Sistem Pengecekan Toko Online Asli atau Dropship pada Shopee Menggunakan Algoritma Breadth First Search
The Original or Dropship Online Shop Checking System at Shopee Uses the Breadth First Search Algorithm
Abstract
The abundance of online shops on web ecommerce Shopee's makes it difficult for consumers to detect the genuineness of an online store. Online store detection app is an application to detect genuine online shop, good rating online shop, and fake online shop, which is useful as a recommendation to consumers in buying a product against an online shop. Detection by implementing the Breadth First Search (BFS) algorithm with Web Scraping techniques against Web e-commerce Shopee with the keyword "Kemeja Pria" with a search number of 5000, generate 1389 online shops data with the detection results of genuine online shop, good rating online shop, and fake online shop respectively as many as 90 online shops (6.5%), 948 online shops (68.3%), and 351 online shops (25.3%). The time it takes for the system to visit each node, from the first node to the 1389 node by applying the Breadth First Search algorithm takes about 2,690,021 second, or about 44.833683333 minutes, with the queue formation process, node browsing, online shop detection, and test results. The results reveal that the Breadth First Search algorithm is a simple algorithm that can be used to perform online store detection with good performance.
Downloads
References
“Indonesia Jadi Negara dengan Pertumbuhan E-Commerce Tercepat di Dunia | Databoks.” https://databoks.katadata.co.id/datapublish/2019/04/25/indonesia-jadi-negara-dengan-pertumbuhan-e-commerce-tercepat-di-dunia (accessed Dec. 03, 2020).
S. M. Maulana, H. Susilo, and Riyadi, “Implementasi E-Commerce Sebagai Media Penjualan Online (Studi Kasus Pada Toko Pastbrik Kota Malang),” J. Adm. Bisnis, 2015.
“Apa itu Shopee? Keunggulan Apa Saja yang Dimiliki oleh Shopee?” https://www.nesabamedia.com/apa-itu-shopee/ (accessed Dec. 03, 2020).
“Cara Membedakan Online Shop Asli dan Palsu di Shopee | BAJUYULI - Blog.” https://blog.bajuyuli.com/2017/10/toko-online-asli-palsu-shopee.html (accessed Dec. 03, 2020).
G. Sun, H. Xiang, and S. Li, “On Multi-Thread Crawler Optimization for Scalable Text Searching,” J. Big Data, vol. 1, no. 2, pp. 89–106, 2019, doi: 10.32604/jbd.2019.07235.
M. Yadav, “D e s i g n o f a N o v e l I n t e r f a c e f o r a W e b C r a w l e r,” Int. J. Electron. Eng., vol. 11, no. 1, pp. 952–958, 2019.
J. Pardede, A. N. Hermana, and G. Swarghani, “Perbandingan Metode Breadth First Search dan Backlink pada Web Crawler,” MIND J., vol. 2, no. 2, pp. 61–69, 2018, doi: 10.26760/mindjournal.v2i2.61-69.
I. P. Sonya and Prihandoko, “Analisis Web Scraping untuk Data Bencana Alam dengan Menggunakan Teknik Breadth-First Search Terhadap 3 Media Online,” J. Ilm. Inform. Komput. Univ. Gunadarma, vol. 21, no. 3, pp. 69–77, 2016.
T. Samar, M. C. Traub, J. van Ossenbruggen, and A. P. de Vries, “Comparing topic coverage in breadth-first and depth-first crawls using anchor texts,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9819 LNCS, pp. 133–146, 2016, doi: 10.1007/978-3-319-43997-6_11.
A. M. Tanvir, Y. Kim, and M. Chung, “Design and Implementation of an Efficient Web Crawling Using Neural Network,” 2020, doi: 10.1007/978-981-13-9341-9_20.
N. Fazal, K. Q. Nguyen, and P. Fränti, “Efficiency of web crawling for geotagged image retrieval,” Webology, vol. 16, no. 1, pp. 16–39, 2019, doi: 10.14704/web/v16i1/a177.
A. Josi, L. A. Abdillah, and Suryayusra, “Penerapan teknik web scraping pada mesin pencari artikel ilmiah,” 2014, [Online]. Available: http://arxiv.org/abs/1410.5777.
R. C. Wijaya, J. Andjarwirawan, and H. N. Palit, “Aplikasi Pencarian Produk Jual Mobile Devices dari Berbagai Situs E-commerce,” J. Infra, 2016.
F. R. Wibowo, D. S. Rusdianto, and A. Arwan, “Pengembangan Sistem Pengumpulan Promo E-Commerce Berbasis Website Dengan Menerapkan Teknik Web Scraping Dalam Proses Pengambilan Data Promo,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2887–2893, 2019.
D. S. Indraloka and B. Santosa, “Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia,” J. Sains dan Seni ITS, 2017, doi: 10.12962/j23373520.v6i2.24419.
N. Nurdin, R. Rizal, and R. Rizwan, “Pendeteksian Dokumen Plagiarisme dengan Menggunakan Metode Weight Tree,” Telematika, 2019, doi: 10.35671/telematika.v12i1.775.
N. Nurdin and A. Munthoha, “SISTEM PENDETEKSIAN KEMIRIPAN JUDUL SKRIPSI MENGGUNAKAN ALGORITMA WINNOWING,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), 2017, doi: 10.30743/infotekjar.v2i1.165.
Copyright (c) 2020 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;