
 Received: 25-01-2025 | Accepted: 14-03-2025 | Published Online: 25-03-2025

266

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 9 No. 2 (2025) 266 - 275 e-ISSN: 2580-0760

Optimizing Multilayer Perceptron for Car Purchase Prediction

with GridSearch and Optuna

Ginanti Riski1*, Dedy Hartama2, Solikhun3
1,2,3Department of Informatics Engineering, STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

1ginantiriski@gmail.com, 2dedyhartama@amiktunasbangsa.ac.id, 3solikhun@amiktunasbangsa.ac.id

Abstract

Multilayer Perceptron (MLP) is a powerful machine learning algorithm capable of modeling complex, non-linear

relationships, making it suitable for predicting car purchasing power. However, its performance depends on hyperparameter

tuning and data quality. This study optimizes MLP performance using GridSearch and Optuna for hyperparameter tuning

while addressing data imbalance with the Synthetic Minority Over-sampling Technique (SMOTE). The dataset comprises

demographic and financial attributes influencing car purchasing power. Initially, the dataset exhibited class imbalance, which

could lead to biased predictions; SMOTE was applied to generate synthetic samples, ensuring a balanced class distribution.

Two hyperparameter tuning approaches were implemented: GridSearch, which systematically explores a predefined parameter

grid, and Optuna, an adaptive optimization framework utilizing a Bayesian approach. The results show that Optuna achieved

the highest accuracy of 95.00% using the Adam optimizer, whereas GridSearch obtained the best accuracy of 94.17% with the

RMSProp optimizer, demonstrating Optuna's superior ability to identify optimal hyperparameters. Additionally, SMOTE

significantly improved model stability and predictive performance by ensuring adequate class representation. These findings

offer insights into best practices for optimizing MLP in predictive modeling. The combination of SMOTE and advanced

hyperparameter tuning techniques is applicable to various domains requiring accurate predictive analytics, such as finance,

healthcare, and marketing. Future research can explore alternative optimization algorithms and data augmentation techniques

to further enhance model robustness and accuracy.

Keywords: multilayer perceptron; hyperparameter optimization; gridsearch; optuna; SMOTE

How to Cite: Ginanti Riski, Dedy Hartama, and Solikhun, “Optimizing Multilayer Perceptron for Car Purchase Prediction with

GridSearch and Optuna ”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 9, no. 2, pp. 266 - 275, Mar. 2025.

DOI: https://doi.org/10.29207/resti.v9i2.6328

1. Introduction

In recent years, the use of Machine Learning (ML)

algorithms, particularly Multilayer Perceptron (MLP),

has become increasingly popular in various predictive

applications. One of its applications is in predicting

consumer purchasing power, especially in the

automotive market. Vehicle purchasing power

prediction plays an important role in the automotive

industry for designing sales strategies, marketing, and

product development. As a type of Artificial Neural

Network (ANN), MLP has proven effective in handling

prediction problems involving non-linear relationships

between inputs and outputs, making it highly relevant

in modeling purchasing power, which is complex and

dynamic [1]-[3].

Technological advancements have driven various

studies on the development and optimization of MLP

for prediction, including in the automotive sector. One

study showed that hyperparameter tuning significantly

improved MLP performance, where the default Adam

configuration achieved an accuracy of 89.50% and

RMSProp of 87.50%. However, after tuning with a

learning rate of 0.001, their accuracy increased to

91.5% and 92.00%, respectively [1].

Another study on predicting Toyota car sales in

Indonesia found that the MLP 10-15-1 architecture

provided the best results, with an MAE of 1879.29 and

a MAPE of 6.78% [2]. Meanwhile, research on chili

price prediction in Tangerang compared MLP and

RNN, showing that MLP was more accurate, with a loss

of 0.0038, MSE of 10,271,959.0, and MAPE of 3.79%

[3]. These findings suggest that similar techniques can

be applied to vehicle purchasing power prediction,

mailto:1ginantiriski@gmail.com
mailto:2dedyhartama@amiktunasbangsa.ac.id
mailto:3solikhun@amiktunasbangsa.ac.id
https://doi.org/10.29207/resti.v9i2.6328

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 267

given the data patterns involving economic factors and

market trends [4].

Although MLP has shown promising results in various

studies, several key challenges remain in the modeling

process, particularly in hyperparameter optimization,

data imbalance, and feature selection. One of the

challenges in using MLP is hyperparameter

optimization. Traditional techniques such as

GridSearch are commonly used but require very long

computation times and do not always produce optimal

accuracy [1], [4]. Some studies have highlighted the

limitations of GridSearch and proposed alternatives

such as Optuna, which has proven to be more efficient

in hyperparameter optimization through a faster and

more accurate algorithmic search approach, as applied

in heart disease prediction [5]-[8].

Additionally, data imbalance is a major challenge in

many ML applications, including vehicle purchasing

power prediction. This imbalance occurs when the

number of samples in one category is significantly

smaller than in another, which can lead to bias in the

prediction model. One widely used solution is SMOTE

(Synthetic Minority Over-sampling Technique), One

way to enhance model performance is by generating

synthetic data for the underrepresented class., thereby

enhancing prediction accuracy [8], [9]. Further studies

have also developed variations of SMOTE, such as

GeometricSMOTE, which allows for faster and more

efficient data balancing [10], [11]. Therefore, this study

will explore the use of SMOTE to address data

imbalance issues in vehicle purchasing power

prediction.

Apart from data balancing, feature selection also plays

a crucial role in improving MLP model quality.

Effective feature selection techniques can help enhance

model accuracy by reducing data dimensions and

eliminating irrelevant features [4]. Other studies have

also emphasized the importance of optimizing feature

selection in neural networks to improve predictive

performance [6]. Therefore, this study will apply

correlation-based feature selection to improve the

quality of input data used in MLP model training [12].

Previous research has mostly addressed individual

aspects like hyperparameter optimization or data

imbalance management, without adopting a holistic

approach. Few studies have integrated advanced

techniques such as Optuna for hyperparameter tuning,

SMOTE for data balancing, and effective feature

selection in vehicle purchasing power prediction. This

highlights a research gap that needs to be filled. Hence,

this study seeks to enhance prediction accuracy and

efficiency by utilizing GridSearch and Optuna for

hyperparameter optimization, SMOTE for handling

data imbalance, and correlation-based feature selection

to refine input data quality.

This study enhances vehicle purchasing power

prediction accuracy, aiding the automotive industry in

refining marketing and sales strategies. It is the first to

integrate hyperparameter optimization, data balancing,

and feature selection in this context.

2. Research Methods

2.1 Research Dataset

The research dataset used in this study is taken from the

Cars Purchase Decision Dataset on Kaggle, which

contains 1000 entries and five key features [13]:

The dataset includes “User ID”, which is an integer that

uniquely identifies each user; “Gender”, a categorical

variable with values ‘Male’ or ‘Female’; “Age”, an

integer representing the user's age; “Annual Salary”, an

integer indicating the user’s yearly income; and

“Purchased”, a binary variable where 0 indicates no

purchase and 1 indicates a purchase decision.

This dataset predicts car purchase decisions based on

Age, Gender, and Annual Salary. Preprocessing

techniques, including oversampling with SMOTE and

feature selection, are applied to handle class imbalance

and improve model performance.

2.2 Research Stages

The research follows a structured workflow to ensure

systematic handling of each step and improve model

performance. Figure 1 illustrates the step-by-step

process followed in this research.

Figure 1. Research Stages

The dataset used in this study is sourced from Kaggle

and consists of 1,000 data entries for analysis. To ensure

data quality, an initial exploration is conducted to

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 268

identify and handle missing values, outliers, and

duplicate records. Categorical features, such as Gender,

are then converted into numerical values using label

encoding. For optimal model performance, a feature

selection process is applied to remove low-correlation

features. Additionally, to address the class imbalance,

the Synthetic Minority Over-sampling Technique

(SMOTE) is implemented to generate synthetic data for

the minority class. The dataset is subsequently split into

training and test sets to facilitate model evaluation.

Before training, feature standardization is performed to

ensure that all features are on the same scale. A

Multilayer Perceptron (MLP) model is then built and

assessed using accuracy, precision, recall, and F1-

score metrics. To further enhance model performance,

hyperparameter tuning is conducted using GridSearch

and Optuna. Finally, the model's performance is

evaluated to measure the impact of hyperparameter

tuning and ensure optimal predictive accuracy.

2.3 Multilayer Perceptron (MLP)

MLP is applied in this study as an artificial neural

network to handle non-linear relationships between

input and output variables, enabling the model to

capture complex patterns in the data [14]. MLP consists

of an input layer, hidden layers, and an output layer

[15]. The training process uses optimization algorithms

such as Adam or RMSProp with backpropagation to

minimize model errors [16]. Following previous

studies, the ReLU activation function is applied to the

hidden layers, while the sigmoid function is used for the

output layer [10], [15].

One of the key advantages of MLP is its ability to learn

complex decision boundaries through the hierarchical

representation of features. By adjusting the number of

hidden layers and neurons, the model can capture

intricate patterns that traditional machine-learning

algorithms might struggle with. However, selecting the

optimal network architecture is crucial, as an excessive

number of hidden layers may lead to overfitting, while

too few may result in underfitting. To address this,

techniques such as dropout and batch normalization are

commonly implemented to enhance generalization and

improve model stability.

2.4 Oversampling with SMOTE

To handle class imbalance, SMOTE (Synthetic Minority

Over-sampling Technique) is utilized. This technique

generates synthetic data for the minority class by

interpolating existing data points, enhancing model

accuracy when working with imbalanced datasets. [7],

[16], [17].

In addition to increasing the number of samples in the

minority class, SMOTE helps the model recognize

more diverse patterns compared to traditional

oversampling methods, such as simple data duplication.

However, SMOTE must be applied carefully, as

excessive use can lead to overfitting. To mitigate this,

SMOTE is often combined with undersampling

techniques for the majority class or other regularization

methods, such as dropout in neural networks [18], [19].

Furthermore, previous studies have shown that the

effectiveness of SMOTE depends on the original data

distribution and the appropriate selection of parameters,

such as the number of neighbors used for synthetic data

interpolation [20].

2.5 Hyperparameter Tuning with GridSearch and

Optuna

GridSearch is employed to examine all possible

hyperparameter combinations to identify the optimal

one, though it can be time-intensive [21], [22]. As an

alternative, Optuna is applied to efficiently search for

optimal hyperparameters, reducing the search time

compared to GridSearch [20]-[25].

In practice, GridSearch is best suited for smaller search

spaces due to its exhaustive nature, whereas Optuna

leverages efficient sampling techniques, such as Tree-

structured Parzen Estimator (TPE) and pruning

strategies, to focus on the most promising

hyperparameter configurations. This makes Optuna

particularly effective when working with deep learning

models or complex machine learning pipelines that

require extensive computational resources. Moreover,

Optuna supports adaptive learning rates and parallel

processing, further enhancing optimization efficiency.

By combining both approaches, researchers can initially

use GridSearch for a broad search and refine the results

with Optuna for a more precise and efficient

hyperparameter tuning process.

2.6 Model Evaluation

The model's performance is assessed using metrics like

Accuracy, Precision, Recall, and F1-Score to evaluate

its effectiveness in predicting car purchase decisions.

Accuracy is determined using Formula 1:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑎+𝑑)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑒𝑙
× 100% (1)

“𝑎” represents the number of correct positive

predictions, “𝑑” is the number of incorrectly predicted

positives, and “Total Samples” refers to the total

number of tested data points.

Additionally, Precision is computed by dividing the

number of true positive predictions (TP) by the total

number of positive predictions (TP + FP), following

Formula 2:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (2)

Recall is determined by comparing the number of true

positive predictions (TP) with the total actual positive

cases (TP + FN), using Formula 3:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (3)

Finally, F1-Score is calculated as the harmonic mean of

Precision and Recall, formulated as Formula 4.

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 269

1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (4)

These metrics provide a comprehensive evaluation of

the model's ability to balance correct predictions and

misclassifications, offering deeper insight into its

overall performance in making purchase decisions.

3. Results and Discussions

3.1 Data Collection

Once the data was collected, it was imported into the

Kaggle Notebook for further processing and analysis.

Figure 2 presents the dataset successfully loaded into

Kaggle Notebook, displaying the first few rows along

with their column names and values.

Figure 2. Importing Data into Kaggle Notebook

From this view, we can confirm that the dataset has

been correctly imported and structured, with clearly

defined columns and data types. This preliminary

verification confirms that the data is prepared for the

next preprocessing steps, including handling

categorical variables, scaling numerical values, and

preparing it for model training. These steps will be

discussed in the next section.

3.2 Data Exploration

To ensure data quality, several checks were performed

in the data exploration phase, including missing value

detection, outlier identification, and duplicate data

removal. These steps are essential to maintaining

dataset integrity and ensuring accurate model

predictions. Figure 3 presents the results of these

checks.:

Figure 3. Data without Outliers

The analysis revealed that there were no missing values

in the dataset, meaning that all records were complete

and no imputation was required. Additionally, no

duplicate entries were found, ensuring that the dataset

does not contain redundant records that could bias the

model’s learning process.

Outlier detection was conducted using boxplots and the

Interquartile Range (IQR) method. The IQR method

identifies outliers by calculating the range between the

first quartile (Q1) and the third quartile (Q3). Data

points that fall below Q1 - 1.5IQR or above Q3 +

1.5IQR are regarded as outliers. The results confirmed

that all feature values fall within an acceptable range,

indicating that the dataset is free from extreme

deviations.

Since the dataset does not contain missing values,

duplicates, or significant outliers, no additional data

cleaning or transformation was necessary at this stage.

This ensures that the dataset is in optimal condition for

further preprocessing, feature selection, and model

training.

3.3 Label Encoding

At this stage, Label Encoding was applied to convert

categorical features into a numerical format suitable for

machine learning models. This transformation is

necessary because most machine learning algorithms

only accept numerical data.

In this dataset, the Gender column contained two

categories: 'Male' and 'Female'. Using Label Encoding,

the 'Male' category was given a value of 1, and the

'Female' category was assigned 0. This encoding

enables the model to handle gender data efficiently

without adding to the dimensionality.

Label Encoding was chosen over One-Hot Encoding

because the feature has only two categories (binary

classification). One-Hot Encoding is more suitable

when dealing with categorical features with multiple

unique values, as it prevents the model from

interpreting numerical labels as ordinal relationships.

However, since Gender is a non-ordinal variable with

only two categories, Label Encoding is a more efficient

and appropriate choice.

By applying this encoding, the dataset remains

compact, avoids unnecessary feature expansion, and

ensures that machine learning models can correctly

interpret and utilize the Gender feature during training.

3.4 Feature Selection

The first step in Feature Selection was to analyze the

correlation between features and the target variable

(Purchased) to identify which features have significant

relationships with the target. Pearson’s correlation

coefficient was used for this calculation, as it is a widely

accepted method for measuring linear relationships

between numerical variables.

To better understand the relationships between features

and their impact on the target variable, an initial

correlation analysis was conducted. Figure 4 presents

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 270

the Correlation Matrix, highlighting the strength of

relationships among the features in the dataset.

From these results, features with a correlation greater

than 0.1 with the Purchased column were selected for

inclusion in the model. The threshold of 0.1 was chosen

to ensure that only features with at least a weak to

moderate correlation with the target variable were

considered, helping to reduce noise in the dataset and

improve model efficiency.

Figure 4. Initial Correlation Between Features

To prevent multicollinearity, a second correlation

analysis was performed on the chosen features.

Multicollinearity arises when independent variables are

strongly correlated, causing redundancy and instability

in the model. A high correlation (typically above 0.8)

between independent features can cause inflated

variance in the regression coefficients, reducing the

model’s interpretability and robustness.

The results of the heatmap visualization, which

illustrate the correlation between the selected features,

are presented in Figure 5.

Figure 5. Correlation Between Features After Feature Selection

3.5 Oversampling with SMOTE

To tackle the class imbalance problem in the dataset, the

Synthetic Minority Over-sampling Technique

(SMOTE) was applied at this stage. SMOTE is a

commonly used oversampling technique that creates

synthetic samples for the minority class rather than just

replicating existing data. This method helps avoid

overfitting and improves the model's ability to

generalize more effectively.

Before applying SMOTE, the class distribution in the

Purchased column was imbalanced, with significantly

more samples in Class 0 (not purchasing a car) than in

Class 1 (purchasing a car). This imbalance can cause

the model to favor the majority class, reducing its

accuracy in correctly classifying the minority class.

Figure 6 visualizes the class distribution before

oversampling.

Figure 6. Class Distribution Before Oversampling

To resolve this imbalance, SMOTE was applied to

generate synthetic samples for Class 1 until its count

equaled that of Class 0. This process ensures that the

model does not develop a bias toward the majority class,

thereby improving its ability to classify both categories

accurately. Figure 7 illustrates the class distribution

after oversampling.:

Figure 7. Class Distribution After Oversampling

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 271

The class distribution before and after applying

SMOTE is presented in Table 1, highlighting the

increase in samples for the minority class:

Table 1. Data Distribution Before and After SMOTE Application

Class

Before

SMOTE After SMOTE

Class 0 (Not Purchased) 598 402

Class 1 (Purchased) 598 598

3.6 Split Data

At this point, the dataset, which had been resampled

using SMOTE, was split into training and testing sets.

This separation is crucial to ensure that the model learns

from one portion of the data and is tested on a different

portion that it has not encountered during training. This

approach allows us to evaluate the model's ability to

generalize to new, unseen data instead of merely

memorizing the training data.

The data was split using the train_test_split method,

with 80% allocated for training and 20% for testing. The

80-20 split is a commonly used ratio in machine

learning because it provides the model with sufficient

data for training while keeping a reasonable portion for

evaluation. This ensures that the model has enough

samples to learn from while preventing overfitting to

the training data.

To maintain reproducibility, a random state was used

during the split. This ensures that every time the split is

performed, the data is divided in the same way, which

is crucial for achieving consistent and comparable

results across multiple runs.

3.7 Data Standardization

After the dataset was split, data standardization was

performed to ensure all features were on a comparable

scale. Standardization is crucial because many Machine

Learning (ML) models, particularly those based on

distance calculations (such as logistic regression,

neural networks, and support vector machines),

perform better when the input features have similar

scales. Without standardization, features with larger

numerical ranges could dominate and negatively affect

the learning process.

The StandardScaler method was used for this purpose.

StandardScaler adjusts the data so that each feature has

a mean of 0 and a standard deviation of 1, ensuring that

no single feature dominates others due to differences in

magnitude. The transformation follows Formula 5.

𝑋′ =
𝑋− 𝜇

𝜎
 (5)

𝑋′ represents the standardized value, 𝑋 is the original

feature value, 𝜇 denotes the mean of the feature, and 𝜎
is the standard deviation. By transforming the data in

this manner, the model benefits from improved

numerical stability and better convergence during

training.

Standardization was applied to both the training and

testing data, but the testing data was transformed using

the scaling parameters calculated from the training data.

This is necessary to prevent data leakage, ensuring that

the test data remains unseen and does not influence the

model’s learning process.

3.8 Multilayer Perceptron (MLP) Model

At this stage, a Multilayer Perceptron (MLP) model

was built and tested using three different optimizers:

Adam, LBFGS, and RMSProp. These optimizers were

chosen because they each have distinct characteristics

and strengths, which can significantly impact model

performance. The comparison between these optimizers

helps determine which one provides the best accuracy,

precision, recall, and F1 score for car purchase

predictions.

The choice of optimizer is critical in influencing model

performance. Adam (Adaptive Moment Estimation)

integrates the benefits of momentum-based

optimization techniques and adaptive learning rates,

making it effective for non-stationary problems and

deep networks with faster convergence. LBFGS

(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)

It is a second-order optimization technique that

approximates the Hessian matrix, offering stability for

convex problems and faster convergence for small to

medium datasets, though it is computationally

expensive for large-scale deep learning tasks. RMSProp

(Root Mean Square Propagation) adjusts learning rates

dynamically by dividing the gradient by an

exponentially decaying average of squared gradients,

making it ideal for non-stationary objectives and

recurrent networks like RNN and LSTM while

providing more stability than Adam when handling

noisy gradient updates.

The MLP model was trained using three different

optimizers, each with specific hyperparameter settings,

as shown in Table 2.

Table 2. Optimizer Parameters for Adam, LBFGS, and RMSProp

Optimization Hidden Layer Iterations Learning Rate

Adam 100 500 0,1

Lbfgs 100 500 0,1

Rmsprop 100 50 0,001

After the model was trained, predictions were made,

and its performance was evaluated using four key

metrics. Accuracy measures the percentage of correct

predictions across the entire test data, providing an

overall assessment of model performance. Precision

indicates how many of the predicted positive cases are

actually correct, which is crucial in imbalanced datasets

to avoid excessive false positives. Recall (Sensitivity)

evaluates how well the model identifies actual positive

cases, ensuring that the minority class is not

overlooked. Finally, F1-Score is the harmonic mean of

precision and recall, making it the best metric for

assessing the balance between these two aspects in an

imbalanced dataset.

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 272

To compare the performance of each optimizer, the

results of the initial model evaluation are presented in

Table 3.

Table 3. Initial Model Evaluation with Adam, LBFGS, and

RMSProp Optimizers

 Model Evaluation

Optimization Accuracy Precision Recall F1-Score

Adam 93,33% 90,60% 95,50% 92,98%

Lbfgs 90,42% 90,74% 88,29% 89,50%

Rmsprop 93,75% 92,11% 94,59% 93,33%

RMSProp achieved the highest accuracy (93.75%) and

F1-score (93.33%), indicating the best balance between

precision and recall, making it the most effective

optimizer in this comparison. Adam followed closely

with 93.33% accuracy but had the highest recall

(95.50%), demonstrating its strength in identifying

positive cases due to its adaptive learning rate, which

efficiently adjusts to small gradient updates. LBFGS

had the lowest accuracy (90.42%), likely because it is

more suited for convex optimization problems and

struggles to generalize well in complex, non-linear deep

learning models. Thus, RMSProp appears to be the

most effective optimizer for this model, though further

tuning may enhance performance.

3.9 Hyperparameter Tuning

In this phase, Hyperparameter Tuning was conducted to

identify the best parameter combinations that could

enhance the performance of the MLP model. Tuning

hyperparameters is an essential step in the development

of a model, ensuring that the model can handle data

variations effectively and improve overall predictive

capability.

This study utilized two optimization methods:

GridSearch and Optuna. Both methods were applied to

three different optimizers: Adam, LBFGS, and

RMSProp, to explore optimal parameter combinations

that improve model accuracy. Each optimizer has

unique characteristics and performance, which can

significantly impact prediction results. Therefore,

conducting experiments with various hyperparameter

combinations is essential to achieve a more efficient and

accurate model.

3.9.1 GridSearch

In this phase, the best parameters were determined

using GridSearchCV. GridSearch performs an

exhaustive search by evaluating all possible parameter

combinations within a predefined range. This approach

ensures that the best combination is found, but it has

significant computational costs due to its brute-force

nature. In this study, GridSearch was applied to the

three optimizers (Adam, LBFGS, and RMSProp) with

the following hyperparameters being optimized: hidden

layer size, activation function, alpha regularization, and

learning rate.

The GridSearch results for each optimizer are

summarized in Table 4.

Table 4. Best Parameters with GridSearch

Optimizer Best Parameters Best Score

Adam

{'activation': 'logistic', 'alpha':

0.0001, 'hidden_layer_sizes':

(100,), 'learning_rate_init': 0.1}

90,59%

LBFGS

{'activation': 'logistic', 'alpha':

0.1, 'hidden_layer_sizes': (100,),

'learning_rate_init': 0.1}

89,85%

RMSProp

{'batch_size': 32, 'epochs': 50,

'learning_rate': 0.01,

'hidden_units': 50}

94,58%

After hyperparameter tuning, model evaluation was

conducted using Accuracy, Precision, Recall, and F1-

Score to assess the performance of each optimizer.

Table 5 presents the model evaluation results for each

optimizer tested using GridSearch.

Table 5. Model Evaluation Results with GridSearch

Optimizer Accuracy Precision Recall F1-Score

Adam 93,75% 92,86% 93,69% 93,27%

LBFGS 92,92% 90,52% 94,59% 92,51%

RMSProp 94,17% 93,69% 93,69% 93,69%

3.9.2 Optuna

In this phase, hyperparameter optimization was

performed using Optuna, which employs Bayesian

Optimization, a more efficient approach compared to

traditional GridSearch. Optuna uses probabilistic

models to intelligently explore the hyperparameter

space instead of exhaustively testing all combinations.

Unlike GridSearch, which performs brute-force

searching, Optuna dynamically adjusts its search based

on prior trials, allowing it to converge to optimal

parameters faster and with less computational cost.

In this study, Optuna was used to fine-tune several key

hyperparameters, including hidden_layer_size,

learning_rate_init, max_iter, epochs, and batch_size.

These hyperparameters play a critical role in model

performance, and their optimal configuration can lead

to significantly improved predictive accuracy.

Table 6 summarizes the hyperparameter tuning results

obtained using Optuna.

Table 6. Best Parameters with Optuna

Optimizer Best Parameters Best Score

Adam

{'hidden_layer_size': 168,

'learning_rate_init': 0.00083,

'max_iter': 562}

95,00%

LBFGS

{'hidden_layer_size': 50,

'learning_rate_init': 0.000191,

'max_iter': 720}

93,33%

RMSProp

{'hidden_layer_size': 186,

'learning_rate': 0.0039, 'epochs':

39, 'batch_size': 64}

94,58%

After optimization, the model was re-evaluated, and the

results are summarized in Table 7.

Table 7. Model Evaluation Results with Optuna

Optimizer Accuracy Precision Recall F1-Score

Adam 95,00% 94,59% 94,59% 94,59%

LBFGS 93,33% 92,79% 92,79% 92,79%

RMSProp 94,58% 93,75% 94,59% 94,17%

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 273

3.10 Model Evaluation

The results of the Optuna-based model evaluation

indicate that the Adam optimizer achieved the best

performance among all tested optimizers. The

confusion matrix obtained after tuning the Adam

optimizer with Optuna is presented in Figure 7.

Figure 7. Confusion Matrix for Adam Optimizer with Optuna

In the GridSearch model evaluation, RMSProp

outperformed the other optimizers. The confusion

matrix obtained after tuning RMSProp with GridSearch

is presented in Figure 8.

Figure 8. Confusion Matrix for Adam Optimizer with GridSearch

By implementing GridSearch and Optuna, this study

successfully explored more optimal hyperparameter

combinations for the Multilayer Perceptron (MLP)

model.

Optuna outperforms GridSearch in computational

efficiency by utilizing Bayesian Optimization to direct

hyperparameter searches toward more promising areas.

In contrast, GridSearch requires significantly more time

as it exhaustively tests all possible combinations using

a brute-force approach, which increases computational

costs. On the other hand, Optuna accelerates the process

by leveraging previous trial results to focus on the most

promising hyperparameters. Additionally, the study

results indicate that Adam consistently delivers the best

performance compared to LBFGS and RMSProp. This

is due to Adam's ability to adjust the learning rate

adaptively, making it more effective in handling

gradient variations and improving model training

stability.

3.11 Research Contribution

This study provides a valuable contribution to the

optimization of Multilayer Perceptron (MLP) for

kidney disease classification by adopting a more

comprehensive approach compared to previous

research. One of the key contributions is the

comparative analysis between GridSearch and Optuna

for hyperparameter tuning, demonstrating that Optuna

is more efficient and achieves higher accuracy than

GridSearch. Unlike prior studies that relied on a single

tuning method, this research provides a direct

comparison of both approaches in medical data

classification, offering deeper insights into the

effectiveness of each method.

Additionally, this study integrates multiple model

optimization techniques, such as SMOTE for handling

imbalanced data and correlation-based feature selection

to improve input quality. This combination has rarely

been explored in kidney disease classification, making

this research one of the first to integrate these three

approaches in a single study. The results also indicate

that MLP optimized with Optuna, combined with

SMOTE and feature selection, achieves superior

accuracy and F1-score compared to previous methods.

This confirms that effective hyperparameter tuning can

significantly enhance disease classification

performance, which is crucial for early diagnosis and

treatment planning.

Furthermore, the methodology developed in this study

is not limited to kidney disease classification but also

has the potential to be applied to other medical

classification tasks, such as heart disease and diabetes

prediction. Thus, this research not only improves MLP

accuracy for kidney disease classification but also

provides a foundation for developing similar models in

broader healthcare analytics.

4. Conclusions

This study successfully demonstrated that Multilayer

Perceptron (MLP) optimized with hyperparameter

tuning techniques can significantly improve accuracy in

predicting car purchase decisions. By utilizing

GridSearch and Optuna, the best hyperparameter

combinations were identified, where RMSProp

achieved the highest performance in GridSearch with

an accuracy of 94.17%, while Adam achieved the

highest accuracy of 95.00% in Optuna. Compared to

other optimizers, LBFGS reached an accuracy of

92.92% with GridSearch and 93.33% with Optuna,

while RMSProp achieved 94.58% with Optuna. These

results indicate that Adam performs better with Optuna,

whereas RMSProp demonstrated the best performance

within GridSearch. Additionally, this study shows that

Optuna is more efficient than GridSearch in

hyperparameter tuning. With Optuna, an accuracy of

95.00% was achieved using 562 iterations and a

learning rate of 0.00083, whereas GridSearch required

significantly more computational time due to its

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 274

exhaustive search of multiple parameter combinations.

This confirms that Optuna is not only faster in finding

optimal parameters but also yields a more accurate

model. The application of SMOTE successfully

addressed data imbalance, raising the number of

minority class samples from 402 to 598, resulting in a

more stable and accurate model for predicting car

purchase decisions. Correlation-based feature selection

also contributed to improving input data quality, which

ultimately enhanced the model’s predictive

performance. Although the results are promising, this

study has several limitations. The hyperparameter

tuning process, especially with GridSearch, remains

computationally expensive, as it requires testing a vast

number of parameter combinations. Additionally, the

dataset used had a limited number of features, which

means the model’s ability to fully capture the

complexity of real-world purchasing behavior may not

be fully optimized. Furthermore, this study did not

evaluate the model’s performance on real-time datasets

or with additional, more dynamic variables, which

could enhance predictive accuracy in more complex

environments. For future research, it is recommended to

use a larger and more diverse dataset, incorporating

external factors such as consumer preferences,

economic indicators, and historical purchase data to

improve model robustness. Additionally, exploring

ensemble learning techniques such as Random Forest

or XGBoost could provide valuable comparisons to the

MLP model. Testing the model in real-time scenarios or

with continuously updated datasets would also enhance

validation and improve its applicability in dynamic

environments. Furthermore, integrating multiple

hyperparameter optimization methods, such as

combining GridSearch with Bayesian Optimization,

could be explored to achieve even more optimal results.

With these future directions, upcoming research is

expected to enhance the efficiency and accuracy of car

purchase prediction models, providing valuable insights

for further studies and industry applications.

References

[1] M. Iqbal, M. N. Hendri, M. R. Ramadhan Saelan, M. Sony

Maulana, Yudhistira, and A. Mustopa, “Optimasi

Hyperparameter Multilayer Perceptron Untuk Prediksi Daya

Beli Mobil,” J. Manaj. Inform. dan Sist. Inf., vol. 6, no. 1, pp.

73–81, 2023, doi: 10.36595/misi.v6i1.739.

[2] M. N. Afkar, D. T. Randa, and R. A. Saputra, “Prediksi

Penjualan Mobil Toyota Di Indonesia Menggunakan Multi-

Layer Perceptron,” J. Inform. Polinema, pp. 91–98, 2024.

[3] K. H. Suradiradja, “Algoritme Machine Learning Multi-Layer

Perceptron dan Recurrent Neural Network untuk Prediksi

Harga Cabai Merah Besar di Kota Tangerang,” Fakt. Exacta,

vol. 14, no. 4, pp. 194–205, 2021, doi:

10.30998/faktorexacta.v14i4.10376.

[4] M. Wahyuni, “Klasifikasi Penyakit Daun Tomat dengan

Perbandingan Fungsi Aktivasi Multi Layer Perceptron,” Minfo

Polgan, vol. 13, no. 2, pp. 1988–1998, 2024, doi:

https://doi.org/10.33395/jmp.vl3i2.14351.

[5] Z. N. Nugroho, A. Harjoko, and M. Auzan, “Klasifikasi

Eritrosit Pada Thalasemia Minor Menggunakan Fitur

Konvolusi dan Multi-Layer Perceptron,” Indones. J. Electron.

Instrum. Syst., vol. 13, no. 1, pp. 91–100, 2023, doi:

10.22146/ijeis.83473.

[6] L. A. Zahir and S. Mafiroh, “Metode Multi Layer Perceptron

(Optimization Of Concrete Compressive Strength With

Artificial Neural Networks Using Multi Layer Perceptron),”

Tek. Sipil Univ. Tulungagung, vol. 4, no. 1, pp. 45–55, 2024.

[7] P. I. Ashuri, I. A. Cahyani, and C. S. K. Aditya, “MIND

(Multimedia Artificial Intelligent Networking Database)

Klasifikasi Penyakit Stunting Menggunakan Algoritma Multi-

Layer Perceptron,” Multimed. Artif. Intell. Netw. Database,

vol. 9, no. 1, pp. 52–63, 2024, doi:

10.26760/mindjournal.v9i1.52-63.

[8] D. Dablain, B. Krawczyk, and N. V. Chawla, “DeepSMOTE:

Fusing Deep Learning and SMOTE for Imbalanced Data,”

IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 9, pp.

6390–6404, 2023, doi: 10.1109/TNNLS.2021.3136503.

[9] A. Ranggana, R. C. Putra, and W. Wahyudin, “Multilayer

Perceptrons Dalam Memprediksi Kemenangan Pertandingan

Sepak Bola UEFA EURO 2016,” Digit. Transform. Technol.,

vol. 3, no. 2, pp. 629–642, 2023, doi:

10.47709/digitech.v3i2.3123.

[10] L. Camacho, G. Douzas, and F. Bacao, “Geometric SMOTE

for regression,” Expert Syst. Appl., vol. 193, p. 116387, 2022,

doi: 10.1016/j.eswa.2021.116387.

[11] M. R. Aohana, F. Bimantoro, R. N. L. Hidhayah, and D.

Swanjaya, “Komparasi Algoritma MLP+LBP dan CNN

Sebagai solusi Inovatif Untuk Deteksi Dini Korosi,” in

Seminar Nasional Inovasi Teknologi, Kediri, 2024, pp. 528–

536. [Online]. Available:

https://proceeding.unpkediri.ac.id/index.php/inotek/

[12] D. Wintana, Gunawan, H. Sulaeman, and S. Bahri, “Penerapan

Multi Layer Perceptron dan Diskrit pada Prediksi Cacat

Software,” J. Inf. Technol., pp. 321–329, 2022.

[13] S. Gabriel, “Cars - Purchase Decision Dataset,” 2022, Kaggle.

[Online]. Available:

https://www.kaggle.com/datasets/gabrielsantello/cars-

purchase-decision-dataset

[14] D. Mardinah and M. Thoriq, “Algoritma Multi Layer

Perceptron sebagai Prediksi Kelulusan Mahasiswa Universitas

Adzkia Tepat Waktu berdasarkan jenis kelamin , Indeks

Prestasi Semester , dan Jumlah SKS,” J. Technol. Comput., vol.

1, no. 2, pp. 26–35, 2024, [Online]. Available:

https://http//ojs.adzkia.ac.id/index.php/jtech

[15] F. Penalun, A. Hermawan, D. Avianto, and A.

Pramudwiatmoko, “A Multi-Layer Perceptron Regression and

Variant Windowing for Estimating Rainfall Based on Weather

Radar Data,” J. Educ. Sci., vol. 33, no. 2, pp. 58–71, 2024, doi:

10.33899/edusj.2024.146355.1421.

[16] A. Gupta, R. Ramanath, J. Shi, and S. S. Keerthi, “Adam vs.

SGD: Closing the generalization gap on image classification,”

in OPT2021: 13th Annual Workshop on Optimization for

Machine Learning, 2021, pp. 1–7.

[17] Y. Elor and H. Averbuch-Elor, “To SMOTE, or not to

SMOTE?,” Proc. ACM Int. Conf. Inf. Knowl. Manag., vol. 1,

no. 1, 2022, [Online]. Available:

http://arxiv.org/abs/2201.08528

[18] M. M. Ahsan, M. S. Ali, and Z. Siddique, “Imbalanced Class

Data Performance Evaluation and Improvement using Novel

Generative Adversarial Network-based Approach: SSG and

GBO,” no. Ml, pp. 1–13, 2022, [Online]. Available:

http://arxiv.org/abs/2210.12870

[19] J. H. Joloudari, A. Marefat, M. A. Nematollahi, S. S. Oyelere,

and S. Hussain, “Effective Class-Imbalance Learning Based on

SMOTE and Convolutional Neural Networks,” Appl. Sci., vol.

13, no. 6, pp. 1–43, 2023, doi: 10.3390/app13064006.

[20] S. Wang, Y. Dai, J. Shen, and J. Xuan, “Research on expansion

and classification of imbalanced data based on SMOTE

algorithm,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi:

10.1038/s41598-021-03430-5.

[21] J. Taylor, W. Wang, B. Bala, and T. Bednarz, “Optimizing the

optimizer for data driven deep neural networks and physics

informed neural networks,” 2022, [Online]. Available:

http://arxiv.org/abs/2205.07430

[22] M. Juez-Gil, Á. Arnaiz-González, J. J. Rodríguez, C. López-

Nozal, and C. García-Osorio, “Approx-SMOTE: Fast SMOTE

for Big Data on Apache Spark,” Neurocomputing, vol. 464, pp.

432–437, 2021, doi: 10.1016/j.neucom.2021.08.086.

 Ginanti Riski, Dedy Hartama, Solikhun

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)

This is an open access article under the CC BY-4.0 license 275

[23] N. K. C. Pratiwi, N. Ibrahim, and S. Saidah, “Prediksi Kanker

Paru menggunakan Grid search untuk Optimasi

Hyperparameter pada Algoritma MLP dan Logistic

Regression,” J. Tek. Energi Elektr. Tek. Telekomun. Tek.

Elektron., vol. 12, no. 3, p. 556, 2024, doi:

10.26760/elkomika.v12i3.556.

[24] B. Fu et al., “Quantifying scattering characteristics of

mangrove species from Optuna-based optimal machine

learning classification using multi-scale feature selection and

SAR image time series,” Int. J. Appl. Earth Obs. Geoinf., vol.

122, p. 103446, 2023, doi: 10.1016/j.jag.2023.103446.

[25] W. A. G. Kodri and S. Hadianti, “Optimization of The Machine

Learning Approach using Optuna in Heart Disease Prediction,”

J. Med. Informatics Technol., vol. 1, no. 3, pp. 59–64, 2023,

doi: 10.37034/medinftech.v1i3.15.

