

of computation time. 

This paper is organized as follows: Section 2 discusses 

the materials and methods used in the research, 

including the image embedding technique and the 

Random Forest algorithm. Section 3 presents the 

evaluation results of the applied method, which 

provides a comprehensive performance analysis of the 

resulting model. The paper then concludes with 

conclusions and suggestions for further development in 

Section 4, which highlights the potential improvement 

in future research. 

2. Research Methods 

This section describes the dataset used in the research 

as well as the proposed method for predicting hand 

signs in SIBI. The research process starts with the 

collection of the dataset and is followed by the feature 

extraction. Once the features are extracted, the data is 

classified using the Random Forest algorithm. The final 

stage of the research involves evaluating the 

performance of the model with several classification 

metrics to assess its accuracy in recognizing SIBI.  

2.1 Dataset Preparation 

The data used in this research comes from a public 

dataset available on Kaggle: 

https://www.kaggle.com/datasets/alvinbintang/sibi-

dataset. The dataset consists of 5280 images of 150×150 

pixels, depicting SIBI hand sign patterns for the letters 

of the alphabet. However, the letters J and Z are not 

included in the dataset, as they cannot be represented as 

static images. Instead, they require the detection of 

multiple image frames in sequence. Thus, the dataset 

includes 24 classes, with each class consisting of 220 

sample images. Figure 1 is an example of a hand pattern 

image in the dataset used in this study. 

 

Figure 1. Sample illustration of SIBI hand gestures.

2.2 Feature Extraction with Inception V3 Image 

Embedding 

Feature extraction is the process of transforming 

extensive image data into a smaller representation that 

is more informative and analyzable [9]. There are 

various techniques used for extracting features from 

hand patterns, for example, HOG-9ULBP [10], hand 

shape features [11], and finger features [12]. The feature 

extraction method used in this research is image 

embedding with Convolutional Neural Network (CNN) 

model. Image embedding is a method that converts 

images into vectors that represent essential features of 

the image [13]. Machine learning algorithms then use 

this vector to group, classify, or search for images based 

on content similarity. In this research, the feature 

extraction process is performed using the Inception V3 

CNN architecture [14], a deep learning model designed 

to extract local and global features efficiently.  

Inception V3 is a CNN architecture that is pre-trained 

using the ImageNet dataset and designed to work with 

color images. Figure 2 illustrates the architecture of 

Inception V3. The Inception module includes three 

different convolution sizes as well as one maximum 

pooling layer. The results of these convolution layers 

are combined and processed non-linearly, allowing the 

network to capture features at multiple scales and 

reducing the risk of overfitting. In traditional 

architectures, only one filter size is used in the 

convolution layer. However, with Inception V3, the 

network can use multiple filter sizes, such as 1×1, 3×3, 

and 5×5, by pooling in parallel. This model increases 

the network's ability to capture more information 

without significantly increasing computational 

complexity [15]. 

In the feature extraction stage, the initial image 

consisting of 150×150 pixels is resized to a fixed size 

of 299×299 pixels. After that, the image is fed into the 

Inception V3 model. After going through a series of 
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convolution, pooling, and Inception module layers, the 

image dimensions are reduced to 8×8, while the number 

of channels increases to 2048. After passing through the 

average pooling layer, the final output is a 1×1×2048 

feature representation. This feature is then used as input 

to the Random Forest algorithm as input data. 

 

Figure 1. Inception v3 network architecture for image feature extraction 

2.3 Classification with Random Forest 

Random Forest is a classification technique consisting 

of a number of decision trees, where each tree is 

constructed using random samples drawn from an 

independent and identical, uniformly distributed 

distribution [16]. This technique helps overcome the 

risk of overfitting and reduces the correlation between 

decision trees, which often occurs in other ensemble 

methods. According to [17], random forest is a highly 

efficient classification method that can be widely 

applied to various types of datasets. 

Figure 3 illustrates the principle of the Random Forest 

algorithm. The extracted features from the images are 

input into multiple decision trees. Random Forest is one 

type of ensemble learning approach that constructs 

numerous decision trees during training; each tree 

provides a prediction based on a random subset of the 

data and features.  

 

Figure 2. Random forest model structure with 100 trees for 

classifying SIBI hand gestures. 

The final output is determined by aggregating the 

predictions from all the decision trees, typically using 

majority voting for classification tasks [18]. In building 

these decision trees, Random Forest utilizes the Gini 

Index, derived from the CART (Classification and 

Regression Trees) algorithm, to measure node impurity. 

The Gini Index is a commonly used metric in 

classification problems. It quantifies the probability of 

incorrectly classifying a randomly chosen element if it 

were labeled according to the distribution of labels in 

the node [19]. It helps the algorithm determine the 

optimal splits at each node to improve predictive 

accuracy. 

Equation 1 provides the formula for calculating the Gini 

impurity, denoted as 𝐺𝑖𝑛𝑖(𝑇), where 𝑇 represents the 

dataset or node being evaluated. Here, 𝑛 is the total 

number of classes, and 𝑃𝑖 is the probability of class-𝑖, 
calculated by dividing the number of instances in the 

class 𝑖 by the total instances in 𝑇. This impurity measure 

quantifies the likelihood of incorrectly classifying a 

randomly chosen instance according to the node's class 

distribution [20]. Gini impurity values range from 0, 

indicating a pure node (all instances in one class), to a 

maximum that depends on the class count. In binary 

classification, values range from 0 to 0.5, where 0.5 

represents a perfectly balanced distribution between 

two classes. 

𝐺𝑖𝑛𝑖(𝑇)  =  1 − 𝛴𝑖=1
𝑛 (𝑃𝑖)

2              (1) 

Equation 2 provides the formula for calculating the Gini 

split value, denoted as 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝑇), which is used to 

evaluate the impurity of a dataset after a split in a 

decision tree. In this formula, 𝑇1 and 𝑇2 are the subsets 

resulting from the split of the dataset 𝑇, where 𝑁1 and 

𝑁2 are the number of instances in each subset, 

respectively. The terms 𝐺𝑖𝑛𝑖(𝑇1) and 𝐺𝑖𝑛𝑖(𝑇2) 

represent the Gini impurity of each subset, measuring 

the impurity within them. Where 𝑁 = 𝑁1 + 𝑁2 is the 

total number of instances in the dataset 𝑇. 

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡(𝑇) =
𝑁1

𝑁
× 𝐺𝑖𝑛𝑖 (𝑇1) +

𝑁2

𝑁
× 𝐺𝑖𝑛𝑖(𝑇2)       (2) 

In the classification process using Random Forest, the 

2048-dimensional feature vectors extracted from 

images are used as input. These features are classified 

using a Random Forest classifier composed of 10 

decision trees. The model combines the predictions 

from these 100 trees to improve the accuracy of the final 

prediction through majority voting. Each tree is trained 

on a bootstrap sample of the dataset, introducing 

randomness by selecting a different subset of data for 

each tree. Additionally, at each node in a tree, a random 

subset of features is considered when determining the 
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best split, which helps in reducing the correlation 

between trees and enhances generalization. In this 

model, the minimum number of samples required to 

split an internal node is set to 5. It means that a node 

will not be split further if it contains fewer than 5 

samples, ensuring that only sizable subsets of data are 

used for further splitting. This parameter helps improve 

performance and reduces the risk of overfitting by 

preventing the creation of nodes that are too small to 

provide meaningful splits. 

2.4 Evaluation Method   

The evaluation of the classification aims to assess the 

classifier's performance in accurately classifying SIBI 

hand patterns. We evaluated a dataset comprising 5280 

images representing 24 classes of sign language 

alphabet symbols. Utilizing the K-Fold Cross-

Validation method [21], we divided the dataset into 𝐾 

subsets (folds) of approximately equal size. The model 

is trained on 𝐾 − 1 folds and validated on the remaining 

fold. This process is repeated 𝐾 times, with each fold 

serving as the validation set once. The final evaluation 

metrics are calculated by averaging the results from all 

𝐾 iterations. This technique reduces the bias associated 

with a single train-test split and provides a more robust 

estimate of the model's performance. 

The classification results of the Random Forest are 

evaluated using a confusion matrix that visualizes the 

classifier performance by comparing the actual classes 

with the predicted classes for a set of test data. In the 

context of multi-class classification with 24 classes of 

SIBI hand gestures, the confusion matrix is a 24×24 

grid. Each row of the matrix represents the instances in 

an actual class, while each column represents the 

instances in a predicted class. The diagonal elements 

indicate the number of correct predictions for each 

class, whereas the off-diagonal elements show where 

the model has misclassified instances, indicating 

confusion between specific classes [22]. For each class 

in the classification task, we define four key metrics to 

evaluate the model's performance: True Positive (TP), 

False Positive (FP), False Negative (FN), and True 

Negative (TN). The TP count represents the number of 

instances correctly predicted as belonging to a 

particular class; these instances are located along the 

diagonal of the confusion matrix. The FP metric refers 

to instances that are incorrectly predicted as belonging 

to the class but actually belong to other classes; this is 

calculated by summing the values in the corresponding 

column of the confusion matrix, excluding the TP. 

Conversely, the FN count includes instances that 

actually belong to the class but are incorrectly predicted 

as belonging to other classes, determined by summing 

the values in the corresponding row of the confusion 

matrix, excluding the TP. Lastly, the TN represents the 

number of instances correctly predicted as not 

belonging to the class, calculated by subtracting the sum 

of TP, FP, and FN for that class from the total number 

of instances. By analyzing this matrix, we can assess 

how well the model recognizes each SIBI hand gesture 

and identify patterns of misclassification. This detailed 

evaluation helps in understanding the model's strengths 

and weaknesses, guiding further improvements to 

enhance its accuracy in recognizing SIBI hand gestures. 

In addition to using a confusion matrix, the performance 

of the classification model is evaluated using standard 

evaluation metrics for classification problems such as 

accuracy, precision, recall, and F1 score. Equation 3 

describes the formula to calculate accuracy, which 

provides an overall indication of the model's 

performance. Accuracy measures the proportion of 

correct predictions made by the classifier out of all 

predictions [23]. However, accuracy alone may not be 

sufficient in multi-class classification tasks, where 

misclassifications between classes can vary. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100%             (3) 

Equation 4 provides the formula for calculating 

precision, which measures the accuracy of the model's 

positive predictions. Precision is defined as the TP ratio 

to the total number of positive predictions made by the 

classifier, which includes both TP and FP. This metric 

indicates the proportion of instances that were correctly 

predicted as positive out of all instances predicted as 

positive by the model [24]. Precision measures how 

many of the instances that the model classified as 

positive are actually positive, reflecting the model's 

ability to avoid false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%              (4) 

Equation 5 provides the formula for calculating recall, 

which indicates how effective the model is at 

identifying actual positive instances. The recall value is 

defined as the TP ratio to the total number of actual 

positive instances, which includes both TP and FN [25]. 

This metric measures how many of the actual positive 

instances were correctly identified by the classifier. A 

higher recall indicates that the classifier is effective at 

detecting positive instances and has fewer false 

negatives, reflecting its ability to capture as many 

relevant instances as possible. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%               (5) 

Equation 6 provides the formula for calculating the F1 

score, an evaluation metric that combines precision and 

recall into a single value to measure the performance of 

a classification model, mainly when dealing with 

imbalanced datasets. The F1 score is calculated as the 

harmonic mean of precision and recall. By using the 

harmonic mean, the F1 score balances the trade-off 

between precision and recall, providing a more 

comprehensive measure of the model's performance 

[26]. This metric is especially valuable when the dataset 

has an uneven class distribution or when both FP and 

FN are essential to consider. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (6) 
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3. Results and Discussions 

This section presents the performance evaluation of the 

classification model applied to the SIBI dataset. The 

analysis includes the model's ability to recognize each 

hand gesture, including gestures with the highest and 

lowest actual recognition rates based on the confusion 

matrix obtained using the Random Forest method. 

Furthermore, the test results are processed to obtain 

accuracy, F1 score, precision, and recall values. 

3.1 SIBI Gesture Classification Results 

In the first experiment, we evaluate the proposed 

method by looking at the performance of the 

classification accuracy (CA). In this experiment, we 

vary the number of tree estimators in the random forest 

to observe its correlation with CA. In addition, we also 

wanted to identify the relationship between the number 

of tree estimators and the computation time required for 

the proposed algorithm. The results of this experiment 

are shown in Figure . 

 

    (a)                  (b) 

Figure 4. Relationship between a number of tree estimators with (a) classification accuracy, and (b) computation time. 

Figure 4 (a) shows the correlation between the number 

of tree estimators and the CA. It can be seen that the 

more tree estimators in the random forest, the higher the 

CA. In this experiment, the random forest with a 

number of tree estimators above 50 achieved a CA 

above 80%. The highest value is obtained when using 

100 tree estimators, which is CA = 85.40%. 

Figure 4 (b) shows the effect of the number of tree 

estimators on the computation time, which includes the 

total training time and the total inference time of the 

random forest. From  Figure 4 (b), it can be concluded 

that the more tree estimators there are, the longer the 

computation time is required. The most extended 

computation process occurs when the random forest 

uses 100 tree estimators, with a total computation time 

of 1152.85 seconds. 

After testing and obtaining the best-performing 

algorithm, which is the random forest with 100 tree 

estimators, we then compared the results with the 

research conducted by [8]. The comparison results are 

shown in Table 1.  

Based on the evaluation metrics of CA, precision, 

recall, and F1 score, our proposed method is still unable 

to surpass the transfer learning method Xception 

proposed by [8]. However, our research is superior in 

terms of computation time speed, which is 234.36 

seconds faster than the method of [8], despite the lower 

computer specifications we use, which is a computer 

with AMD Athlon Gold 3150U 4CPUs@2.4GHz. This 

advantage is due to the absence of the training process 

in the CNN architecture part, so the computation 

process during training only occurs in the random 

forest. 

Table 1. Comparison of the proposed method with state-of-the-art on 

SIBI hand gesture classification. 

Method CA 

(%) 

Prec 

(%) 

Recall 

(%) 

F1 

(%) 

Computation 

Time (s) 

[8] 99.57 99.57 99.57 99.57 1387.21 

Proposed  85.40 85.30 85.40 85.20 1152.85 

Table 2. Performance of random forest on SIBI hand gesture 

classification 

 Gestures CA (%) Prec (%) Recall (%) F1 (%) 

A 98.60 80.80 85.90 83.30 

B 99.00 86.10 90.50 88.20 

C 99.60 92.30 97.70 94.90 

D 99.60 93.10 98.60 95.80 

E 98.80 82.90 88.20 85.50 

F 98.50 83.20 80.90 82.00 

G 99.20 93.70 87.70 90.60 

H 99.70 93.20 99.10 96.00 

I 97.70 79.60 58.60 67.50 

K 98.20 76.90 81.80 79.30 

L 99.00 90.80 85.50 88.10 

M 98.10 78.60 75.00 76.70 

N 98.00 75.70 76.40 76.00 

O 99.80 97.70 98.60 98.20 

P 99.40 94.80 91.40 93.10 

Q 99.70 94.80 99.10 96.90 

R 98.50 79.30 85.50 82.30 

S 98.70 84.60 85.00 84.80 

T 98.80 86.70 82.70 84.70 

U 98.40 83.40 75.50 79.20 

V 98.00 79.10 72.30 75.50 

W 98.40 77.80 87.70 82.50 

X 99.00 87.00 88.20 87.60 

Y 98.60 83.00 84.10 83.50 
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Table 2 presents the evaluation results of the Random 

Forest model in classifying 24 hand gestures 

represented by SIBI. In general, the Random Forest 

algorithm used for classification showed good accuracy 

performance, with CA values above 97%. The gesture 

"O" has the best performance with a CA of 99.80%, an 

F1 score of 98.20%, a precision of 97.70%, and a recall 

of 98.60%. Moreover, based on the F1 score, the gesture 

"O" has the highest performance, which shows that the 

model is able to recognize this gesture very well. 

However, some gestures, such as "V" and "I," have 

much lower F1 scores, 75.50%, and 67.50%, 

respectively. This result shows that the model has 

difficulty recognizing these gestures. This condition is 

likely due to the similarity of the patterns or hand 

gestures that symbolize these gestures.  

In terms of precision and recall, low precision values 

occur for the gestures "N" and "V," which only reach 

75.70% and 72.30%, respectively. This lowest 

precision in gesture "N" indicates that many predictions 

for these gestures are false positives. In addition, the 

lowest recall value occurred for the gesture "V," which 

indicates that the model predicts false negatives.  

3.1 Confusion Matrix Results for SIBI Gesture 

Classification 

Figure 5 is a confusion matrix that describes the model 

prediction results against the actual class. The left row 

represents the actual class, while the bottom column 

shows the predicted class. Each cell shows the amount 

of data classified, with the color helping to identify the 

concentration of predictions. The diagonal values from 

the top left to bottom right are the number of correct 

predictions in which the actual class is equal to the 

predicted class. On the other hand, off-diagonal values 

indicate misclassification. Symbol 𝛴 in the bottom row 

and right column summarizes the total sum of the 

sample data. 

Based on the confusion matrix results, the gesture "Q" 

achieved one of the highest recognition rates by the 

model. The classifier correctly predicted 217 out of the 

total samples for the gesture "Q." However, there were 

seven instances where the gesture "Q" was 

misclassified as another gesture, indicating minor 

weaknesses in recognizing its specific characteristics. 

Additionally, three samples of other gestures were 

incorrectly predicted as "Q," demonstrating that the 

model was relatively confident in identifying this 

gesture correctly with minimal false positives. 

 

Figure 5. Confusion matrix of SIBI hand gesture classification results. 

The gesture "I" exhibited a moderate identification rate 

in the classification model. Out of a total of 124 actual 

samples of the gesture "I," the model correctly predicted 

124 instances, suggesting a strong recognition rate for 

this particular gesture. However, 11 instances of other 

gestures were misclassified as "I," leading to some false 

positives. Notably, the gesture "Y" was frequently 
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misidentified as "I," indicating that the model struggled 

to distinguish between these similar visual gestures. 

Meanwhile, the gesture "F" showed significant 

classification difficulty. Although the model correctly 

identified 169 instances of "F," there were 23 instances 

where the model misclassified "F" as "B," indicating a 

challenge in differentiating between these two gestures. 

Similarly, the gesture "V" was frequently confused with 

"U," with 31 instances of "V" being misclassified as 

"U." This suggests that the model might require further 

refinement in feature extraction or training adjustments 

to better distinguish between gestures with similar 

shapes or movements. 

These findings highlight areas where the model 

performs well and areas where further improvements 

could be made, such as refining feature selection, 

improving training data balance, or incorporating 

additional preprocessing techniques to enhance gesture 

differentiation. 

4. Conclusions  

Based on the conducted research, the Random Forest 

classification model achieved a classification accuracy 

of 85.40%, a precision of 85.30%, a recall of 85.40%, 

and an F1 score of 85.20% in recognizing SIBI hand 

sign symbols. These results indicate that the model has 

significant room for improvement, particularly in 

accurately classifying certain hand gestures. 

Specifically, the gesture "I" had the lowest 

classification accuracy, with only 124 out of 220 

predictions being correct. In terms of computation 

efficiency, our proposed method is 234.36 seconds 

faster than state-of-the-art ones. This result shows that 

our proposed method has some advantages in 

computation efficiency. It is recommended that other 

classification algorithms be explored to enhance the 

model's performance. In addition, it is necessary to 

explore other image-embedding models that can extract 

hand gestures more efficiently. 
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