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Abstract  

 Industry 4.0 requires secure networks as the advancements in IoT and AI exacerbate the challenges and vulnerabilities in data 

security. This research focuses on detecting Bot-IoT activity used the dataset Bot-IoT UNSW Canberra 2018. Bot-IoT dataset 

initially showed a significant imbalance, with 2,934,447 entries of attack activity and only 370 entries of normal activity. To 

address this imbalance, an innovative data aggregation technique was applied, effectively reducing similar patterns and trends. 

This approach resulted in a balanced dataset consisting of 8 attack activity points and 80 normal activity points. Feature 

selection using the ANOVA method identified 10 key features from a total of 17. The classification process utilized Random 

Forest (RF), k-Nearest Neighbors (kNN), Naïve Bayes (NB), and Decision Tree (DT) algorithms, with 100 iterations and an 

80:20 training-testing split. Random Forest showed superior performance, achieving 97.5% accuracy, 97.4% precision, and 

97.4% recall, with a total computation time of 11.54 seconds. N IN Conn P DstIP and seq had the highest positive correlation 

value (+0.937) according to Pearson correlation analysis, whereas N IN Conn P SrcIP and state number had the lowest 

negative correlation value (-0.224). This research focuses on the implementation of a data aggregation strategy to address 

class imbalance, greatly enhancing machine learning model performance and optimizing training time, is what makes this 

research distinctive. These results aid in the creation of strong cybersecurity systems that can identify dangers associated with 

the Internet of Things. 
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1. Introduction  

In this 4.0 industry and 5.0 Society era, characterized by 

advancements in network technologies and the IoT, 

demands robust network security systems. This era 

connects and innovates industrial and societal life 

through disruptive technologies like IoT, cloud 

computing, and artificial intelligence[1]. However, as 

the demand for information and communication 

technology systems grows, so do critical challenges 

relate to data security. Vulnerabilities enable malicious 

users and programs to infiltrate systems, often resulting 

in data theft or system damage[2]. The rapid 

advancements in IoT technology have led to an increase 

in cyberattacks targeting IoT systems, aiming to harm 

targeted entities[3][4]. Examples of network security 

attacks include malicious threats commonly known as 

malware, especially botnet attacks[5][6]. Because 

botnets can inject DDoS, DoS, SPAM, phishing, and 

identity or personal data theft, they pose one of the most 

dangerous risks among these virus types[7][8]. Three 

main components enable a botnet to operate: the 

botmaster, the CnC (command & control), and the bots. 

The CnC (command & control) server serves as the 

central server used for recording or controlling infected 

computers, while the botmaster acts as the controller of 

the CnC (command & control) server[9]. These 

components enable hackers to control botnets and 

launch various attacks on networks. Despite the 

deployment of an Intrusion Detection System (IDS), a 

fundamental element of cybersecurity and information 

security, cyberattacks can still infiltrate networks and 

IoT devices[10]. 

The strategic security system becomes an attractive 

target for attackers or hackers who deliberately attempt 

https://doi.org/10.29207/resti.v9i2.6332


 Firgiawan Faira, Dandy Pramana Hostiadi, Roy Rudolf Huizen 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 426 

 

to infiltrate with malicious intent, causing harm by 

injecting bots into IoT devices through the network[11]. 

Supported by several previous studies analyzing Bot-

IoT activity using feature selection with classification 

models, one of which is Kerrakchou et al.[12] their 

study used the Bot-IoT UNSW Canberra 2018 dataset 

to find the most effective machine learning method for 

a classification. They compared six classification 

algorithms. The results revealed that, when applying a 

feature set of nine features, the Random Forest method 

performed best across four distinct measures. Hostiadi 

et al.[13] Eight features were identified with a 97.35% 

accuracy rate using the CTU-13 dataset and the cosine 

similarity approach based on feature selection for 

classification analysis. Halim et al. [14] This study 

introduced an enhanced feature selection method 

utilizing a genetic algorithm and evaluated its 

performance on three comparative network traffic 

datasets: the Bot-IoT dataset, UNSW-NB15, and 

CIRA-CIC-DOHBrw2020. Standard feature selection 

techniques were also compared. The results showed 

using GbFS increased accuracy, reaching a high of 

99.80%. Liu et al.[15] Three classification analysis 

techniques were used with the UNSW Canberra Botnet 

Activity dataset, which has 43 features total 29 original 

features + 14 calculated features using k-NN, Random 

Forest, and Decision Tree. Feature selection identified 

six features, achieving an optimal accuracy of 99.98%. 

The analysis of Bot-IoT detection using an ANOVA 

feature selection optimization technique is the main 

emphasis of this research, since it provides a 

statistically valid and legitimate way for comparing and 

grading characteristics in the Bot-IoT, Considering the 

context and literature review. This approach is selected 

because it facilitates efficient feature selection to 

identify the most pertinent characteristics by 

highlighting important interactions between dependent 

and independent variables within the existing features. 

As a reinforcement analysis in the feature selection 

process to attain the best classification accuracy in 

machine learning, feature correlation analysis is also 

used to validate and evaluate the correlations between 

features. 

Additionally, the research uses Classification Modeling 

to determine how well machine learning models 

perform. The research uses the Bot-IoT UNSW 

Canberra 2018 dataset and applies data aggregation 

processing on daddr (destination IP address), which is 

novel in that it addresses data imbalance. This is 

required because, during the data preparation phase, 

particular activity records from the 2,934,818 training 

data records indicate similar patterns and trends. This is 

supported by the fact that the Bot-IoT attack type is 

characterized by DoS (Denial of Service), which floods 

the network with traffic, and Reconnaissance, which 

aims to gather as much information as possible from the 

target. Data aggregation is therefore seen to be crucial 

during the data preparation stage in order to minimize 

the size of the enormous dataset and speed up the 

computation process. 

2. Research Methods 

The first steps of this research is collected data at the 

UNSW Canberra Bot-IoT 2018 dataset, which is 

published via the UNSW Canberra website. The next 

step is data preparation, where characteristic analysis is 

conducted on the dataset. Given that many attack 

records have similar values, a new treatment is applied 

by performing data aggregation to reduce the dataset 

size. Following this, data preprocessing is carried out, 

including feature selection using the ANOVA (Analysis 

of Variance) method to determine the values and select 

the best features. Correlation analysis between features 

is then conducted using the Pearson correlation method. 

Machine learning classification models for attack and 

normal classes (binary data) are then applied using 

algorithms such as Random Forest, kNN, Decision 

Tree, and Naïve Bayes. Finally, after testing, the 

methods are assessed to ascertain the results of the 

identification of the machine learning model. 

2.1 Bot-Iot Detection Model 

Detecting Bot-IoT activity is the main goal of the 

research flow, it selects the best features for the 

classification model using ANOVA feature selection 

optimization, in addition to correlation analysis to 

validate and enhance the information obtained through 

the feature selection technique by analyzing the 

relationships between features.  

Figure 1 displays the flowchart for the research process. 

2.2 Data Preparation 

Data composition and data aggregation comprise data 

preparation. Table 1 below shows the data composition 

of the UNSW Canberra 2018 Bot-IoT dataset[16], 

shown in Table 1.  

Table 1. Total data for the attack class 

No. Attack Class # Samples 

1 Attack Activity 2,934,447 

2 Normal Activity 370 

Total 2,934,817 

The 17 attributes shown in Table 2 that are connected 

to the UNSW Canberra 2018 Bot-IoT dataset are 

described in Table 2. 

With a total of 2,934,817 activities, the attack feature in 

the Bot-IoT dataset pattern is divided into two classes: 

label 0 for non-attack activity (normal) and label 1 for 

attack activity (attack). Upon further investigation, it 

was found that most of the activity records in the Bot-

IoT dataset have similar patterns and trends. As a result, 

a data aggregation process was performed with the goal 

of gaining better insights into the data characteristics, 

conducting pattern and trend identification analysis, and 

reducing data with similar patterns and trends. This 

would help optimize the computational process in 

machine learning. During the data preparation 
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observation phase, it was discovered that the Bot 

activity records in the dataset exhibited similar patterns 

and trends. Therefore, this research introduces novelty 

through the analysis of data aggregation. 

 

Figure 1. Bot-IoT Detection Model 

Table 2. Explanation of the Features 

No. Feature Description 

1 Proto Textual depiction of the 

network flow's transaction 

protocols 

2 Saddr The IP address of the 

source. 

3 pkSeqID Row Identifier 

4 Sport Port number of the source 

5 Daddr The destination's IP 

address 

6 Dport Destination port number 

7 Seq Argus sequence number 

8 Stddev The aggregate of the 

records' standard deviation 

9 N IN Conn P SrcIP number of connections 

coming in from each IP 

source. 

10 N IN Conn P DstIP number of connections 

coming in from each IP 

destination. 

11 Min Minimum time frame for 

aggregated records 

12 Max Maximum time frame for 

aggregated records 

13 Mean Average length of time for 

all records aggregated 

14 state number Numerical representation 

of feature state 

15 Srate Packets per second from 

the origin to the final 

location 

16 Drate From the destination to the 

source, packets per second 

17 Attack 

Normal traffic has a class 

label of 0, and attack traffic 

has a label of 1. 

 

2.3 Data Pre-processing 

Before raw data is entered into a machine learning 

model or algorithm, a number of procedures known as 

data preparation are conducted[17]. The objective is to 

prepare the data so that the model can handle it 

efficiently, improve its quality, and produce better 

analysis or prediction results[18]. 

The common steps involved in data preprocessing 

include transformation, cleaning, and normalization. 

The process of transformation involves transforming 

the data into a format better suited for modeling or 

analysis. This may include normalization, 

standardization, or other techniques such as logarithmic 

or square root transformations. Cleaning focuses on 

handling missing, incomplete, or invalid data, which 

may involve filling in missing values, removing invalid 

entries, or addressing outliers. Lastly, normalization 

helps to increase the accuracy and performance of 

analytical models by ensuring that all variables have a 

consistent range of values. 

2.4 Selection Feature With ANOVA 

A statistical technique called ANOVA (Analysis of 

Variance) is frequently used for feature selection in 

order to determine which features are most relevant to 

the prediction of the target variable[19]. When selecting 

features for machine learning models, the connection 

between each attribute and the target variable may be 

evaluated using ANOVA. This makes it possible to 

choose traits that will have the most influence[20]. 

The basic steps for using ANOVA in feature selection 

involve several key stages. First, the dataset is divided 

based on the categories of the target variable. Then, the 

variance is calculated both between and within each 

category. Finally, these variances are compared to 

determine whether the differences between categories 

are statistically significant, helping to identify which 

features have a meaningful impact on the target 

variable. 
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Features with significant p-values (typically less than 

0.05) are chosen as relevant features when the feature 

selection procedure is completed. Every characteristic 

is assessed and given a ranking. The F-value is the result 

of the ANOVA computation. The labels are more 

disjointed when the F-value is larger. As in Formula 1, 

the distance between classes is used to calculate each 

feature's score. 

𝜎𝑐𝑙
2 =  

∑(x̅o− x̅)2𝑎𝑖

(𝑘−𝑙)
               (1) 

The class 𝑜 mean is denoted by �̅�𝑜, the overall feature 

mean by �̅�, and the quantity of class instances 𝑜 in the 

set by 𝑎𝑜. After that, the distance between classes is 

determined using Formula 2. 

𝜎𝑒𝑟𝑟
2 =  

(∑ ∑(𝑥𝑜𝑝− x̅)2)−(x̅o− x̅)2𝑎𝑜

(𝑘−𝑙)
              (2) 

The total squared values for the feature for each class, 

less the feature mean, is then subtracted from the sum 

of the class's squared means less the feature mean, as 

shown in Formula 3. 

𝐹 =  
𝜎𝑐𝑙

2

𝜎𝑒𝑟𝑟
2                 (3) 

The chosen percentile process will be determined using 

the 𝑓_𝑣𝑎𝑙𝑢𝑒, which is the outcome of the ANOVA 

computation. For every feature, the ANOVA 

computation yields a set of 𝑓_𝑣𝑎𝑙𝑢𝑒. 𝑘𝑗  is a representation 

of the features in 𝐾. Furthermore, the ANOVA 

computation results are compiled into a vector denoted 

by Fval, which has values for every feature number 

from n as shown in Formula 4. 

𝐹𝑣𝑎𝑙 = [𝑘𝑣𝑎𝑙1, 𝑘𝑣𝑎𝑙2, 𝑘𝑣𝑎𝑙3, … , 𝑘𝑣𝑎𝑙𝑛]; 𝑗 =
{1,2,3, … , 𝑛}                (4) 

By reducing the data dimensions, removing superfluous 

features, and concentrating on features that have the 

most influence on the target variable, feature selection 

using ANOVA can enhance a machine learning model's 

performance. 

2.5 Correlation Analysis with Pearson Correlation 

The correlation analysis in this study applies the 

Pearson correlation. A statistical method for 

determining the direction and degree of a linear 

relationship between two variables is Pearson's 

correlation[21]. The coefficient of Pearson correlation, 

additionally referred to as the Pearson Correlation 

Coefficient (r), has a value between -1 and 1. The 

formula for determining the Pearson correlation 

coefficient, which is shown in Formula 5 

𝑟 =  
𝑛(Σ𝑥𝑦)−(Σx)(Σy) 

√[𝑛 Σ𝑥2−(Σx)2] [𝑛Σ𝑦2−(Σy)2]
              (5) 

(x), (y) are the variables under comparison, and n is the 

number of data pairs. 

2.6 Machine Learning Classification 

In this study, Botnet behaviors are analyzed using 

machine learning techniques that utilize Random 

Forest, kNN, Decision Tree, and Naive Bayes 

classification models. 

A supervised classification model called Random 

Forest is built using many decision trees. This technique 

is frequently applied to low-processing-power 

regression and classification tasks[22]. Based on the 

growth of trees put together by previously generated 

random vectors during the training process, popular 

feature classes are chosen. As an ensemble 

methodology, Random Forest is regarded as a group 

learning approach for regression and element 

classification. To understand irregular patterns, deep 

trees are utilized[23]. Next, as shown in Formula 6, the 

corresponding training set trees for these data are 

replaced. 

for x = 1 …, X: 

1

𝑥
∑ 𝑓𝑥 (𝑅)𝑥

𝑥=1                 (6) 

The fundamentals of Random Forest use include 

bagging (bootstrap aggregating) and the construction of 

numerous decision trees using random subsets of the 

training data. This method aids in lowering variance and 

enhancing the model's stability. 

Lazy learning is used in the non-parametric machine 

learning technique known as kNN (k-Nearest 

Neighbor). A non-parametric approach is one that 

doesn't assume anything about the distribution of the 

underlying data[17][24]. In other words, there is no 

fixed number of parameters or parameter estimates in 

the model, regardless of whether the data is small or 

large. The process can be comprehensively described in 

several steps. First, determine the value of k. When 

choosing k, it is important to consider the training 

dataset with the smallest distance. The optimal value of 

k is best determined using cross-validation. Then, 

compute the distance of type k with the new object.  

After that, choose the k nearest neighbors' labels. 

Lastly, give the new object the most common label 

based on the k labels that were chosen. 

One feature of kNN is the use of a distance metric to 

quantify the "closeness" between new and existing data. 

[25]. 

An approach to data processing known as a decision 

tree builds a regression or classification model in the 

shape of a tree to forecast future events[26][27]. This is 

achieved by continuously splitting the data into smaller 

subsets, and gradually developing a decision tree in the 

process[28][29].  

This technique results in a tree featuring decision nodes 

and leaf nodes. To measure and direct the dataset's 

splitting at each node, this structure is constructed using 

certain mathematical formulations 

Entrophy is a key concept used to measures the level of 

uncertainty or impurity whitin a dataset as shown in 

Formula 7. 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  − ∑ 𝑝𝑖
𝑐
𝑖=1 𝑙𝑜𝑔2(𝑝𝑖)             (7) 

𝑝𝑖 represents the proportion of samples form class 𝑖 in 

the dataset  𝑆. A higher entrophy value indicates grater 

disorder or impurity in the dataset. 

The effectiveness of a particular characteristic in 

classifying the data is then assessed using Information 

Gain. After the dataset is divided according to that 

attribute, it calculates the decrease in entropy and is 

expressed as Formula 8. 

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑉|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)          (8) 

The subset of S that has the value v for feature A is 

denoted by 𝑆𝑣. For the split, the feature with the greatest 

information gain is selected. 

Lastly, the Gini Index is another matric used measures 

impurity in a dataset, similar to entropy, but uses a 

different formula as shown in Formula 9. 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝𝑖
2𝑐

𝑖=1                (9) 

The percentage of class 𝑖 samples in dataset S is denoted 

by 𝑝𝑖. When creating and refining decision trees for 

categorization tasks, a lower Gini Index is essential. 

The theory of Bayes serves as the foundation for the 

Naïve Bayes family of classification methods. The 

functioning of this method is based on the conditional 

probability principle, which characterizes the likelihood 

of an event occurring given that a related event has 

previously occurred[24],[30]. The formula for 

conditional probability is shown in Formula 10. 

𝑃(𝐵|𝐴) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
            (10) 

In data mining algorithms, Naïve Bayes is very helpful 

since it converts big datasets into insights that can be 

put to use[31], [27]. Among its many uses are facial 

recognition, which identifies facial features including 

the eyes, nose, mouth, and eyebrows; forecasting the 

weather; diagnosing illnesses; classifying news; 

classifying emails (such as spam); and many more. This 

versatility makes Naïve Bayes a powerful tool for 

extracting meaningful information from vast amounts 

of data. 

2.7 Evaluation Matrix 

The relationships in a confusion matrix are used to 

distinguish between real-world events and model 

predictions to estimate classification performance in 

machine learning. Formulas 11 through 14 list the 

formulas used for calculating F-measure, accuracy, 

precision, and recall[32], [33]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
            (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
             (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑁
             (13) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
            (14) 

By evaluating a classification model's accuracy, 

prediction quality, and capacity to catch true positives, 

these metrics offer a thorough assessment of its 

performance. 

3. Results and Discussions 

A study of the features of the Bot-IoT dataset is the first 

step in the results of the study and discussion. The entire 

number of datasets appear in Table 3  

Table 3. Total data for the attack class 

No. Attack Class # Samples 

1 Attack Activity 2,934,447 

2 Normal Activity 370 

Total 2,934,817 

The analysis results show that the Bot-IoT dataset 

exhibits an imbalance between attack activities and 

normal activities, requiring specific treatment to 

balance the data. A more detailed analysis of the 

patterns and trends revealed many similarities in data 

characteristics, enabling the data aggregation process. 

This aggregation aims to reduce data volume and 

accelerate computational processes. 

The data aggregation was performed using the Python 

programming language (library: pandas as pd) on the 

daddr (destination IP address) field, followed by class 

categorization into attack (malicious) and non-attack 

(normal) types.  

The Bot-IoT dataset depicts a situation in which Kali 

Linux virtual machines (VMs) are used to carry out 

cyberattacks. This simulates an IoT botnet network 

within a virtual environment to study or test botnet 

behavior, cyberattacks, and defense mechanisms. 

The system starts with a PF Sense Firewall 

(192.168.100.1), which regulates and filters data traffic 

between internal (LAN) and external (WAN) networks, 

ensuring that only authorized data can pass through. All 

virtual and physical devices are connected via a switch 

integrated into a VMware Cluster, a virtual 

environment that safely simulates IoT devices and 

attack targets. Additionally, a Packet Filter Firewall is 

used to filter data traffic before connections reach the 

internet, mimicking real-world conditions. 

This dataset simulation involves key elements such as 

attacking machines (botnets), represented by the saddr 

(source IP address) feature, and target machines, 

represented by the daddr (destination IP address) 

feature. The botnet machines (192.168.100.150, 

192.168.100.149, 192.168.100.148, and 

192.168.100.147) are virtual machines simulating 

botnet-infected devices, using Kali Linux, for example, 

to launch attacks. The targets include an Ubuntu server 

(192.168.100.3) simulating an IoT server, 

Metasploitable (192.168.100.7) as a vulnerable system, 

Windows 7 (192.168.100.6) as a user device, Ubuntu 

Mobile (192.168.100.5) as an IoT device, and 

Ubuntu_Tap (192.168.100.4) for network traffic 

monitoring and logging. 
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Test the propagation of IoT botnets, carry out DDoS 

attacks on targets, and evaluate the performance of 

network defences. Additional pathways in the 

simulation are used to analyze network traffic and log 

activities occurring during the experiment. 

A deeper analysis of Bot-IoT activity records reveals 

that most patterns and trends remain consistent without 

losing critical dataset information. This aligns with the 

characteristics of Denial of Service (DoS) attacks, 

which violate information availability by rendering 

systems unresponsive or crashing, such as through radio 

signal jamming or flooding the network with traffic. 

Similarly, reconnaissance attacks aim to gather as much 

information as possible from the target. The Bot-IoT 

dataset simulation captures a significant number of 

similar activities. 

By grouping and aggregating data based on the daddr 

feature and classifying attack labels using the attack 

feature, two categories are defined: label 0 for non-

attack (normal) activities and label 1 for attack 

activities. The dataset consists of 2,934,817 activity 

records. This research introduces a novelty by analysing 

data aggregation in the data preparation stage. Table 4 

below shows the results of the data aggregation 

strategy. 

Table 4. The results of data aggregation grouped by daddr 

No. Attack Class # Samples 

1 Attack Activity 8 

2 Normal Activity 80 

Total 88 

After the data aggregation process to address the 

imbalance issue, the next step was data preprocessing, 

which included data transformation, data cleaning, and 

data normalization—an essential stage to prepare raw 

data for machine learning analysis. Data transformation 

was carried out to standardize the data, where 

categorical features such as dport, proto, saddr, port, 

and daddr were converted into numerical values using 

one-hot encoding, followed by feature merging to 

combine relevant features.  

The 2.2% of missing values in the aggregated dataset 

were then handled via data cleaning, which involved 

replacing the missing values with the average or most 

frequent value of the corresponding characteristic in the 

Bot-IoT dataset.  

Finally, data normalization was applied to standardize 

the feature scales and reduce bias, ensuring that all 

values fell within the interval [0,1]. 

In the next step, feature selection is done using 

ANOVA. Table 5 presents the findings of the ANOVA 

test. 

The ANOVA results show that the highest value is for 

the feature N_IN_Conn_P_DstIP with a score of 

220.548, followed by Max at 129.450, stddev at 

124.615, Seq at 83.699, pkSeqID at 29.166, Sport at 

13.963, N_IN_Conn_P_SrcIP at 10.759, Proto at 7.873, 

state_number at 6.064, Mean at 5.650, Min at 4.997, 

Saddr at 4.035, Dport at 3.549, Drate at 1.991, and the 

lowest values are for Daddr at 0.913 and Srate at 0.099. 

N_IN_Conn_P_DstIP, Max, and Stddev have a greater 

influence on the class separation in the dataset, while 

features with lower ANOVA values like daddr and srate 

contribute less to the classification process and may be 

considered for dimensionality reduction or feature 

elimination in the model. 

Table 5. The ANOVA evaluation's findings on the characteristics. 

Features #ANOVA 

N_IN_Conn_P_DstIP 220.548 

Max 129.450 

Stddev 124.615 

Seq 83.699 

pkSeqID 29.166 

Sport 13.963 

N_IN_Conn_P_SrcIP 10.759 

Proto 7.873 

state_number 6.064 

Mean 5.650 

Min 4.997 

Saddr 4.035 

Dport 3.549 

Drate 1.991 

Daddr 0.913 

Srate 0.099 

Using the Pearson correlation approach, correlation 

analysis is carried out following the acquisition of 

feature selection findings via ANOVA. A statistical 

method for determining the direction and degree of a 

linear connection between two variables is Pearson 

correlation. The Pearson correlation results as part of 

the analysis between the features are shown in Table 6. 

Using Pearson correlation, 45 correlation analysis 

findings between characteristics were found. With a 

correlation value of +0.937, the link between the 

variables N IN Conn P Dest IP and seq has the greatest 

value, indicating a very strong positive relationship 

between them. The value of seq tends to rise in tandem 

with the number of N IN Conn P Dest IP. Conversely, 

the variables N IN Conn P Src IP and state number and 

N IN Conn P Dest IP and min had the lowest correlation 

values, both of which had a value of -0.224. This 

finding suggests a somewhat negative association, 

which means that mean or min values tend to decline as 

N IN Conn P Src IP or N IN Conn P Dest IP values rise. 

Using the top ten features from earlier studies, this study 

will compare the feature selection outcomes[16].  

Ten top features emerged from the best feature selection 

results. The next step involves building classification 

models using the following algorithms: Random Forest 

(number of trees = 50), k-Nearest Neighbors (k = 7), 

Decision Tree (minimum number of instances in leaves 

= 2), and Naïve Bayes. The results obtained from 

training the model with an 80:20 split and 100 iterations 

(in percentage), are displayed in Table 7.
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Table 6. The result of the pearson correlation 

Pearson 

Correlation  

Value 

Variable 1 Variable 2 

+0.937 N_IN_Conn_P_DstIP seq 

+0.913 drate srate 

+0.887 N_IN_Conn_P_DstIP stddev 

+0.831 seq stddev 

+0.767 max mean 

+0.728 max stddev 

+0.673 N_IN_Conn_P_DstIP max 

+0.526 max seq 

+0.479 mean stddev 

+0.349 N_IN_Conn_P_DstIP N_IN_Conn_P_SrcIP 

+0.348 N_IN_Conn_P_DstIP mean 

+0.322 N_IN_Conn_P_SrcIP stddev 

+0.301 N_IN_Conn_P_SrcIP seq 

+0.293 mean seq 

+0.243 max state_number 

-0.224 N_IN_Conn_P_SrcIP state_number 

-0.224 N_IN_Conn_P_DstIP min 

+0.212 N_IN_Conn_P_DstIP state_number 

+0.197 drate max 

+0.186 mean min 

-0.183 min seq 

-0.167 min stddev 

+0.167 seq state_number 

+0.134 N_IN_Conn_P_SrcIP max 

+0.122 N_IN_Conn_P_SrcIP min 

-0.100 N_IN_Conn_P_SrcIP drate 

+0.096 state_number stddev 

+0.095 N_IN_Conn_P_DstIP drate 

+0.094 min state_number 

-0.090 N_IN_Conn_P_SrcIP srate 

+0.090 drate mean 

-0.076 min srate 

+0.067 mean state_number 

+0.063 drate state_number 

-0.049 srate state_number 

-0.048 mean srate 

-0.044 srate stddev 

-0.042 max min 

+0.042 N_IN_Conn_P_DstIP srate 

+0.035 drate stddev 

-0.034 max srate 

+0.016 seq srate 

+0.014 drate min 

+0.004 drate seq 

-0.004 N_IN_Conn_P_SrcIP mean 

The results obtained from the classification models 

using 100 iterations are as follows:  

For Random Forest, AUC = 0.994, indicating excellent 

performance in class differentiation, with CA = 0.975, 

showing 97.5% accuracy in predictions. With an F1 

score of 0.974, precision and recall are well balanced, 

while precision and recall are both 0.974 and 0.975, 

respectively, showing how well the model identified the 

positive class. A significant correlation between 

forecasts and actual values is indicated by the MCC 

score of 0.784. 

In the case of k-Nearest Neighbors (k = 7), AUC = 

0.991 demonstrates strong class differentiation, with 

CA = 0.964, reflecting 96.4% correct predictions. The 

F1 score is 0.962, With both precision and recall at 

0.964, demonstrating a solid balance between the two, 

this shows strong accuracy in detecting positive groups. 

MCC = 0.907 further confirms the excellent 

relationship between predictions and actual values.  

For Decision Tree, AUC = 0.933 indicates good but 

slightly inferior performance compared to the other 

models, with CA = 0.960, reflecting 96% accuracy in 

predictions. The F1 score is 0.962, and precision is 

0.965, while recall is 0.960, suggesting good 

effectiveness in identifying the positive class, with 

MCC = 0.800 showing a solid relationship between 

predictions and actual values.  

Finally, Naive Bayes has an AUC of 0.998, which is 

excellent in distinguishing between classes. However, 

CA = 0.870 is lower than the other models, indicating 

that only 87% of predictions were correct. With 

precision of 0.944 and excellent accuracy in guessing 

positive classes, The F1 score of 0.891 indicates that 

recall and accuracy are well-balanced. While the recall 

of 0.870 suggests that the model is less effective in 

identifying all positive categories, the MCC of 0.608 

demonstrates a worse correlation between predictions 

and actual values. 

Table 7. The result of the model machine learning classification (%) 

Model AUC CA F1 Pre Rec MCC 

Random Forest 99.4 97.5 97.4 97.4 97.5 85.4 

kNN 99.1 96.4 96.2 96.4 96.4 78.4 

Tree 93.3 96.0 96.2 96.5 96.0 80.0 

Naive Bayes 99.8 87.0 89.1 94.4 87.0 60.8 

The Random Forest approach generates the most 

accurate machine learning classification approach for 

detecting Bot-IoT activity, with a total accuracy of 

97.5%. 

The evaluation model for each classification model, 

where the positive notation represents the non-attack 

(normal) label, and the positive notation represents the 

attack label, displayed in the confusion matrix table for 

each algorithm used, shown in Figures 2 until 5: 

 

 

Figure 2. Confusion Matrix for Random Forest 

Predicted 

A
ct

u
a
l 

 Attack Non-

Attack 

∑ 

Attack 146 32 178 

Non-

Attack 

13 1609 1622 

∑ 159 1641 1800 
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Figure 3. Confusion Matrix for kNN 

 

Figure 4. Confusion Matrix for Decision Tree 

 

Figure 5. Confusion Matrix for Naive Bayes 

The researcher made a comparison between the model 

in this study and previous research that used the same 

dataset, specifically the Bot-IoT UNSW Canberra 2018 

dataset. As described in Table 8, the proposed approach 

and the previous study model are contrasted. 

The comparison with previous research models shows 

that, in real-time processing conditions, the analysis of 

attack values is significantly higher than non-attack 

(normal) values under an imbalanced data condition. 

The classification models took 1270.5 seconds to 

compute and had an accuracy of 98–99%. The 

computation time was somewhat lengthy, despite the 

accuracy being nearly flawless. In the following study, 

when the SMOTE treatment was applied to balance the 

data using the k-NN algorithm, an accuracy of 92.1% 

was obtained, while Naïve Bayes achieved 51.5%. 

However, the study did not report the computation 

time.The current research model uses the Random 

Forest approach, which yielded a 97.7% accuracy rate, 

to aggregate data to manage unbalanced data, compared 

to 96.6% for k-NN, 85.5% for Naïve Bayes, and 95.5% 

for Decision Tree. The total computation time recorded 

was 11.54 seconds. These results indicate that the 

proposed model, which applies a new treatment for 

imbalanced data in the Bot-IoT dataset using data 

aggregation, achieves an accuracy ranging from 85% to 

97%, approaching near-perfect accuracy, while 

significantly reducing computation time compared to 

previous models. 

Table 8. Comparison result 

Model Dataset Feature 
Accuracy (%) Training Time 

(Seconds) 

Correlation 

Analysis RF kNN NB DT SVM 

Koroniotis et 

al[16] 

Bot-IoT (Real 

Time Data) 
10 - - - - 88.37 1270.5 √ 

Kerrakchou et 

al[12] 

Bot-Iot (Real 

Time Data) 
9 99.99 - 98.13 99.88 - - - 

Pokhrel et al[34] 

Bot-Iot (Real 

Time Data) 
8 

- 99.6 99.4 - - - - 

Bot-Iot 

(SMOTE Data) 
- 92.1 51.5 - - - - 

Proposed Model 

Bot-Iot 

(Aggregate 

Data) 

10 97.7 96.6 85.5 95.5 - 11.54 √ 

4. Conclusions 

An imbalance in the data is revealed by the research's 

findings on the Bot-IoT UNSW Canberra 2018 dataset, 

which initially displayed 2,934,447 attack activity and 

just 370 normal activities. To address this, a novel data 

aggregation technique was applied to reduce the 

dataset, focusing on patterns and trends with similar 

characteristics, resulting in a balanced dataset with 8 

attack activities and 80 normal activities. This 

aggregated data underwent feature selection 

optimization using ANOVA, leading to the 

identification of 10 best features out of 17. 

Subsequently, Approach to classification: An 80:20 

training model split and 100 iterations were employed 

for training Random Forest, kNN, Naive Bayes, and 

Decision Tree. The findings showed that the Random 

Forest was the best model, attaining 97.5% accuracy, 

97.4% precision, and 97.4% recall. N IN Conn P DestIP 

and Seq had the highest correlation (+0.937), out of 45 

feature correlation results from correlation analysis 

using Pearson correlation. On the other hand, the mean 

and N IN Conn P SrcIP had a kind of negative 

correlation (-0.004), which means that the mean value 

decreases when N IN Conn P SrcIP increases. From the 

combination of aggregating data to the machine 

learning classification procedure, the computing time 

came to 11.54 seconds. Future research could focus on 

simulation models with direct implementation on 

commonly used IoT devices and incorporate deep 

Predicted 

A
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u
a
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 Attack Non-

Attack 

∑ 

Attack 120 58 178 

Non-

Attack 

6 1616 1622 

∑ 126 1674 1800 
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u
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 Attack Non-
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Attack 

55 1567 1622 
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a
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 Attack Non-
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Attack 178 0 178 

Non-

Attack 

234 1388 1622 

∑ 159 1641 1800 
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learning models to learn and identify new bot attack 

patterns. 
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