Pengembangan Karakterisasi Gelembung Mikro Menggunakan Metode PIV beserta Pemantauan dengan IOT

  • Taufik Ibnu Salim BPI LIPI
  • Endang Juliastuti Institut Teknologi Bandung
  • Vebi Nadhira Institut Teknologi Bandung
Keywords: PIV, shading techniques, template matching, microbubble

Abstract

The development of microbubble technology has been widely used in various fields. One of these areas is sterilization technology using microbubbles to speed up and increase the effectiveness of the sterilization process. One example is room sterilization using vaporized ozone gas microbubbles which can minimize the spread of the Covid-19 virus. However, research and development of microbubbles are still not much related to the characterization of their size and hydrodynamic properties. In this study, we propose the development of a continuous characterization of the size of microbubbles using the image analysis method. Image analysis aims to find the displacement vector using particle image velocimetry (PIV) techniques. The Hadamard-Rybczynski equation was used to calculate the size of the microbubbles based on the rising velocity vector of the microbubbles. The image capture process uses an LED light shadow technique to get a brighter and more stable image. The template matching algorithm is used to speed up the displacement vector analysis process used in the PIV technique. The analysis process is carried out in-situ in parallel processing using the python program on the raspberry pi4 unit. The analysis process uses three program services that run parallel, namely recording, pre-processing, and processing services. The measurement process uses three validations, namely pixel validation, template matching algorithm validation, and interrogation window. Bubble size data is displayed in the form of real-time graphs and size distribution histograms online using IoT. The test results show the size distribution of the microbubbles produced has an average of 14.60 µm with a deviation value of 0.11µm.

 

Downloads

Download data is not yet available.

References

Warstek, 2020, “Teknologi Nano Bubble : Solusi Berkelanjutan Perikanan Indonesia”, data diperoleh melalui situs internet: https://warstek.com/nanobubble/, Diunduh pada tanggal: 15 Maret 2021

Minapoli, 2019, “Microbubble Generator, Solusi Masalah Perikanan Budidaya” data diperoleh melalui situs internet: https://www.minapoli.com/info/microbubble-generator-solusi-masalah-perikanan-budidaya, Diunduh pada tanggal: 15 Maret 2021

Lim, Y. S., Ganesan, P., Varman, M., Hamad, F. A., & Krishnasamy, S. (2021). Effects of microbubble aeration on water quality and growth performance of Litopenaeus vannamei in biofloc system. Aquacultural Engineering, 93(August 2020), 102159. https://doi.org/10.1016/j.aquaeng.2021.102159

Yun, S., Giri, S. S., Kim, H. J., Kim, S. G., Kim, S. W., Kang, J. W., … Chang Park, S. (2019). Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach. Fish and Shellfish Immunology, 91(April), 12–18. https://doi.org/10.1016/j.fsi.2019.05.021

Salim, T. I., Haiyunnisa, T., & Alam, H. S. (2016). Design and Implementation of Water Quality Monitoring for Eel Fish Aquaculture. In 2016 International Symposium on Electronics and Smart Devices (ISESD) November 29-30, 2016 (pp. 208–213). https://doi.org/10.1109/ISESD.2016.7886720

Zhang, H., & Tikekar, R. V. (2021). Air microbubble assisted washing of fresh produce: Effect on microbial detachment and inactivation. Postharvest Biology and Technology, 181(July), 111687. https://doi.org/10.1016/j.postharvbio.2021.111687

Khuntia, S.; Majumder, S.K.; Ghosh, P. 2012. Microbubble-aided water and wastewater purification: A review. Rev. Chem. Eng. 2012, 28, 191–221

A. Agarwal, W. J. Ng, and Y. Liu, “Principle and applications of microbubble and nanobubble technology for water treatment,” Chemosphere, vol. 84, no. 9, pp. 1175–1180, 2011

Xu, R., Wang, Y., & Li, Z. (2019). Exploration of particle technology in fine bubble characterization. Particuology, 46, 109–115. https://doi.org/10.1016/j.partic.2019.04.009

Saptiyulda, E., 2020, “LIPI: Ozone nanomist sterilkan kantor hingga makanan dari virus corona”, data diperoleh melalui situs internet: https://www.antaranews.com/berita/1523500/lipi-ozone-nanomist-sterilkan-kantor-hingga-makanan-dari-virus-corona, Diunduh pada tanggal: 15 Maret 2021

Sugiarto, A.T, Saepudin, D., Sutarman, U., 2021, “Alat Penghasil Uap Air Berozon”, S00202009438, Kementrian Hukum dan Hak Asasi Manusia Republik Indonesia Direktur Jenderal Kekayaan Intelektual.

Alam, H.S., Bahrudin, Sugiarto, A.T., Redhyka, G.G., (2017), Unsteady Numerical Simulation of Gas-Liquid Flow in Dual Chamber Microbubble Generator, 2017 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT)

Alam, H. S., Redhyka, G. G., Bahrudin, Sugiarto, A. T., Salim, T. I., & Mardhiya, I. R. (2018). Design and performance of swirl flow microbubble generator. International Journal of Engineering and Technology(UAE), 7(4), 66–69. https://doi.org/10.14419/ijet.v7i4.40.24077

Alam, H.S., Sugiarto, A.T., Bahrudin, B., Salim, T.I., Saepudin, D., 2020, Alat Penghasil Gelembung Mikro/Nano, IDP000071125, , Kementrian Hukum dan Hak Asasi Manusia Republik Indonesia Direktur Jenderal Kekayaan Intelektual

Redhyka, G. G., Bahrudin, & Alam, H. S. (2017). Estimation of bubble size distribution using spatial digital image correlation. Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, ICACOMIT 2017, 2018-January, 123–127. https://doi.org/10.1109/ICACOMIT.2017.8253399

Lee, C. H., Choi, H., Jerng, D. W., Kim, D. E., Wongwises, S., & Ahn, H. S. (2019). Experimental investigation of microbubble generation in the venturi nozzle. International Journal of Heat and Mass Transfer, 136, 1127–1138. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.040

Brasileiro, P. P. F., dos Santos, L. B., Chaprão, M. J., de Almeida, D. G., Soares da Silva, R. de C. F., Roque, B. A. C., … Benachour, M. (2020). Construction of a microbubble generation and measurement unit for use in flotation systems. Chemical Engineering Research and Design, 153, 212–219. https://doi.org/10.1016/j.cherd.2019.10.028

Jeon, S. Y., Yoon, J. Y., & Jang, C. M. (2018). Bubble size and bubble concentration of a microbubble pump with respect to operating conditions. Energies, 11(7). https://doi.org/10.3390/en11071864.

Juwana, W. E., Widyatama, A., Dinaryanto, O., Budhijanto, W., Indarto, & Deendarlianto. (2019). Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2018.11.017

Raffel, M., Willert, C. E., Wereley, S. T., and Kompenhans, J., (2007), Particle Image Velocimetry: A Practical Guide, 2nd ed. Heidelberg; New York: Springer, Sep. 2007

Salim, T.I., Alam, H.S., Sugiarto, A.T., “Metode dan Sistem untuk Mengukur Diameter Gelembung Udara di dalam Air,” P00202104673, Kementrian Hukum dan Hak Asasi Manusia Republik Indonesia Direktur Jenderal Kekayaan Intelektual.

Clift, R., Grace, J. R., and Weber, M. E., Bubbles, Drops, and Particles. Dover Publications, 2005. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Measurement Science and Technology, vol. 8, pp. 1379–1392, Dec. 1997.

Parkinson, L., Sedev, R., Fornasiero, D., & Ralston, J. (2008). The terminal rise velocity of 10-100 μm diameter bubbles in water. Journal of Colloid and Interface Science, 322(1), 168–172. https://doi.org/10.1016/j.jcis.2008.02.072

Schindelin, J., Rueden, C. T., Hiner, M. C., and Eliceiri, K. W., “The ImageJ ecosystem: An open platform for biomedical image analysis,” Molecular Reproduction and Development, vol. 82, no. 7-8, pp. 518–529, Jul. 2015

Published
2021-10-25
How to Cite
Salim, T. I., Endang Juliastuti, & Vebi Nadhira. (2021). Pengembangan Karakterisasi Gelembung Mikro Menggunakan Metode PIV beserta Pemantauan dengan IOT. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(5), 950 - 957. https://doi.org/10.29207/resti.v5i5.3508
Section
Information Systems Engineering Articles