Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek

Comparison of Naïve Bayes, SVM, and k-NN for Aspect-Based Gadget Sentiment Analysis

  • Jessica Widyadhana Iskandar Universitas Kristen Satya Wacana
  • Yessica Nataliani Universitas Kristen Satya Wacana
Keywords: Gadget, Sentiment Analysis, Naïve Bayes, Support Vector Machine, k-Nearest Neighbor

Abstract

The Samsung Galaxy Z Flip 3 is one of the gadgets that are currently popular among the public because of its unique shape and features. Youtube is one of the social media that can be accessed and enjoyed by the public, one of which is gadget review content on the GadgetIn channel. Youtube can provide information, whether people accept or are interested in this new gadget or not. This study aims to determine the sentiment of a gadget producer. Based on the results of the analysis and testing that has been carried out on the Youtube comments of the Samsung Galaxy Z Flip 3 gadget with a total of 9,597 comments, more users gave positive opinions in the design aspect and negative opinions on the price, specifications and brand image aspects. By using the CRISP-DM model and comparing the Naïve Bayes (NB), Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN) classification methods, it is proven that the SVM classification model shows the best results. The average accuracy of SVM is 96.43% seen from four aspects, namely the design aspect of 94.40%, the price aspect of 97.44%, the specification aspect of 96.22%, and the brand image aspect of 97.63%.

 

Downloads

Download data is not yet available.

References

R. F. Widyananda, “10 Macam Media Sosial yang Paling Sering Digunakan Oleh Orang Indonesia,” Jawa Timur, p. 4, 2020.

D. T. Hermanto, A. Setyanto, and E. T. Luthfi, “Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online,” Creat. Inf. Technol. J., vol. 8, no. 1, p. 64, 2021, doi: 10.24076/citec.2021v8i1.264.

H. S. Utama, D. Rosiyadi, B. S. Prakoso, and D. Ariadarma, “Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 243–250, 2019, doi: 10.29207/resti.v3i2.1050.

H. S. Raja and S. Magdhalena, “TWITTER SENTIMEN GOJEK INDONESIA DAN GRAB,” Pros. Semin. Nas. Mat. Stat. dan Apl. 2019, vol. I, pp. 256–261, 2019.

M. W. Pertiwi, “Analisis Sentimen Opini Publik Mengenai Sarana dan Transportasi Mudik Tahun 2019 Pada Twitter Menggunakan Algoritma Naïve Bayes, Neural Network, K-NN dan SVM,” INTI NUSA MANDIRI, vol. 14, no. 1, pp. 27–32, 2019.

S. Irbah and Y. Sibaroni, “Multi Aspect Sentiment of Beauty Product Reviews using SVM and Semantic Similarity,” RESTI J., vol. 5, no. 3, pp. 520–526, 2021.

O. Heranova, “Synthetic Minority Oversampling Technique pada Averaged One Dependence Estimators untuk Klasifikasi Credit Scoring,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 443–450, 2019, doi: 10.29207/resti.v3i3.1275.

A. N. Kasanah, M. Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 196–201, 2019, doi: 10.29207/resti.v3i2.945.

A. J. Syahid and D. Mahdiana, “Perbandingan Algoritma Untuk Klasifikasi Analisis Sentimen Terhadap GeNose Pada Media Sosial Twitter,” SemanTIK, vol. 7, no. 1, pp. 9–16, 2021, doi: 10.5281/zenodo.5034916.

A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.

R. Umar, I. Riadi, and Purwono, “Perbandingan Metode SVM, RF dan SGD untuk Penentuan Model Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 2, pp. 329–335, 2020.

N. Hafidz and D. Y. Liliana, “Klasifikasi Sentimen pada Twitter Terhadap WHO,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 213–219, 2021, doi: https://doi.org/10.29207/resti.v5i2.2960.

S. M. Tambunan, Y. Nataliani, and E. S. Lestari, “Perbandingan Klasifikasi dengan Pendekatan Pembelajaran Mesin untuk Mengidentifikasi Tweet Hoaks di Media Sosial Twitter,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 7, no. 2, pp. 112–120, 2021, [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/47232.

S. Kurniawan, W. Gata, D. A. Puspitawati, N. -, M. Tabrani, and K. Novel, “Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada Komentar Media Berita Online,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 176–183, 2019, doi: 10.29207/resti.v3i2.935.

Published
2021-12-30
How to Cite
Iskandar, J. W., & Nataliani, Y. (2021). Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek . Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(6), 1120 - 1126. https://doi.org/10.29207/resti.v5i6.3588
Section
Information Systems Engineering Articles