Forecasting the Stock Price of PT Astra International Using the LSTM Method
Abstract
Stocks are one of the long-term investment options and represent ownership in a company that can be acquired through buying and selling. Investment carries both the profit potential and the risks that investors must face when providing their capital to companies. Accurate stock price forecasts are very important because they provide an estimate of risk. This research aims to forecast the stock price of PT Astra International Tbk (ASII.JK) using a Long Short-Term Memory (LSTM) method. Data set closing stock prices were taken from January 2, 2015, to December 30, 2020, with a total observation of 1506. This data set is divided into 80% for training and 20% for training. The forecasting results show that the best performances have MSE, MSE, MAE and MAPE are 151.910, 23076.561, 118.128, and 2.3%, respectively. The model has a batch size of 4 and epochs of 50. This research recommends that other parties consider this method when they need to manage their investment risk in stocks.
Downloads
References
Saham, “Indonesian Stock Exhange,” May 2022. [Online]. Available: https://www.idx.co.id/id/produk/saham
R. Zulelli and M. W. Yusniar, “Pengaruh Tingkat Keuntungan Pasar, Nilai Tukar Rupiah, Inflasi, Dan Tingkat Suku Bunga, Terhadap Return Saham Industri Food And Baverage Tahun 2007,” J. Wawasan Manaj., vol. 1, no. 1, pp. 105–128, 2013.
Bursa Efek;, “Otoritas Jasa Keuangan,” May 2019. [Online]. Available: https://sikapiuangmu.ojk.go.id/FrontEnd/CMS/Article/270
P. A. I. T. [ASII.JK], “IDN Financials,” 2023. [Online]. Available: https://www.idnfinancials.com/id/asii/pt-astra-international-tbk#ipo
M. W. P. Aldi, J. Jondri, and A. Aditsania, “Analisis Dan Implementasi Long Short Term Memory Neural Network Untuk Prediksi Harga Bitcoin,” in eProceedings of Engineering, Program Studi S1 Informatika Telkom University, 2018. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/6739
A. Çıbıkdiken and E. Karakoyun, Comparison of ARIMA Time Series Model and LSTM Deep Learning Algorithm for Bitcoin Price Forecasting. 2018.
F. I. A. B. Nurjaman, A. Hasim, A. M. Zakiri, A. A. Pravitasari, “Long Short-Term Memory (Lstm) Untuk Prediksi Harga Saham Pfizer Inc,” Universitas Padjadjaran, 2021.
E. G. P. I. Y. P. W. S. JS, “PREDIKSI HARGA SAHAM MENGGUNAKAN METODE LONG SHORT TERM MEMORY SAAT KONDISI PANDEMI,” J. Inform. dan Sist. Inf., no. Vol. 3 No. 2 (2022): Jurnal Informatika dan Sistem Informasi (JIFOSI), pp. 86–95, 2022, [Online]. Available: http://jifosi.upnjatim.ac.id/index.php/jifosi/article/view/471/231
C. Setiawan, W. Sulandari, and Y. Susanti, “PERAMALAN HARGA SAHAM PT UNILEVER INDONESIA MENGGUNAKAN METODE HIBRIDA ARIMA-NEURAL NETWORK,” Semnas Ristek (Seminar Nas. Ris. dan Inov. Teknol., vol. 7, Jan. 2023, doi: 10.30998/semnasristek.v7i1.6270.
D. M. A. Putri Aghsilni, “ESTIMASI MODEL TERBAIK UNTUK PERAMALAN HARGA SAHAM PT. POLYCHEM INDONESIA Tbk. DENGAN ARIMA,” MAp (Mathematics Appl. J., no. Vol 1, No 2 (2019), pp. 1–12, 2019, [Online]. Available: https://ejournal.uinib.ac.id/jurnal/index.php/MAp/article/view/1176/992
B. Aprilianti, S. Martha, and N. Imro’ah, “PERAMALAN HARGA SAHAM DENGAN METODE MODWT-ARIMA,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 11, no. 4, pp. 649 – 658, 2022, doi: http://dx.doi.org/10.26418/bbimst.v11i4.57504.
D. A. Rezaldi and Sugiman, “Peramalan Metode ARIMA Data Saham PT.Telekomunikasi Indonesia,” in PRISMA, Prosiding Seminar Nasional Matematika, 2021, pp. 611–620. [Online]. Available: http://journal.unnes.ac.id/sju/prisma/article/view/45036
W. Rusyida and V. Pratama, “Prediksi Harga Saham Garuda Indonesia di Tengah Pandemi Covid-19 Menggunakan Metode ARIMA,” Sq. J. Math. Math. Educ., vol. 2, p. 73, Apr. 2020, doi: 10.21580/square.2020.2.1.5626.
W. W. K. Wardani, “Prediksi Harga Saham Syariah menggunakan Metode Recurrent Neural Network-Long Short Term Memory,” UIN Sunan Ampel Surabaya, 2021. [Online]. Available: http://digilib.uinsa.ac.id/49542/
F. A. Pohan, “Forecasting harga saham pada PT Astra International Tbk menggunakan metode ARIMA,” IAIN Padangsidimpuan, 2022.
N. Selle, N. Yudistira, and C. Dewi, “Perbandingan Prediksi Penggunaan Listrik dengan Menggunakan Metode Long Short Term Memory (LSTM) dan Recurrent Neural Network (RNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 1 SE-Ilmu Komputer, pp. 155–162, Feb. 2022, doi: 10.25126/jtiik.2022915585.
A. R. T. Rully, “Penerapan Metode Long Short Term Memory Dalam Memprediksi Jumlah Kasus Covid-19,” Universitas Islam Negeri Maulana Malik Ibrahim, 2021.
B. Raharjo, “Deep Learning dengan Python,” Penerbit Yayasan Prima Agus Tek., vol. 8, no. 1 SE-Judul Buku, Feb. 2022, [Online]. Available: https://penerbit.stekom.ac.id/index.php/yayasanpat/article/view/271
Copyright (c) 2024 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;