Analisis Rekam Medis untuk Menentukan Pola Kelompok Penyakit Menggunakan Algoritma C4.5

  • Rian Rafiska Mahasiswa
  • Sarjon Defit Universitas Putra Indonesia “YPTK” Padang
  • Gunadi Widi Nurcahyo Universitas Putra Indonesia “YPTK” Padang

Abstract

The Medical Record contains records and documents of patient identity, examination results, treatment, actions and services provided to the patient. Medical records are very important for patient care because with complete data can provide information in determining diagnostic and clinical decisions. The completeness of the medical record determines the quality of the services provided. Regarding the pattern of the tendency of disease suffered by a group of people still not excavated to be used as a reference when doing panyuluhan or prevention of disease. Finding a common pattern of disease groups in the community based on the International Classification of Diseases (ICD) -X. In this study used the classification method with algorithm C4.5 with the amount of data as much as 709 sourced from the Medical Record of General Hospital General Hospital (RSUD) Major General H.A Thalib Kerinci. Determination of the next analysis is to apply the grouping into several attributes, namely group of regions, age groups, disease groups and groups of sex. Further data is processed and done by using Rapid Miner software. The results of the calculation is a pattern that can be used to analyze patterns of disease tendency experienced by the community.

Downloads

Download data is not yet available.

References

[1] Xinyu J., Yizheng L., Chunhui M., 2016. Medical Record Semantic Analysis Based on Weighted LDA. International Symposium on Computational Intelligence and Design, 9, pp. 591-596
[2] WenefridaT.I., 2016. Klasifikasi Data Rekam Medis Berdasarkan Kode Penyakit Internasional Menggunakan Algoritma C4.5. Jurnal Media Elektro, 1 (3), pp. 105-110.
[3] Yudha A.F., Sarjon D., Yuhandri, 2017. Penerapan Algoritma C4.5 untuk Klasifikasi Data Rekam Medis berdasarkan International Classification Diseases (ICD-10). Jurnal Rekayasa Sistem dan Teknologi Informasi, 1 (2), pp. 82-89.
[4] Patel B.R., Rana K.K., 2012. A Survey on Decision Tree Algorithm for Classification. International Journal of Engineering Development and Research, 2 (1), pp. 1-5.
[5] Selvia L.B.G., Zarman W., Hamidah I., 2014. Analisis dan Penerapan Algoritma C.45 Dalam Data Mining Untuk Memprediksi Masa Studi Mahasiswa Berdasarkan Data Nilai Akademik. Prosiding Seminar Nasional Aplikasi Sains dan Teknologi, pp. 263-272.
[6] Ridwan M., Suyono H., Sarosa M., 2013. Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Electrical Power, Electronics, Control, Communication, and Informatics Seminar, 7 (1), pp. 59-64.
[7] Adhatrao K., Gaykar A., Dhawan A., Jha R., Honrao V., 2013. Predicting Students’ Performance Using ID3 And C4.5 Classification Algorithms. International Journal of Data mining & Knowledge Management Process, 3 (5), pp. 39-52.
[8] Elmande Y., Widodo P., 2012. Pemilihan Criteria Splitting dalam Algoritma Iterative Dichotomiser 3 (ID3) untuk Penentuan Kualitas Beras Perum Bulog Drive Lampung. Jurnal Telematika Mkom, 4 (1), pp. 73-82.
[9] Guterress J.A.D., Mudjihartono P., Ernawati., 2012. Analisis Efektivitas Algoritma C4.5 dalam Menentukan Peserta Pemenang Tender Projek. Seminar Nasional Teknologi Informasi dan Komunikasi, 3, pp. 7-12.
[10] Luvia S.Y., Hartama D., Windarto A.P., Solikhun., 2016. Penerapan Algoritma C4.5 Untuk Klasifikasi Predikat Keberhasilan Mahasiswa Di Amik Tunas Bangsa. Jurnal Riset Sistem Information dan Teknik Informatika, 1 (1), pp. 75-59.
Published
2018-04-18
How to Cite
Rafiska, R., Defit, S., & Nurcahyo, G. W. (2018). Analisis Rekam Medis untuk Menentukan Pola Kelompok Penyakit Menggunakan Algoritma C4.5. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(1), 391 - 396. https://doi.org/10.29207/resti.v2i1.275
Section
Information Technology Articles