Deteksi Masker Pencegahan Covid19 Menggunakan Convolutional Neural Network Berbasis Android
Abstract
Masks are an important part of preventing Covid19 disease.The World Health Organization (WHO) have also recommended the community use masks when doing activities in public areas. There are many types of masks that are used to cover the nose and mouth. In general, there are about 3 types of masks that are commonly used by the public today, namely medical masks, N95 and cloth masks. This study aims to detect the type of mask used by the community. So that it can make easier for the government to apply discipline in COVID-19 health protocol. The detection method used in this study is a convolutional neural network (CNN). The first step is acquisition of knowledge, which first collects the types of masks on the market, followed by the representation of that knowledge before being modeled into a mathematical calculation formula, which will then be processed using the Convolutional Neural Network method. The system will be carried out by analyzing the recall value, its precision and accuracy.Testing process is carried out on an Android-based device and the mobilenetV2 framework. In this study, the accuracy value is 90% using ADAM Optimization and 80 % using Gradient descent optimization.
Downloads
References
R. Hermawan, D. R. Adhy, and N. Anwar, “Sistem Pendeteksi Penggunaan Masker Sesuai Protokol Kesehatan Covid 19 Menggunakan Metode Deep Learning,” Pros. KONIK 2020 Ed. Covid-19, pp. 654–658, 2020, [Online]. Available: https://sites.google.com/view/konik2020.
Hendriyana and Y. H. Maulana, “Identifikasi Jenis Kayu menggunakan Convolutional Neural Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 70–76, 2020.
W. S. Eka Putra, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.
O. Nurima Putri, “Implementasi Metode Cnn Dalam Klasifikasi Gambar Jamur Pada Analisis Image Processing (Studi Kasus: Gambar Jamur Dengan Genus Agaricus Dan Amanita),” 2020.
W. Setiawan, “Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus,” J. Simantec, vol. 7, no. 2, pp. 48–53, 2020, doi: 10.21107/simantec.v7i2.6551.
B. Sutedjo, D. Oetomo, and E. Wibow, “Pembuatan Website Portal Berita,” Indones. J. Netw. Secur., vol. 3, no. 3, pp. 1–14, 2007.
M. M. Lambacing and F. Ferdiansyah, “Rancang Bangun New Normal Covid-19 Masker Detektor Dengan Notifikasi Telegram Berbasis Internet of Things,” Dinamik, vol. 25, no. 2, pp. 77–84, 2020, doi: 10.35315/dinamik.v25i2.8070.
A. Rahim, K. Kusrini, and E. T. Luthfi, “Convolutional Neural Network untuk Kalasifikasi Penggunaan Masker,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, p. 109, 2020, doi: 10.35585/inspir.v10i2.2569.
L. M. R. Rere, R. Dalam, and K. Baru, “Studi Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network,” vol. 3, 2019.
T. Subhamastan Rao, S. Anjali Devi, P. Dileep, and M. Sitha Ram, “A Novel Approach to Detect Face Mask to Control Covid Using Deep Learning,” Eur. J. Mol. Clin. Med., vol. 7, no. 6, pp. 658–668, 2020.
C. Z. Basha, B. N. L. Pravallika, and E. B. Shankar, “An efficient face mask detector with pytorch and deep learning,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 7, no. 25, pp. 1–8, 2021, doi: 10.4108/eai.8-1-2021.167843.
“6 Langkah Mudah Membuat Android Food Recognition Menggunakan Convolutional Neural Network dengan Tensorflow | by Kevin Nicky Setiawan | Medium.” https://medium.com/@kevinnickysetiawan/6-langkah-mudah-membuat-android-food-recognition-menggunakan-convolutional-neural-network-dengan-24443dbcd59d (accessed Apr. 07, 2021).
I. N. Purnama and S. Primakara, “Herbal Plant Detection Based On Leaves Image Using Convolutional Neural Network With Mobile Net Architecture” vol. 6, no. 1, pp. 27–32, 2020, doi: 10.33480/jitk.v6i1.1400.
“MobileNet: Deteksi Objek pada Platform Mobile | by Rizqi Okta Ekoputris | Nodeflux | Medium.” https://medium.com/nodeflux/mobilenet-deteksi-objek-pada-platform-mobile-bbbf3806e4b3 (accessed Apr. 07, 2021).
R. Lubis, “Machine Learning ( Convolutional Neural Networks ) for Face Mask Detection in Image and Video,” pp. 1–20, 2020.
Copyright (c) 2021 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;