GLCM-Based Feature Extraction for Alpha Matting on Natural Images

  • Ruri Suko Basuki Universitas Dian Nuswantoro
  • Jehad A.H Hammad Al-Quds Open University
Keywords: image matting, threshold determination, featuter extraction, region of interest, gray level co-occurrence matrix

Abstract

The main objective of this research is to determine the optimal threshold value in the unknown region in the alpha-matting operation of natural images. Alpha-mating serves to draw matte from the image used in segmentation. The alpha value is very influential on the quality of segmentation which is determined by the level of threshold value accuracy. The determination of the threshold begins by breaking the grayscale image into several sub-images using Region of Interest (RoI). Each sub-image was extracted using the Gray Level Co-occurrence Matrix (GLCM) considered by the parameters of contrast, energy, and entropy at angles of 0°, 45°, 90°, and 135 °. Each feature results in extractions, which are then averaged and normalized in each sub-image. The value is determined as the local threshold value used in the alpha matting operation. Experiments were carried out on 12 natural images from the image-mating dataset to evaluate the performance of the proposed algorithm. The increase in accuracy shows up to 63% by the measurements of experiments, compared to the calculation of adaptive threshold by using the fuzzy CMs Algorithm.

Downloads

Download data is not yet available.

References

H. Li and K. N. Ngan, “Automatic video segmentation and tracking for content-based applications,” IEEE Commun. Mag., vol. 45, no. 1, pp. 27–33, 2007, doi: 10.1109/MCOM.2007.284535.

Y. Tsaig and A. Averbuch, “Automatic segmentation of moving objects in video sequences: a region labeling approach,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 7, pp. 597–612, 2002, doi: 10.1109/TCSVT.2002.800513.

A. Bovik, Handbook of Image and Video Processing. 2005. doi: 10.1016/B978-0-12-119792-6.X5062-1.

R. S. Basuki, M. Hariadi, and R. A. Pramunendar, “Fuzzy C-Means Algorithm for Adaptive Threshold on Alpha Matting,” Int. Conf. Inf. Technol. Electr. Eng., no. July, pp. 177–180, 2012.

T. K. Porter and T. Duff, “Compositing digital images,” Proc. 11th Annu. Conf. Comput. Graph. Interact. Tech., 1984, [Online]. Available: https://api.semanticscholar.org/CorpusID:18663039

H. Kardan, A. Rajaei, and H. kardan moghaddam, “Marble Slabs Classification System Based on Image Processing (Ark Marble Mine in Birjand),” Civ. Eng. J., vol. 4, p. 107, Feb. 2018, doi: 10.28991/cej-030972.

J. Wang and M. F. Cohen, “Optimized Color Sampling for Robust Matting,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8. doi: 10.1109/CVPR.2007.383006.

N. Apostoloff and A. Fitzgibbon, “Bayesian video matting using learnt image priors,” in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004, pp. I–I. doi: 10.1109/CVPR.2004.1315061.

R. S. Basuki, M. Hariadi, E. M. Yuniarno, and M. H. Purnomo, “Spectral-based temporal-constraint estimation for semi-automatic video object segmentation,” Int. Rev. Comput. Softw., vol. 10, no. 9, pp. 959–965, 2015, doi: 10.15866/irecos.v10i9.7542.

J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, “Poisson matting,” ACM Trans. Graph., vol. 23, pp. 315–321, Aug. 2004, doi: 10.1145/1015706.1015721.

Y.-Y. Chuang, A. Agarwala, B. Curless, D. Salesin, and R. Szeliski, “Video Matting of Complex Scenes,” ACM Trans. Graph., vol. 21, Mar. 2004, doi: 10.1145/566570.566572.

Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, “A Bayesian approach to digital matting,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001, pp. II–II. doi: 10.1109/CVPR.2001.990970.

M. A. Ruzon and C. Tomasi, “Alpha estimation in natural images,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, no. July, pp. 18–25, 2000, doi: 10.1109/cvpr.2000.855793.

H. Liu, L. Ma, X. Cai, Z. Chen, and Y. Shen, “A closed-form solution to video matting of natural snow,” Inf. Process. Lett., vol. 109, no. 18, pp. 1097–1104, 2009, doi: https://doi.org/10.1016/j.ipl.2009.07.005.

A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural image matting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 228–242, 2008, doi: 10.1109/TPAMI.2007.1177.

R. Basuki, M. A. Soeleman, R. Pramunendar, A. Yogananti, and C. Supriyanto, “Video object segmentation applying spectral analysis and background subtraction,” J. Theor. Appl. Inf. Technol., vol. 72, pp. 208–214, Jan. 2015.

H. R. Rana and S. Kumar, “Color Tree Image Extraction using KNN Matting,” Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 2, no. 2, pp. 57–62, 2014, [Online]. Available: https://issuu.com/ijitce/docs/ijitce_july2020

H. J. Vala and A. Baxi, “A Review on Otsu Image Segmentation Algorithm,” 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:62421994

N. Zayed and H. Elnemr, “Statistical Analysis of Haralick Texture Features to Discriminate Lung Abnormalities,” Int. J. Biomed. Imaging, vol. 2015, pp. 1–7, Oct. 2015, doi: 10.1155/2015/267807.

G. R. Jothilakshmi, R. J. Christilda, A. Raaza, Y. SreenivasaVarma, and V. Rajendran, “Extracting region of interest using distinct block processing method in sono-mammogram images,” in 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), 2017, pp. 1–7. doi: 10.1109/ICCCSP.2017.7944091.

M. M. Mokji and S. A. R. A. Bakar, “Adaptive Thresholding Based on Co-occurrence Matrix Edge Information,” in First Asia International Conference on Modelling & Simulation (AMS’07), 2007, pp. 444–450. doi: 10.1109/AMS.2007.8.

A. Levin, A. Rav-Acha, and D. Lischinski, “Spectral matting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10, pp. 1699–1712, 2008, doi: 10.1109/TPAMI.2008.168.

R. S. Basuki, A. Soeleman, M. Hariadi, M. H. Purnomo, R. A. Pramunendar, and A. F. Yogananti, “SPECTRAL-BASED VIDEO OBJECT SEGMENTATION USING ALPHA MATTING AND BACKGROUND SUBTRACTION,” 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:41462397

Published
2024-06-27
How to Cite
Ruri Suko Basuki, & Jehad A.H Hammad. (2024). GLCM-Based Feature Extraction for Alpha Matting on Natural Images. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(3), 423 - 430. https://doi.org/10.29207/resti.v8i3.5644
Section
Information Technology Articles